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The relation between gauge invariance, canonical quantization, and the photon mass is examined. It is 
found that gauge invariance does not require the bare photon mass to be zero. In fact, quantization in an 
arbitrary covariant gauge is only possible for massive photons. This is a generalization of the usual Fermi 
procedure. A similar generalization of the conventional Coulomb gauge quantization leads to a gauge-
invariant, but noncovariant, theory of massive transverse photons. 

INTRODUCTION 

TH E invariance of Lagrangians under constant 
phase transformations has often been generalized 

to include local phase transformations.1 To maintain 
the invariance it is usual2 to introduce a vector field. For 
example, in electrodynamics if ^(x) is the charged 
field, which undergoes 

*(%)-+eieK<x)V(x), (1.1) 

invariance is maintained if one introduces the photon 
field A^x), such that 

A^x) -> A^+dpAix). (1.2) 

The interaction of the photon field is determined by the 
replacement 

dM—>dM—i&4M, (1.3) 

in the Lagrangian of the charged particles. The interac­
tion Lagrangian, L i n t , generated in this way, defines a 
current j ^ where 

j , = « W M . . (1-4) 

This current is conserved, 

< W M = 0 . (1.5) 

The transformations (1.1) and (1.2) are referred to as 
gauge transformations. I t is generally assumed that in 
addition to inducing a conserved current, gauge 
invariance also implies that the mass of the photon is 
zero. 

The extension of these ideas to isotopic spin and 
unitary symmetry3 has led to the prediction of an octet 
of vector mesons with precisely the spin and isotopic 
properties of p, co, and i£*, which, however, have 
nonzero mass. We are, thus, led to reconsider the 
implications of gauge invariance for the mass of the 
induced vector particles. 

* The research reported in this document has been sponsored by 
the National Science Foundation and Air Force Office of Scientific 
Research, OAR, through the European Office, Aerospace Research, 
United States Air Force. 

t John Simon Guggenheim Fellow on leave of absence from 
The Johns Hopkins University, Baltimore, Maryland. 

J R . Utiyama, Phys. Rev. 101, 1597 (1956); C. N. Yang and 
R. L. Mills, ibid. 96, 191 (1954). 

2 See, however, V. I. Ogievetskij and I. V. Polubarinov, in 
Proceedings of the 1962 Annual International Conference on High-
Energy Physics at CERN, edited by J. Prentki (CERN, Geneva, 
1962). 

3 A. Salam and J. C. Ward. Nuovo Cimento 11, 568 (1960). 

The simplest instance of such a particle is the 
photon, since it does not itself carry the conserved 
quantity, charge. (In contrast, p carries isotopic spin.) 
Our discussion in this paper is restricted to this simple 
case. 

We consider the restrictions imposed on the theory of 
the free photon part of the Lagrangian by the require­
ment that the observable properties of the system are 
invariant under gauge transformations.4 We are, thus, 
led to consider first the theory of free photons. 

We show below that there are two independent ways 
in which the free photon Lagrangian can be modified, 
in a gauge invariant manner, to include mass terms and 
which admit of a conventional canonical quantization. 
The two methods are based on the introduction of two 
gauge-invariant vector fields A/(x) (the Landau field) 
and A^x) (the transverse field). The first formulation 
is a generalization of the usual quantization in the 
Fermi gauge, and leads naturally to a covariant theory 
of massive photons. The second formulation generalizes 
the usual quantization in the Coulomb gauge. The 
procedure is noncovariant and leads, in general, to a 
noncovariant theory of massive transverse photons. 
Only in the special case of zero-mass photons is the 
resulting theory covariant, since only for zero-mass 
particles is the notion of transverse polarization a 
covariant one. 

2. CLASSICAL THEORY OF THE FREE ELECTRO­
MAGNETIC FIELD WITH DISPERSION 

We discuss first a covariant, gauge-invariant, general­
ization of the classical Maxwell theory. 

Consider5 

TfiV(x,y) = 8liV5(x—y) — dfldvD(x—y), (2.1) 

where D(x—y) is defined by the equation 

d2D(x-y) = 8(x-y). (2.2) 

This operator has the properties 

6V>fey) = 0, (2.3) 
and 

Tn=T. (2.4) 
4 Our approach differs from that of J. Schwinger [Phys. Rev. 

125, 397 (1962)] who accepts the conventional theory of zero-mass 
bare photons and considers the possibility of mass being induced 
by the interaction. 

