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In this paper, we present a further discussion of the role of electromagnetic potentials in the quantum 
theory, aimed at clarifying some of the points made in earlier papers, and indicating some extensions of 
these earlier ideas. In addition, we go into the problem of subsidiary conditions and questions concerning 
the full observability of the potentials. In the course of our discussion, we answer certain recent objections 
of Belinfante and De Witt. 

expressed in terms of the potentials, one obtains both a 
complete set of local commuting "observables" and a 
set of purely local equations of motion. I t was certainly 
not our intention, of course, to insist that a correct 
theory must be local in this sense. Indeed, we explicitly 
pointed out that physics is currently in a state of flux, 
such that there are even good reasons to suppose that 
this requirement of locality must somehow eventually 
either be changed or given up altogether. However, we 
did wish to stress that this principle of localizability 
(which may be called "physical-geometrical") is, in fact, 
now playing an important part in helping to define the 
mathematical form of current theories. We also wished to 
point out that there did not exist, to our knowledge, a 
correspondingly clear and natural way of expressing 
this principle of localizability in terms of the field 
strengths alone, without the use of potentials. I t was in 
this sense that we meant to state that the potentials are 
playing an "essential" part in giving a mathematical 
expression to certain physically (and, of course, geo
metrically) significant features of current quantum 
electrodynamical theories. 

Now, De Witt4 and Belinfante6 objected to the con
tent of the above statements, and supported their 
objections by producing, at least in a formal sense, some 
examples of explicit theories based only on a local set of 
gauge-invariant "field observables," not requiring the 
introduction of the potentials. Thus, De Witt began by 
starting with the usual theory, and making a certain 
nonlocal gauge transformation, \f/'—eiS\//, where 5 is an 
integral of the field observables over a certain somewhat 
arbitrarily chosen path. In terms of \f/\ he then ob
tained a set of field equations, very similar to the usual 
ones, except that where the vector potential usually 
enters, there now appears a nonlocal integral 

r° dzv 

4 / ( * " ) = / Fvli(z*)—d£. (1) 

[sx (£) is the coordinate of the path of integration, which 
is parametrized by allowing \ to run from — M to 0).] 
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1. INTRODUCTION 

SOME time ago, a number of papers1-3 were pub
lished, bringing out the fact that electromagnetic 

potentials have a new kind of significance in quantum 
theory, which does not appear in classical physics. Since 
then, a brief paper was published by De Witt,4 in which 
he criticized one of the points that we had made, viz., 
that the potentials play an essential part in expressing 
the fact that the electron-electromagnetic interaction is 
a local one (i.e., that the interaction is nonzero only at 
the points where there are charges). In an accompanying 
paper5 we answered these criticisms. Since then, how
ever, a paper by Belinfante6 has appeared, in which he 
objects to certain points raised in our answer to De Witt. 

After carefully considering Belinfante's criticisms, 
and reconsidering De Witt 's note, it has become clear to 
us that a systematic restatement of our position on this 
problem is now desirable, because what we wished to 
say has apparently not been sufficiently clearly under
stood. In addition, our ideas on this subject have mean
while been developing in several directions, and we feel 
that an indication of the general line of these develop
ments will also help to clarify some of the problems 
involved. In this article, we shall, therefore, try to 
present such a restatement of our general position along 
with a discussion of some further developments in our 
ideas concerning the role of electromagnetic potentials 
in quantum theory. In the course of the paper, we shall 
answer Belinfante's objections, and we shall also supple
ment our earlier reply to De Witt 's note. 

2. ON THE PRINCIPLE OF LOCALIZABILITY AND ITS 
RELATION WITH THE ELECTROMAGNETIC 

POTENTIALS 

The main point that we wished to stress in our earlier 
paper5 was that when quantum electrodynamics is 
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Belinfante,6 however, regarded the integration over 
an arbitrary path as unsatisfactory, and instead sug
gested another gauge transformation, leading to a 
similar theory, in which the usual vector potential is 
replaced by 

/

(x^—z7*) 
Fw(z*) fflz. (2) 
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Here the integration is carried out over a certain three-
dimensional space-like hypersurface in the four-
dimensional space-time continuum. The advantage of 
this transformation is that no arbitrary path of inte
gration needs to be chosen. Rather, the three-dimen
sional space-like hypersurface can be taken to cor
respond to the coordinate frame of some observer. Of 
course, this means that the theory is not manifestly 
covariant, though (as we shall go into later) it may 
perhaps still be covariant in its over-all content. 

Both De Witt and Belinfante then suggest that one 
can start with the field operators, F^z*), as a basic set 
of "observables," assuming the usual "local" commuta
tion relations, between field quantities. [That is, field 
quantities at different places and at the same time all 
commute.] These will guarantee the localizability of the 
Ffiviz7") "observables/' On the basis of this result, they 
argue that one has obtained a suitable formulation of 
quantum electrodynamics, embodying the feature of 
localizability without using the potentials. As both 
De Witt and Belinfante recognize, however, the field 
equations now involve the nonlocal operators, A^(xa) or 
.4/ ' (#") , as given in Eqs. (1) and (2). 

In our answer to De Witt, we pointed out that the 
transformations described above, are, in fact, obscuring 
the problem of what is meant by localizability. For to 
express this property naturally and in a clear fashion 
one requires not only local basic operators, but also 
local "interactions," not involving nonlocal functions of 
the basic operators such as those given in (1) and (2). 
In this way one obtains a clear and natural mathe
matical expression for the common "intuitive" notion 
that the world can be analyzed into "local" entities 
(i.e., the fields and charges) interacting by a sort of 
"contact" (which notion is, in fact, implicit in modern 
field theories). 

Of course, one might argue that perhaps the above-
described "intuitive" notion of localizability is no longer 
adequate, and that it may be desirable now to change 
this concept, in such a way that it will refer only to 
local field operators, without committing ourselves 
necessarily to local field equations as well. But (as we 
also noted in our answer to De Witt) there are serious, 
as yet unsolved, problems in trying to do this, because, 
in general, purely local commutation relations are not 
compatible with nonlocal field equations. (In other 
words, the propagation of initially "local" commutation 
relations by nonlocal equations of motion would gener
ally lead to the development of nonlocal features in the 
commutation relations in question.) Therefore, the 

apparently "nonlocal" electrodynamical field equations 
given by De Witt and Belinfante, are known to be 
capable of expression without self-contradiction, only 
when they are derivable by some transformation from a 
local set of equations that involve the potentials. I t is 
thus seen that the peculiar and restricted types of 
forms, (1) or (2), in which the field quantities must 
enter the equations of motion, are in some rather ob
scure and indirect way implying the property of locali
zability. On the other hand, this property is clearly and 
directly exhibited, when one does not eliminate the 
potentials. The problem of the form of the equations is, 
therefore, not merely a question of convenience or taste, 
at least if one wants not only to calculate some result, 
but also to see clearly what are the usually unasserted 
physical-geometrical assumptions that go into deter
mining the mathematical form of the theory. 

To bring out this point more sharply, we can refer to 
an analogous problem in which physical motions are 
linearly superposable (e.g., a harmonic oscillator). By 
the substitution, u=v2, we could obtain & formally non
linear equation, but at the expense of making the mean
ing of the property of linear superposition rather diffi
cult to see. (If it turned out that the nonlinear equations 
were suspected on reasonable grounds to be generally 
self-contradictory, unless reducible to linear ones by 
some substitution, the analogy would be even better.) 

The physical principle of linear superposability of 
motions thus helps to determine the (linear) mathemati
cal form of the equations of motion and dictates for this 
purpose the choice of v as a "natural" dependent 
variable. In a similar way, the physical-geometrical 
principle of localizability helps to determine the (locali-
zable) mathematical form of the electrodynamical 
equations and dictates for this purpose the potentials as 
a "natural" electrodynamical set of variables (leading 
to local "observables" and local equations of motion). 

In a further paragraph added in the proofs, De Witt 
objected in yet another way to the conclusion described 
above, saying that the mathematical form of current 
quantum-electrodynamical theories is "determined by 
experiment" (stating further on that the same is true of 
Maxwell's equations). We were, in fact, somewhat 
surprised to encounter such an objection. For it seemed 
as if De Witt felt that theoretical physicists simply 
considered the results of experiments, and then wrote 
down essentially uniquely determined mathematical 
equations (except perhaps for various possible trans
formations leaving their physical implications un
changed), and that this was all done without the need 
for introducing any principles, ideas, or assumptions, 
going at all beyond what can be seen directly in the 
experimental results themselves. If this is what De Witt 
intended to say, then it is evidently false. 

Thus, even Newton, who at one point claimed not to 
make hypotheses, actually brought in by implications a 
great many assumptions about space, time, causality, 
the inertial frame, the existence of forces acting at a 
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distance, etc., which did, in fact, play a crucial part in 
determining the mathematical form of his equations of 
motion, and which were never "determined by experi
ment." When some of these assumptions were later 
questioned, (e.g., in the theory of relativity and the 
quantum theory), room was made for very fundamental 
changes in the mathematical forms of physical theories. 
In a similar way, neither Maxwell's equations nor those 
of quantum electrodynamics are determined simply 
from experiment alone. Thus, when Maxwell originally 
proposed his equations, he introduced the "displace
ment current" as a hypothesis, which (among other 
things) led to a simple and coherent mathematical form 
for his theory. Later, this hypothesis was confirmed by 
experiment, but even now, the assumption, for example, 
of linearity is far from verified in full detail by experi
ment. As for quantum electrodynamics, its mathemati
cal form was originally suggested largely as a natural 
application of quantum theory to field theory. Since 
then, it has received a few experimental confirmations 
(e.g., the Lamb shift), but these can hardly be said to 
determine uniquely the mathematical form of the cur
rently accepted theories. Among the principles that are 
helping to effect such a determination one is, as we have 
pointed out, the localizability of electromagnetic 
interactions. 