6 We use natural units h — c=l, and the notation dll = d/dxfi, 
U = 1,2,3,4) and d2-dMdM-V2+d4

2. 
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It is thus a projection operator for the "covariant 
transverse" part of any vector field. Given any such 
field, A^x), we define 

As(x) = T„(x,y)A,(y), (2.5) 

where summation or integration is implied over any 
repeated suffix or variable. A/ is a gauge-invariant 
field, since it is invariant for quite arbitrary gauge 
transformations of the type (1.2). 

In terms of this operator the conventional equation of 
motion for the free photon field may be written 

d*Tv(x,y)A,(y) = 0. (2.6) 

We consider the possibility of generalizing this to 

(d*-^)T,v(x,y)Av(y) = 0, (2.7) 

which is again clearly gauge invariant. The equation is 
nonlocal, but in the Lorentz gauge, in which 

d^ , (* ) = 0, (2.8) 

the equation reduces to 

(d2-»2)A»(x) = 0. (2.9) 

We may thus anticipate that the nonlocality is of a 
fairly innocuous character, and that after quantization 
the equations refer to photons of mass /x. 

The classical plane wave solutions of (2.7), of the 
form 

eMexp(i^M) , (2.10) 
have to satisfy 

(&2+M2)rM,(£k(&) = 0, (2.11) 
where 

r^i^^id^-k.h/k2). (2.12) 
Since 

7>(£)&„=0, (2.13) 

we may take four solutions 

€,<">(*) = *>(*), (2.14) 
for which 

& 2 + j U 2 = 0 j (2.15) 

of which only three are independent. A fourth independent 
solution is e^k^ for which k2 is completely arbitrary. 
I t is convenient to introduce the parameter X, such that 

k2+\2=0, (2.16) 

and to define the fourth polarization vector 

eM=£M/X. (2.17) 

We can now make a Fourier expansion of the field 
operator Ap(x) in terms of these classical solutions 
[using (2.14) and (2.17)]: 

r d*M(kQ) 
A»(x)= / {r,v(k)L^Meikx+a;(k)e-ik^ 

J (2TT)3 

xa(^+M
2)+feA) 

X&itye^+tfffl^lditf+X2)}, (2.18) 

P . T . M A T T H E W S 

where 
d*k=dk0dk (k0=-ik4), (2.19) 

and 
0(*o) = l, £o>0 

= 0, kQ<0. (2.20) 

Since it follows immediately from (2.19) that6 

(a2-x2)a^,=o, (2.21) 
it is clear that the parameter X serves to specify an 
arbitrary gauge.7 In the particular, but arbitrary, gauge 
specified by X, the equation of motion may be written 
in the local form8 

i[MMW-^,W]-M2(V-dAA2M»W=0' (2-22) 
The gauge transformation which takes the system 

from the gauge specified by X to that specified by A' is 
induced by A(x), where 

(d2~\,2)A(x)= (\f2/\2-l)dvAv. (2.23) 

From (2.21), this implies that 

(a2-x2) (a2-x'2)AW=o. (2.24) 

3. QUANTUM THEORY OF THE FREE FIELD 

The equation of motion (2.22) may be derived from 
the Lagrangian density9 

L= —^[_dllAv{x)dllAv(x) — dllAv(x)dvAli(x)~] 

~(»2/2){A,2(x)+td»A»(xW\2}. (3.1) 

Since this Lagrangian is local, we may proceed to 
develop a quantized theory in the conventional way. 

We define nM(#), related to the canonical momen­
tum,10 by 

Ilfl(x) = 8L/dld4Ali(x)']= -Id^A^-df.Aiix) 

4 > 2 / X % 4 c U , ( x ) ] . (3.2) 

Note that the mass term plays the role of the usual 
Fermi term in preventing n 4 from vanishing identically. 

The canonical commutation relations are 

D4M(X,0, n,(y,*)]= -M 3 (x -y ) . (3.3) 
6 Note that for the solution (2.17), k2 is quite arbitrary. Instead 

of introducing the parameter X, (2.16) could have been replaced by 
f(k2)=0, which would have replaced the gauge condition (2.21) 
by f(d2)dvAv = 0. To carry through the subsequent quantization 
we would have to restrict f(k2) to those functions [e.g., f(k2) 
= II(&2-f-Ai2)] considered by A. Pais and G. E. Uhlenbeck, Phys. 
Rev. 79, 145 (1950). 