3. ON THE PROBLEM OF A COMPLETE COMMUTING 
SET OF LOCAL OPERATORS 

The problem of localizability was the main point that 
we wished to discuss in our earlier articles on the poten
tials. However, we also went into the question of a 
complete set of commuting "observables" in field 
theory, and into that of whether theories involving field 
quantities alone could solve the problem of obtaining 
such a set in a satisfactory way. Here, we unfortunately 
made use of some common but loosely applied terms, 
which may perhaps have led Belinfante to attribute to 
us intentions that we did not have. The first of these 
loose terms arose in our reference to an acceptable 
"covariant" form of quantum electrodynamics. By 
implication, we took this to mean "manifestly co-
variant." In doing this, we, of course, never intended to 
suggest that current manifestly covariant treatments 
are free of objections, doubtful assumptions, and possi
ble sources of self-contradiction. Rather, all that was 
meant was that, as yet, no other treatments had been 
shown to achieve even the limited degree of coherence 
in the manner of leaving out infinities that has been 
obtained in manifestly covariant theories. Belinfante,6 

however, has argued that in an earlier article7 he did 
actually prove the relativistic invariance of a non-
manifestly-covariant theory, essentially equivalent to 
that resulting from the formulation described in con
nection with Eq. (2), of the present paper. Nevertheless, 
in a somewhat later paper,8 he recognizes that the prob-

7 F. J. Belinfante, Phys. Rev. 84, 541 (1951). 
8 F. J. Belinfante, Phys. Rev. 91, 1285 (1953). 

lem of getting rid of the infinities in a covariant way is 
yet to be dealt with. In his recent paper,6 Belinfante 
suggests that this is due only to the tediousness of the 
requisite calculations, and to the fact that no one has 
cared to work out consequently what would happen if 
the calculations were actually done. This is, however, a 
matter of opinion. When we wrote our paper,5 it seemed 
to us that there were serious difficulties in the way of 
such a program, and as yet, these difficulties do not seem 
to have been resolved. Therefore, our implicit assump
tion that all satisfactory covariant theories are also 
manifestly covariant was not basically wrong; although, 
admittedly, it would have been clearer if we had ex
plicitly stated that we meant "manifestly covariant." 

At this point, it will perhaps be well to make it clear 
that we did not (and do not) regard theories involving 
field quantities alone as of no potential interest or value. 
First of all, of course, it is necessary to see whether such 
theories can really deal with infinities in a satisfactory 
covariant way. But even if it should turn out that they 
can, it still seems to us that they must also face the 
problem, described earlier, of expressing the principle of 
localizability in a clear and natural way. Until they do 
this, it seems to us that they are obscuring an important 
physical-geometrical question without giving any cor
responding gains to compensate for this loss. Naturally, 
it is quite possible that further research on these lines 
will resolve such problems, and lead to new results of 
interest. But for the present, it seems that potentials are 
still needed to play the "essential" part to which we 
have been referring. 

4. ON THE PROBLEM OF SUBSIDIARY CONDITIONS 
IN ELECTRODYNAMICS 

Now De Witt and Belinfante do suggest that there is 
some advantage to be gained by starting with the field 
operators, rather than with potentials, i.e., one can 
eliminate the subsidiary conditions (such as dA^/dx^—O 
in the Lorentz gauge). They seem to feel that the sub
sidiary conditions are creating serious and basic diffi
culties in quantum electrodynamics, so that it is an 
important advantage to be able to eliminate them. 
However, for reasons that we shall give, we do not think 
that the subsidiary conditions are really creating such 
serious problems, so that we do not regard the mere 
elimination of these potentials as a very significant gain. 
On the contrary, it seems to us that, as we shall t ry to 
show, the potentials may be furnishing important clues 
as to further developments in physics, so that their 
elimination may lead to obscure these clues (whatever 
may be the, as yet, unclear advantages, which this 
elimination might later be shown to have). 