7 The particular case \=/J. has been discussed by Ogievetskij 
and Polubarinov. See reference 2. 

8 Note that the equation analogous to (2.11) is now 

This equation has the solutions found for (2.11) provided ;u:^0. 
The equation has four independent solutions in the limit p. —> 0, 
only if yu2/X2 —> 1, which is the Fermi gauge. 

9 This Lagrangian is formally identical to the free Lagrangian 
used by T. D. Lee and C. N. Yang [Phys. Rev. 128, 885 (1962)] 
to describe charged vector mesons, with their £ equal to /*2/A2 in 
our notation. 

10 The canonical momentum is nM
(0> — — iU^^dL/dA^. 
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I t follows from (2.18) and (3.2) that 

(M 
X \jh (k)eiJcx—aj (k)e~ikx2 

/

dAk 
#(&0){ (y4,-M4)5(^+M2) 

(2irX 

+d(k2+X2)8fl,—[a{k)e*x-d(k)e-ik*~]}. (3,4) 
X 

The commutation relations for the operators av(k), 
a(k), aj(k), and cft(k) follow immediately from (3.3). 
They are 

2x<K£o)S(£2HV)[>M(£), aj(p)~\ 
= (2Tr)%v(k)5*(k-p), (3.5) 

2<ir#{h)8(k2+\2)[_a(k), tf(p)] 

= - (2irY8\k-p)\2/^ (3.6) 

All other commutators vanish. 
The Hamiltonian of the system is 

0 = / ( n ^ , , - •L)dsx, (3.7) 

where this is interpreted, as usual, as the normal 
product to remove the zero-point energy. Substituting 
the expressions (2.18) and (3.4) into (3.7), one obtains 
after some calculation 

r d'k 
Po= / h&(h) 

J (2TT)3 
ar^k)Tltv(k)av(k)8(k2+fi2) 

X2 
-d(k)a(k)d(k2+\2) . (3.8) 1 

The negative signs appearing in (3.6) and (3.8) in 
connection with the time-like photons give rise to the 
familiar difficulties, which can be eliminated by intro­
ducing an indefinite metric. Thus, if we define 

(3.9) 

(3.10) 

a*==— #t 

we can take the vacuum state to satisfy 

aM)o=0, a ) 0 =0. 

The completeness relation is 

i=E|w)(-i)n x(»l, 

where the summation is over all states and n\ is the 
number of time-like photons in the state \n).n The 
normalization condition is 

<»!»'>= (-l)»x«B n ' . (3.12) 
11 The states | n) can be defined in terms of the creation operators 

on the vacuum state. Thus, for example, the one-particle states 
al?(k))o=\k,iJ,) are normalized so that (&,,u|̂ ,j>)27r#(&o)<H&2-hu2) 
= (2TT)454(£- p)Tllv. 

The system consists of vector mesons of mass /z, and 
time-like mesons of mass X. The gauge field A (a?), 
defined by (2.24) and (2.25), is associated with particles 
of mass X and X' with opposite metric (see Pais and 
Uhlenbeck, reference 6). The corresponding gauge 
transformation removes the former and substitutes the 
latter. 

4. THE PROPAGATOR 

Using (3.10), the vacuum expectation value of the 
product of two field operators at arbitrary space-time 
points can be calculated directly from the expansion 
(2.18) and the commutation relations (3.5) and (3.6). 
The result is 

{A^Arly))* 
(2TTW 

&*k eik^-^(k0) 

X[rM , (*)5(*2+/i2)-(ft^/M2)«(*2+X2)] . (4.1) 

From this the vacuum expectation value of any other 
type of product of two operators may be obtained 
directly. Thus, the anticommutator is similar to (4.1), 
but with#(&0) replaced by 1; in the commutator #(&o) 
is replaced by 

€(Ao)=#(fco)-0(-fto). (4.2) 

Finally the time-ordered product is (4.1) with the 
replacement 

W - > i + £ € ( * o ) e ( * o ) . (4.3) 

The evaluation of the second term gives rise to non-
covariant contributions12 arising from the presence of 
kjzv which cancel. The result is consequently covariant.13 

where 
(2*)' / 

8nv~\ ) ; — — 
fjL2 Jk2J\rix2—ie JJL' 

d4keik^~yWFfiV(k)y (4.4) 

KtiKv 

2 k2+\2-ie 

= *>(&)-
1 A KnfZy 

tf+^-ie M2 k2 k2+\2-ie 
(4.5) 

The propagator thus contains a gauge-invariant term 
representing the propagation of heavy photons of mass 
JU, and a gauge-dependent term arising from the timelike 
photons of mass X. The choice of particular values of 
the parameter X reproduces the generalization of 
particular gauges which have been used in the past. 
Thus, for example, X=0 is the true Landau gauge for 
heavy photons. 