The main current objection to the use of subsidiary 
conditions is probably that one begins with a set of 
operators whose eigenfunctions include what are called 
"nonphysical" states, that do not satisfy the subsidiary 
condition. If it were not for the divergences and gener
ally infinite results implicit in current theories, this 
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would, of course, cause no difficulty of a purely mathe
matical nature. For one could simply consider the total 
set of solutions for the electrodynamical system (phys
ical and nonphysical) and then choose those satisfying 
the subsidiary condition. But because current theories 
are divergent, special care is needed to avoid the inclu
sion of transitions to the "nonphysical" states in the 
computation of quantities, such as the Lamb shift. Such 
precautions require the addition of further injunctions, 
beyond what follows necessarily from the original 
theory. Belinfante6 regards such devices as a kind of 
"trick," or "artifice," which "smuggles" in extraneous 
factors. Of course, Belinfante is quite correct in this. But 
then, is not the whole renormalization technique like
wise just such an "artifice," which is being used as a 
kind of very useful and necessary but (we hope) tem
porary "stop-gap," until a new nondivergent theory can 
be developed? 

Indeed, there is good reason to suppose that the 
current "stop-gap" theory is not even logically coherent, 
in the sense that when carried beyond a certain very 
limited range of operations and calculations, it may lead 
to self-contradictory results.9 And if a theory is self-
contradictory, then from problems that arise in dealing 
with any of its parts (such as the subsidiary conditions) 
we cannot draw any secure conclusions as to the real 
origin of the difficulties. (For example, by introducing 
the self-contradictory statement, 2 = 1 , somewhere in 
the theory, we might obtain absurd results in certain 
places, while in other places this contradiction would not 
affect the results. But none of the discussion would 
throw any reliable light on the validity of any particular 
part of the theory). Indeed, all that can be said thus far 
is that the problem of the subsidiary condition is not 
known as yet to introduce any mathematical difficulties 
beyond those that may be removed in some future 
theory that avoids the admittedly self-contradictory 
infinities of current theories. (In the Appendix, we 
suggest some more definite reasons why the elimination 
of these infinities may help us to avoid problems con
nected with subsidiary conditions.) 

5. ON THE "OBSERVABILITY" OF THE POTENTIALS 

Now, in the papers of De Witt and Belinfante, there 
seems to be still a further kind of objection to poten
tials, viz., that they are not "observable." And here, 
there is a type of confusion of terminology, which has in 
effect been built into the quantum theory itself. For the 
phrase "Hermitian operator whose eigenfunctions form 
a complete basis for the wave function" has been 
identified with the word "observable." So widespread 
is this use of the term, "observable," that it has become 
almost an unconscious habit among physicists. In fact, 
we ourselves used it in our reply5 to De Witt. We wish 
here to apologize for furthering this confusion of 

9 L. von Hove, Physica 18, 145 (1952); A. S. Wightman, Phys. 
Rev. 98, 812 (1955). 

terminology, and to make amends by trying to clarify 
the question a bit. 

Now the common usage of the term "observable" is 
equivalent to a kind of unstated assumption: In every 
theory, there will be a complete set of wave functions, 
which are eigenfunctions of a complete commuting set 
of Hermitian operators, and all of these operators are 
"observable." 

Where does this assumption come from? Of course, 
the assumption of linear operators grew up in the origi
nal largely mathematical theories of Heisenberg and 
Schrodinger, laying the basis of the quantum theory. 
But what is the origin of the further assumption that 
all operators of the type described above must be 
observable? 

The full answer to the above question is perhaps as 
yet unclear. Nevertheless, one can see a number of 
significant reasons leading physicists to stress the im
portance of "observables." Historically, there was the 
famous principle of "Occam's razor" which enjoins upon 
us the desirability of not multiplying basic entities and 
concepts in an arbitrary way, particularly when they 
cannot be verified through observations. Then in the 
development of relativity, the criticism of the un-
observable absolute space and the ether was an impor
tant means of freeing thought to allow the consideration 
of new ideas. Partly as a result of this development, 
there was a growing feeling that one should avoid the 
discussion of "unobservables" in physical theories. And 
when the quantum theory came into existence, this 
feeling may well have been one of the main factors 
leading to the identification of "basic Hermitian oper
ators" with "observables." 

While the principle of trying to avoid "unobserva
bles" was in many ways helpful in the recent growth of 
physics, there has arisen what appears to be a harmful 
tendency to regard this principle as an absolute truth. 
To do this is to be caught in a contradiction; since there 
is no "observable" way of showing that this is in fact an 
absolute truth. Perhaps it is only a principle that should 
at the very least be used with "common sense" within 
certain limits. However, it may be possible to go even 
further, and to suggest that "unobservables" may never 
be totally eliminated in our thinking about physics. 
Indeed, in spite of the strong effort to get rid of "un
observables" in modern physics, there has been no 
dearth of them in recent physical theories. However, 
they are no longer called "entities." But instead, 
physicists now call them "mathematical quantities" or 
"conceptual aides." Thus, in quantum theory, every
thing has depended on the wave function, which is not, 
on the whole, a very observable sort of thing. Then 
there are the purely conceptual "waves" and "particles" 
in Bohr's principle of complementarity, which are also 
not "observable" though they are important in making 
clear the meaning of the theory. Then there are the 
"virtual states," "resonance," and a tremendous num
ber of unobservable concepts that physicists find it 
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convenient to talk about when they want to understand 
the results of the quantum theory and communicate 
with other physicists. Besides, in relativity, we have the 
unobservable coordinate frame, etc. As long as we call it 
a "mathematical quantity," or a "conceptual aide," 
physicists do not generally seem to have any real ob
jection to working with unobservables. Indeed, as we 
have suggested above, it seems that whatever the reason 
may be, it is almost impossible to do theoretical physics 
without at least thinking of something unobservable, 
which makes the whole set of results cohere, hang 
together, and fit in some rationally comprehensible way. 

So if we are making a theory of electrodynamics, can 
there be any real objection to calling the vector poten
tial a "mathematical quantity" and a "conceptual 
aide" which helps us clearly to formulate the problem of 
localizability? The "nonobservable" aspects of these 
operators cause no real trouble, since the assumption 
that all such operators must be "observable" in the 
usual sense is, in any case, arbitrary. Just as the wave 
function has some not fully observable features, such as 
its phase, so we introduce Hermitian operators for the 
vector potential, that are in some similar sense not fully 
observable. After all, what can be asked of a theory 
except that it be logically coherent, fruitful, easily 
comprehensible as to what are the basic general prin
ciples entering into the determination of its form, and 
in agreement with experiments that have been done 
with the object of testing it? To ask that we reject all 
"unobservable" Hermitian operators seems a rather 
arbitrary further requirement. Although this require
ment is commonly adopted in the entirely laudable 
effort to avoid philosophical preconceptions the fact is 
that in effect, it merely amounts to another philosoph
ical notion which may be called the "antiphilosophical 
philosophy"; and this philosophy is even more arbitrary 
than the ideas it seeks to avoid. 

But the introduction of "unobservables" often turns 
out to be more than a mere convenience in thinking. 
Sometimes (though not always) it serves as a clue to 
genuinely new developments. This is not surprising, 
since what is new begins by being unknown and, there
fore, must escape the net of the kinds of things that are 
"observable." To suppose that all that we discuss must 
be "observable" is indeed equivalent to assuming that 
we ought already be able to recognize the general forms 
of everything that can be found in nature, and that only 
the "details" remain to be filled in. But if there is some
thing really new, it may not "fit" into what we can now 
observe and recognize at all. Very often, however, we 
can get a vital clue to the unknown by seeing what is 
needed to give us a coherent and clear conception of 
certain phenomena that are already known. And here, 
it is very likely that something unobservable (at least for 
the present) will have to be considered. 

There are many examples, but the authors would like 
to consider the Hamilton-Jacobi theory of classical 
mechanics. Mathematically this introduced an action 

function, S, which suggested, physically, a wave front, 
normal to the particle trajectory. The consideration of 
a whole wave front suggested an ensemble (perhaps 
statistical) of particle trajectories. Now, in classical 
mechanics, this wave front was considered to be totally 
"unobservable," since it was supposed that only the 
particle really existed. But the fact that the Hamilton-
Jacobi theory gave such a natural expression for the 
classical canonical transformation might, in principle, 
have suggested (though it actually did not) that there 
was really some kind of a "wave" associated to the 
particles. If this were the case, the action function, S, 
would be proportional to the "phase" of this wave. This 
function S (or at least its changes) would, in principle, 
be "observable," when one would be able to do new 
kinds of experiments (e.g., interference) on the wavelike 
aspects of the system. And indeed, with the advent of 
quantum theory, we are, in fact, "observing" differences 
of phase, which did not even have any meaning in terms 
of classical "particle" conceptions. 

Now, we propose that as the S function lent further 
mathematical coherence to the canonical formation of 
classical physics and, in principle, gave a clue (not 
actually used) toward quantum phenomena, so the 
electromagnetic potentials give coherence to the laws of 
electrodynamics, and in principle yield clues to further 
new phenomena. But now we may ask, "Why repeat the 
mistakes of the past? Why not try to pay some attention 
to the clues provided by the potentials?" In this short 
article, we cannot go into these clues in much detail. 
However, what is suggested is that the potentials are 
very important in expressing some of the topological and 
structural relationships that are behind the concept of 
localizability of charges and fields. (Some preliminary 
suggestions concerning the further significance of 
potentials are given in more detail elsewhere,10,11 as well 
as in the Appendix of the present article.) This is of 
possible physical interest, first because if one is going to 
give up localizability (e.g., to get rid of infinities) it is 
desirable to see with some clarity and depth of under
standing what one is giving up. Secondly, since the 
potentials may be related to qualitatively new topo
logical and structural properties, they may actually be 
"observable," but only with correspondingly new (and 
as yet unknown) kinds of experiments (as during the 
period of classical physics, the action function, S, was 
not "observable," but became "observable" when 
electron interference experiments were first done). 