12 See, for example, L. Evans, G. Feldman, and P. T. Matthews, 
Ann. Phys. (N. Y.) 13, 268 (1961). 

13 This result is consistent with the general conclusion of refer­
ence 12 that a covariant T product is a consequence of the four 
fields A^x) being treated as independent canonical variables. 
Gauges in which this condition is satisfied were termed "true." 
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One can see from this propagator why it has been 
difficult to quantize conventional electrodynamics in 
an arbitrary covariant gauge. The limit M —> 0 must be 
taken with some care. To obtain a well-defined prop­
agator we must simultaneously take the limits 

X -> 0, (4.6) 

X 2 /V->a , (4.7) 

where a is an arbitrary constant. However, if \i is put 
equal to zero in the Lagrangian, the quantization 
procedure can only be carried out for a=l, which is the 
Fermi gauge. (See footnote 8.) 

Another interesting limit is 
X->oo, (4.8) 

for which the propagator reduces to 

d,v+ . (4.9) 

ju2 /k2+fx2-ie 

I t is clear from (2.21) that in this limit we must have 

dvAv(x) = 0 (4.10) 
satisfied as an operator condition. We, thus, arrive at 
the standard results for neutral vector mesons. 

5. INTERACTION AND ELIMINATION OF 
TIME-LIKE PHOTONS 

If we now introduce the interaction, the equation of 
motion, according to (1.3), is replaced by 

dv[_dvAll(x) — dllAv(x)~] 

- / * 2 K W - !D{x-y)dlldvAv(y)^y\=-jli{x). (5.1) 

By operating with dM on this equation it follows that 

^ 7 > 0 . (5.2) 

Using the suitably modified Lagrangian14 of the form 
(3.1), the interaction representation can be set up in an 
arbitrary gauge parameterized by X, in which the photon 
propagator will be (4.5), derived in the previous section. 

Consider any matrix element involving a real time­
like photon of four-momentum k^. This can be written15 

M= fe^(i\Ux)\f)d% (5.3) 

14 Note that, as in conventional (massless) theory, current 
conservation is a consequence of the gauge invariant equation of 
motion (5.1). However, in a particular gauge, specified by X, 
current conservation has to be imposed as an extra condition. This 
is again analogous to conventional thoery where, in the Fermi 
gauge, the equation of motion is d2^4M= —ĵ . In the present theory 
it follows from the modified Lagrangian and current conservation 
that (d2—X2)d(iAll=0, as in the noninteracting case [see Eq. 
(2.21)]. Thus, the time-like photons do not interact. 

16 H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo 
Cimento 1, 205 (1955). 

where | i) and | / ) are the residual initial and final states 
after the timelike photon has been explicitly extracted. 
But, by (2.18), this implies 

M~ / k^ii | i„ (x) | f)d% 

- / e**(i | drfp (x) | f)dAx=0. (5.4) 

Thus, all matrix elements involving real time-like 
photons as external particles vanish identically owing to 
the conservation of current and our covariant definition 
of time-like polarization. This simple argument replaces 
the complicated cancellation between longitudinal and 
time-like photons in the Gupta-Bleuler formalism and 
avoids the awkward subsidiary condition of the usual 
Fermi formulation.16 

Furthermore, the conservation of current also ensures 
that there is no contribution to any matrix element from 
the terms involving kjiv in the propagator.17 Thus, there 
is no dependence of any S-matrix element on X, and the 
physical consequences of the theory are independent of 
the gauge, as they should be. 

In order to obtain conventional theory we must 
take the limit 

/x—>0. 

For the propagator this limit has already been discussed 
in Sec. 4. We now consider its implication for the 
longitudinal photons, which have normalized polariza­
tion vector18 

[**+(»• a)2]1'2 

where rip is a unit timelike vector. Just as in the case of 
time-like photons, there will be no contribution to 
matrix elements involving longitudinal photons from 
the term in eM

(z) proportional to kp. In the limit of fx —> 0, 
the Up term also vanishes. Thus, only the two transverse 
photons survive in this limit in the physical matrix 
elements. 