10 D. Bohm, in Proceedings of Eighth International Congress on 
Low Temperature Physics, (Butterworths Scientific Publications 
Ltd., London, 1962). A discussion of some of the topological and 
structural ideas is given here. See also, The Scientist Speculates, 
edited by I. J. Good (William Heinemann, London, 1962), p. 302. 

11 Y. Aharonov has shown that, in a quantum state in which the 
potentials are not well denned, potential differences at a given 
point in space may have a physical significance, manifested in the 
possibility of defining the velocity and position of a charged parti
cle at the same time. Thus, one does not need to restrict physically 
significant functions of the potentials to circuit integrals, that are 
reducible to integrals of fields inside the circuit. A manuscript on 
this subject is now being prepared. 
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Mathematically speaking, then, it seems that in the 
interests of clarity of thought concerning quantum 
theory, it would be advisable to give up the unstated 
assumption that all "basic" Hermitian operators must 
be observable. When one looks into the question, one 
sees that this assumption really plays no part in current 
theories. For all the results of these theories would 
follow without such an assumption, merely from the 
supposition that some Hermitian operators are ob
servable. We can leave open the question as to which of 
them are observable and which are not. Moreover, 
operators that are not observable in terms of what can 
be known and recognized at present may be related to 
observation in new ways, based on further laws and 
concepts, which we might come to learn at some future 
date. 

Thus far, the very form of quantum mechanics seems 
to have required the assumption of a complete com
muting set of basic Hermitian operators. Among these, 
for operators that are "observable" (by currently 
known means) the usual rules can be assumed to give 
the probability of a certain result as the square of the 
absolute value of the corresponding normalized eigen-
state in the expansion of the wave function. But for 
operators that are not "observable" in the above-
described sense, there is no need to assume a probability 
function at all, e.g., as a "positive definite" metric in 
Hilbert spaces. One can assume nondefinite metrics,12 

or one can simply leave the question of whether or not 
there is a metric of any kind in Hilbert space completely 
open. As to what these assumptions mean in a "phys
ical" sense, this question too can be left open. Perhaps 
they may be interpreted later in terms of concepts that 
simply would not be "recognizable" when expressed in 
terms of current physical and mathematical conceptions 
of the quantum theory (as would happen with the 
interference properties of electrons, if we tried to state 
them in the classical "language" of well-defined particle 
trajectories). 

Finally, we do not even wish to insist that the fea
tures of the quantum theory described above will not 
eventually have to be changed fundamentally. But it 
does seem desirable that we try to see clearly what we 
are assuming, what we are changing, and why we are 
doing so. We have gone rather extensively into these 
questions, because it seems that it is important at this 
stage to try to make them as clear as possible; and be
cause lack of clarity on these points seems to be one of 
the reasons why what we have said about potentials has 
apparently not been sufficiently understood. 

APPENDIX. SOME REMARKS ON THE RELATIONSHIP 
BETWEEN GAUGE INVARIANCE AND 

LOCALIZABILITY 

In this Appendix, we add some remarks on the re
lationship between gauge invariance and localizability 
of basic field quantities, in the sense discussed in Sec. 2. 

12 S. N. Gupta, Proc. Phys. Soc. (London) A63, 681 (1951). 

I t is well known that there is a close analogy between 
problems arising out of gauge invariance in electro
dynamics and certain other problems that arise from the 
covariance of the gravitational field equations in gen
eral relativity (see, for example, the interesting and 
systematic study of this subject by Bergmann and his 
co-workers13). I t will be instructive first to consider 
briefly the relationship of such invariance problems to 
the question of localizability in gravitational theory, 
and then to go on to consider similar questions con
nected with gauge invariance in electrodynamics. 

General relativistic covariance implies that the field 
equations for the gravitational potentials, gMy, satisfy 
four identities (Bianchi identities), so that, in effect, 
four of the potentials are not determined by the initial 
conditions and the equations of motion. I t is this lack of 
determination which leaves room for an arbitrary 
coordinate transformation, within the framework of the 
gravitational equations. Similarly, in electrodynamics, 
the conservation of charge follows from the field equa
tions as an identity, with the result that the theory 
leaves room for invariance of physical results to an 
arbitrary gauge transformation of the potentials, which 
is similar to (but simpler than) the transformation of 
gravitational potentials brought about by a change in 
the coordinate frame. 

Now, as we have indicated in this paper, it seems 
likely from current difficulties in field theories that at 
very short distances, the laws of physics will have to 
change fundamentally, in such a way as to alter the 
notion that basic field quantities are localizable. In 
some rough sense, it could be said that there is probably 
a "fundamental length," below which the basic con
cepts of current theories cease to be relevant. We have, 
in fact, already discussed the suggestion10 that in the 
domain of the such short distances, space-time will have 
to be described in some inherently structural and topo
logical sense, because it may possess a kind of irreducible 
"graininess," which denies the notion of the perfect 
continuity, that is built into current field theories. 

I t has often been proposed that the "fundamental 
length" is of the order of 10-13 cm, but we are inclined to 
favor the assumption that it will be of the order of 
10-33 cm, the basic "gravitational" unit of distance 
(because such a fundamental length will signalize 
failure of ordinary notions of metric, and should there
fore be deeply related to gravitational effects, rather 
than to electrical or nuclear interactions, which are the 
main factors at 10~13 cm). 

If there should be a basic unit of length as described 
above, then current theories can have only some limited 
degree of covariance to arbitrary coordinate trans
formations. Roughly speaking, theories will be covariant 
only under general transformations in which the scale of 
length is not changed so much that physical structures 
such as nuclei are shrunk down to the size of 10~33 cm 

13 P. G. Bergmann and A. Janis, Phys. Rev. I l l , 1191 (1958). 
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(as large-scale thermodynamic laws are not invariant, 
if objects are shrunk to atomic dimensions in a trans
formation). We are, therefore, led to suggest that the 
Bianchi identities which follow only for complete in-
variance, do not hold absolutely, but only in some very 
high degree of approximation. If this is the case, then 
the corresponding auxiliary conditions in the gravita
tional potentials will also only be a very good approxi
mation. All ten gravitational potentials will then have 
some physical significance. The four that should be 
irrelevant in a continuous space will in some indirect 
sense, represent the fundamental unit, underlying the 
discrete structure of space-time. In this way the assump
tion of a basic "graininess" to space-time, a step that 
will probably eliminate the infinities of current field 
theories, is seen also to get rid of the auxiliary conditions 
in the gravitational potentials which create such com
plicated problems in the quantum theory. In place of 
auxiliary conditions determined by certain operators, 
there will be equations implying a quantum state, in 
which there is a probability distribution of these oper
ators, which would be a delta function, if space-time 
were continuous. However, if, as we assume, it is not 
continuous, the width of this probability distribution 
will determine the relationship of the coordinate frame 
to the basic unit of length (i.e., it will imply the size of 
the basic "grains," as specified in terms of the given 
coordinate frame). 

A similar point of view can be adopted with regard to 
electrodynamics. Thus, we need not regard the sub
sidiary conditions as satisfied exactly, but rather, only 
to a very high degree of approximation. Then we can, 
for example, avoid the problem that the wave function 
is a delta function of dAjdx11. Now, it will be spread 
over a finite but small range of this operator. Of course, 
charge will not, in general, be conserved, if this is 
assumed. But the failure of conservation may be very 
small, such that transitions in which the charge "quan
tum number" is changed will be much weaker than 
those in which isospin and strangeness are not conserved, 
so weak in fact that the phenomenon of charge non-
conservation has not yet been observed. 

We can illustrate this idea briefly by first considering 
the ordinary Lagrangian for the electromagnetic field: 

£2-3C2 

Li = hj-A—p0, 
8TT 

with 
- I d A 

£ = V<£, 3C=VXA, 
c dt 

and with units in which c—1. 
We then add a very small term 

Z2=02/2X, 

where £2=divA+<9<£/d/ and X is a suitably adjusted 

constant. The total Lagrangian is then 

L=LX+L2. 

All components of the potential now have canonically 
conjugate momenta. Thus, 

n = £ / 4 7 r 

is canonically conjugate to A, while 

O = ( l / \ ) ( d 0 / # + d i v A ) 

is canonically conjugate to 0. The Hamiltonian is then 

II2+3C2 / div£\ X 
H= h P U - j - A + - 0 2 - O d i v A , 

8TT \ 4TT / 2 

where p is the charge density and j is the current 
density. One readily obtains among the equations of 
motion, the following: 

VX3C-d£/<^=47rj-XVS2, 

V'S = 4wp+\dQ/dt, 

• 0 = (47r/X)(dp/^+divj). 