6. NONCOVARIANT THEORY 

In the previous sections we have developed a guage-
invariant theory based on the projection operator 7>. 
This operator is covariant, but nonlocal. There exists 

16 J. M. Jauch and F. Rohrlich, Theory of Photons and Electrons 
(Addison-Wesley Publishing Company, Inc., Reading, Massa­
chusetts, 1955). 

17 See, for example, N. N. Bogoliubov and D. V. Shirkov, 
Introduction to the Theory of Quantised Fields (Interscience 
Publishers, Inc., New York, 1959). 

18 The projection operator for transverse photons is t^, defined 
in (6.1). The longitudinal photons have polarization eM

w which 
is orthogonal to this and to k^ The operator aw, which annihilates 
a longidutinal photon is given by a^ — e^T^a,,, since in the 
expansion for A^x) one can write Ttlvav=tilvav

w-\-ell
{-l)a^l). It is 

easily checked that [><'> (k), a^ (p) > (kQ)8 (&2+,u2) = (2TT)3 

X54(k-p). 
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an independent gauge-invariant projection operator, 
tpv, which is local (in time) but not covariant. 

If we lift the restriction that the theory has to be 
covariant, we may develop an alternative theory 
based on this operator. Thus, t.+v is given by 

[d,A+ (wMd„+w,dM) (n • d) 

—nilnvd'r\. 
rties 

^ / i fy tv" vJj 

Cpyfiv — " j 

(6.1) 

(6.2) 

(6.3) 

d2+(n-d)2 

This has the properties 

and 
tn=L (6.4) 

In the "natural" frame of reference in which the time 
axis is in the direction of tip, we have 

and 
»„= (0,0,0,i), 

-cWM 

LO 0 0 OJ 

(6.5) 

(6.6) 

I t is, thus, a projection operator, which selects the 
transverse part of a vector. We define 

AJix^tpyAvix), (6.7) 

A gauge-invariant Lagrangian in terms of Al is 

LQ= —hdxAj^dxAv-^A^Av. (6.8) 

Since in the natural frame this does not depend on A 4, 
it is clear that this is not an independent variable and 
should be eliminated from the interaction in a gauge-
invariant manner. This requires 

diidiAi-diAd^WF, 
or 

dtdiAi 
Ai=-

V2 -F(JM), (6.9) 

where F is any gauge-invariant function.19 Ignoring F 
for the moment, the interaction induced by (1.3) for 
spin-half particles is now 

(dtdiAi) 
L^t=A iji-\ j A . (6.10) 

V2 

The equation of motion derived from 

L—Lo-\-Lint 
is 

(d2—it2)tijAj= ji+didAj4/V
2= Ujjj. 

(6.11) 

(6.12) 

19 For example, to include the Coulomb interaction for JJ, = 0, 
we must take -F = y4/V2; however, this is not required by gauge 
invariance. 

To obtain the last equation we have used the conserva­
tion of current. These equations of motion can alterna­
tively, be obtained from the Lagrangian 

L= —^dxA^dxAv—^A^vAv+jfutupAv, (6.13) 

which leads to more convenient canonical variables. 
Since t^ is a local operator as far as time derivatives are 
concerned, this can be made the basis of a conventional 
quantization. However, there are now only two in­
dependent fields, A J. 

The canonical momenta are 

U^—ditfxvAy, (6.14) 

and the commutation relations 

[ M , ( x , 0 , I I p (y ,0]= - W ( x - y ) . (6.15) 

The expansion of the field is 

d*k 
Alt(x) = / 

(2x> 
#(ko)tt,M(cMeik*+cJe-ik*)5(k2+fx2) 

+k^ae^x+ah~ikx)+n^e^x+^e-ikx)~]y (6.16) 

where t^y(k) is given by 

^ (A)^**^^ 1 ' ** , (6.17) 

and a and p are completely arbitrary, since they do 
not occur in A J. The commutation relations for the 
operators c^ and cj, which follow from (6.15), are 

2w&(kQ)8(k2+fx
2)\:c»(k),c;(p)'] 

= (2ir)%v{k)V(k-p). (6.18) 

The Hamiltonian of the system is 

/

dAk 
*(*o)W(*)^(*)^(*)«(* 2 +M 2 ) . (6.19) 

(2TT)3 

Note that only the transverse particles occur, so that 
the Hamiltonian is gauge invariant. 