There is no subsidiary condition is this theory. But as 
X—»0, we readily verify that the wave function cor
responding to the lowest state of excitation of £1 ap
proaches a delta function of divA+d$/d/. In general, 
d iv j+dp /d /^0 so that charge and current are not con
served, but as X —> 0, divj+dp/d/ —> 0 and the equations 
for £ and 3C approach Maxwell's equations. The width 
of the probability distribution in 12 will be small enough 
so that Z2=02/2X will approach zero as X —> 0. 

We note that the equations for £ and 3C have, as 
"effective sources" for the fields, the quantities 4T] — VO 
and 4wp+dtt/dt. So in this theory, the electromagnetic 
field is distributed as if it had some other source than 
the particle positions (which latter do not in general 
give rise even to a perfectly conserved charge current). 
In this way, the "self-field" of a particle is effectively 
"generated" at some distance from the particle, so that 
its reaction back on the particle need not be as large as 
it is in the usual theory. 

We see, then, that giving up gauge invariance is 
equivalent, indirectly, to altering some of the assump
tions on localizability of interaction of charge and 
current. However, to take full advantage of the possi
bility of doing this, it is necessary also to give up perfect 
conservation of charge, as would, in any case, be only 
natural, if we regard this theory as the precursor of a 
further development, in which the "graininess" of 
space-time would be taken into account. For in a dis
crete space-time a differential equation for conservation 
of charge would, in any case, have no meaning. 

I t seems to be possible to obtain a further insight into 
the relation of the possible "graininess" of space-time to 
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the factor of gauge invariance of electrodynamics by 
considering some proposals of Yang and Mills14 and 
Utiyama.15 These authors introduce an abstract iso-
space such that electrodynamical gauge invariance is a 
consequence of invariance of the theory to certain 
transformations in this space. In particular, a gauge 
transformation corresponds to the "independent'' 
rotation of neighboring regions of isospace, so that gauge 
invariance expresses the complete "localizability" of the 
influence of fields in indefinitely small regions of iso
space. The analogy to general relativity is that covari-
ance to space-time transformations implies a similar 
possibility of "independent'' deformation of each small 
region of space-time in such a transformation, thus 
expressing the indefinite "localizability" of the effects of 
fields in real space-time. (If the isospace is extended to 
several dimensions, then one can also subject strange
ness and isospin properties to a similar treatment, thus 
opening the way to a more general approach to 
the theory of the quantum numbers of elementary 
particles.) 

Thus far, we have considered only an analogy be
tween isospace and the space-time of general relativity. 
But with the aid of some of the notions suggested in a 
more recent work,16 it is possible to go further and to 
bring in a definite relationship between these two spaces. 
For the abstract isospace has been interpreted in terms 
of a real space-time structure of elementary particles. 
(In fact, it is just this concept of structure that has been 
developed further in the topological theories10 to which 
we referred earlier in the present paper.) 

14 N. Yang and R. L. Mills, Phys. Rev. 96, 1911 (1954). 
15 R. Utiyama, Phys. Rev. 101, 1597 (1956). 
16 L. de Broglie, D. Bohm, F. Halwachs, P. Hillion, T. Taka-

boyasi, and J. P. Vigier, Phys. Rev. 129, 438 (1963). 

It follows then that if there is a basic "graininess" to 
space-time, this may have implications not only for 
general relativistic transformations, but also for iso
space transformations, which reflect the behavior of 
structures in relativistic space-time. Roughly speaking, 
over a region of the size of a "grain" one can no longer 
allow "independent" rotations of smaller subregions, 
because the notion of such a subregion no longer has its 
usual meaning. Thus, there is established a limit both to 
general relativistic covariance, and to invariance to 
transformations in isospace and, therefore, to gauge 
invariance and detailed conservation of charge. As a 
result it becomes possible to give a physical significance 
to all four components, A^ of the potential, which now 
determine not only the field quantities £ and 3C in the 
usual way, but also, in a more indirect way, the "scale 
factor," below which continuous notions of space-time 
and detailed conservation of charge cease to apply. At 
the same time, current difficulties associated to the 
subsidiary conditions are evidently bypassed as ir
relevant, since these conditions are now replaced by 
well-defined relationships satisfied by the quantum 
state of the whole field. 

It is evident that these proposals constitute a parti
cular case of the suggestion in Sec. 5 of this paper to 
regard the potentials as clues to some new features of 
space-time and properties of charge. In this way, one 
may perhaps obtain insights into the reasons why 
potentials seem to be "essential" for expressing the 
property of localizability in a simple and natural way. 

A more systematic development of such a point of 
view is now being carried out, in which the "graininess" 
of space-time is interpreted in terms of topological and 
structural concepts. It is hoped that this will soon be 
ready for publication. 