The vacuum expectation values of pairs of field 
operators at arbitrary space-time points can be 
calculated explicitly as before. In particular, the time-
ordered product is (4.4), with DF replaced by Dc where 

De(k) = -
tfiv \K>) 

k2+jjL2—ie 
-Akpky+Btipny, (6.20) 

where A and B are the gauge-dependent terms which 
arise from the terms involving a and /3 in (6.16). 

If we now consider calculations in the interaction 
representation of (6.13), the 5 matrix is given by 

S= T exp - i I j^A^x . (6.21) 

The photon propagator which arises in the calculation 
of matrix elements is 

(T(t,pAp(x),tv,A,(y)))o = t,pU(T(Ap(x),AAy)))o. (6.22) 
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(The t operators commute with T, since in the natural 
frame they do not involve time derivatives.) Using 
(6.20) and the properties of the t operator, Eqs. (6.2)-
(6.4), the effective propagator is 

/ nnnvk
2 \ 1 

^ U , J . (6.23) 
\ k2+(n'k)2/k2+tx2-i6 

In the final expression we have dropped from tpV the 
terms proportional to k^ or kv, which give no con­
tribution to S-matrix elements, again due to current 
conservation. 

We have, thus, been lead to a rather surprising theory 
of "photons" of mass ix and spin one, of which only the 
two transverse polarization states occur either in the 
Hamiltonian or the S matrix. This theory is completely 
gauge invariant and is also invariant for spatial rota­
tions. I t is, of course, not covariant, since the exclusion 
of the longitudinal component is not a covariant 
concept (except for ju=0). 

The theory can be made covariant by adding to the 
interaction those terms, which in the S matrix will give 
rise to extra contributions of the form 

k2 1 
O X ) Uvfh) — —, (6.24) 

k2+(nk)2k2+fx2-ie 

so that the effective photon propagator is 

Z>F^=W(* 2 +M 2 - i€) . (6.25) 
In the special case of M = 0 , (6.24) is precisely the static 
Coulomb interaction, which in the natural frame is 

i42/ |k|». (6.26) 

[ I t corresponds to taking 

F=j*/V2 (6.27) 
in (6.9).] Since the new terms do not involve any 
time derivatives, they do not introduce any new 
particles into the theory. One, thus, arrives at the 
conventional zero-mass theory of two transverse 
photons in the Coulomb gauge, which is highly non-
covariant in appearance, but of course, covariant in its 
conclusions. 

If the mass is not taken to be zero, the fact that the 
additional terms are time dependent has the effect of 
introducing the longitudinal particles into the theory. 
The details of the rederivation of the covariant theory 
of the previous sections from this noncovariant starting 
point are complicated and of little interest. 

P . T . M A T T H E W S 

7. CONCLUSION 

We conclude that gauge invariance does not require 
that the bare photon mass be zero. The important 
feature of interactions generated by local gauge trans­
formations, as outlined in Sec. 1, is that they lead to 
conserved currents. All other consequences of gauge 
invarinace, such as the restrictions on the form of 
matrix elements, follow from current conservation. 

The results of the present paper cannot be generalized 
directly to particles arising from local isotopic spin and 
unitary symmetry transformations. Their significance 
seems to us to lie mainly in the light which they throw 
on the quantization of the electromagnetic field. So, far 
from gauge invariance requiring that the photon mass 
be zero, it appears that covariant canonical quantization 
in an arbitrary gauge is only possible for massive 
photons. The introduction of a photon mass is a 
familiar computational device for dealing with the 
infrared divergence problem. We have found that it also 
removes the necessity for the Fermi supplementary 
condition to define physical states, and avoids the 
complication of the Gupta-Bleuler formalism to 
eliminate the longitudinal and time-like photons. 

In order to obtain a local covariant theory one is 
forced to use a Lagrangian and Hamiltonian which are 
not gauge invariant, but can be written in an arbitrary 
gauge specified by the parameter X. A local gauge-
invariant, but noncovariant Lagrangian and Hamil­
tonian can be written down by using a generalization 
of the Coulomb gauge. With this formulation we are 
led to a noncovariant theory of transverse massive 
photons. The theory is, however, covariant in the limit 
of zero photon mass. Thus, that the photon mass is 
zero is not a consequence of gauge invariance, but 
follows only from the very artificial condition that the 
noncovariant Coulomb gauge formulation, should lead 
to a covariant S matrix. 
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