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The equations of Quinn and Ferrell and of Quinn for the rate of energy loss of a hot electron in a free-
electron gas are generalized to take solid-state effects into account. A general equation is derived, which in 
addition to a principal term which reduces to Quinn's result in the free-electron gas limit, contains terms 
which result from umklapp processes and local-field corrections. The additional terms are evaluated for 
aluminum on a one-OPW model and are found to result in a 16-30% decrease in the rate of energy loss. The 
effect of Fermi surface shape on the principal term is discussed in detail, with the aid of an exact recasting 
of the term into a form which explicitly shows its dependence on the equations of the energy surfaces. It is 
shown that nonspherical Fermi surfaces lead to an anisotropic hot-electron energy-loss rate, and that for 
certain shapes of Fermi surface the rate of energy loss is more singular than (E$—Eo)3 near the Fermi surface. 
It is found that the "flatter" the Fermi surface is, the greater is the rate of hot-electron energy loss. This is 
suggested as a possible explanation for the anomalously small hot-electron range observed in copper by 
Crowell et at. 

I. INTRODUCTION 

THE problem of the range of hot electrons in metals 
has recently been of both experimental and 

theoretical interest. Experiments by Crowell et al.1 and 
others2 have determined the range of very low energy 
electrons in Pd, Cu, Ag, and Au. A theoretical treatment 
of the problem, using a dielectric constant approach, has 
been given by Quinn and Ferrell3 and by Quinn.4 Quinn4 

discusses the energy loss of electrons of energies within 
about 1 keV of the Fermi surface in a free-electron gas. 
He neglects solid-state effects, which would be expected 
to be important for electrons of such low energy, since 
the energy levels and/or wave functions of these 
electrons could not be well approximated by those for a 
free electron. In this paper the results of Quinn and 
Ferrell3 and of Quinn4 for the free-electron gas are 
generalized to a periodic lattice so as to take solid-state 
effects into account. Particular stress is laid on deter
mining the effects of umklapp processes, of local-field 
corrections, and of Fermi surface shape on the range of 
electrons of energy very near the Fermi energy (E^EQ). 
All work is done using the random phase approximation 
(RPA) dielectric constant discussed by Ehrenreich and 
Cohen5 and no attempt is made to include additional 
many-body effects. The electron-phonon interaction6 is 
not considered in this paper. In other words, we restrict 
ourselves to considering that contribution to the energy 
loss of the hot electron which arises from the Coulomb 
interaction of the hot electron with the electrons of the 
lattice. 
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1 C. R. Crowell, W. G. Spitzer, L. E. Howarth, and E. E. 
LaBate, Phys. Rev. 127, 2006 (1962). 

2 References to experimental work prior to 1962 may be found in 
Crowell et al. (reference 1). 

3 J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958). This 
paper is hereafter referred to as (A). 

4 J. J. Quinn, Phys. Rev. 126, 1453 (1962). 
5 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959). 
6 N. F. Mott and H. Jones, The Theory of the Properties of Metals 

and Alloys (Dover Publications, Inc., New York, 1958), Chap. VII, 
p. 268. 

In Sec. I I the equations of (A) for the rate of energy 
loss of a hot electron are generalized to the case of a 
solid. The result is an equation resembling Eq. (33) of 
(A), but containing terms arising from umklapp 
processes and from local-field effects. In Sec. I l l these 
terms are calculated on a one orthogonalized plane 
wave (OPW)7 model, chosen because it is the simplest 
model for estimating effects arising from the presence 
of cores, which are neglected in a free-electron treat
ment. In the case of aluminum (a metal well described 
by the one-OPW model), it is found that the net effect 
of umklapp processes and local-field corrections, for a 
hot electron very close to the Al Fermi surface, is a 
decrease in the energy-loss rate in the range 16-30%. 
While the order of magnitude of the effect is probably 
correctly given by the crude estimate, the numerical 
values obtained should not be taken too seriously. The 
contribution of umklapp processes to plasmon creation 
is also estimated in Sec. I I I . 

In Sec. IV umklapp and local-field effects are neg
lected, and the remaining expression for the rate of 
energy loss is recast into a form which shows its depend
ence on the shape of the energy surfaces. The rate of 
energy loss of electrons with energy E^EQ is found to 
depend only on properties of the energy surfaces and 
electron wave functions at the Fermi energy, and is 
studied in detail for various shapes of Fermi surface. 
For a spherical Fermi surface the result of Quinn4 for the 
free-electron gas, that dEv/dt^ (Ev—E0)

3, is rederived. 
Nonspherical Fermi surfaces show an anisotropic ab
sorption of hot electrons. I t is shown that for a 
cylindrical Fermi surface the absorption is proportional 
to (Ep—Eo)3|ln[(£p—Eo)/Eo]\, and that it is, in 
general, more singular than (Ev —£0)

3 if the Fermi sur
face contains a straight-line segment, along which the 
normals to the surface are coplanar. This "flatness 
condition" is nearly fulfilled by the energy surfaces of 
Cu, and it is suggested that Fermi surface shape effects 

7 Advances in Solid State Physics, edited by F. Seitz and D. Turn-
bull (Academic Press Inc., New York, 1957), Vol. 4, pp. 367-411. 
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may account for the abnormally large attenuation of hot 
electrons observed1 in Cu. 

II. GENERAL THEORY 

In this section we generalize the results derived in (A) 
for the rate of energy loss of a hot electron in a free-
electron gas. Many steps are precisely the same as in (A) 
and the reader is referred to that paper for details. 
Throughout the paper we take fi—c—1. As shown by 
Quinn4 and by Engelsberg,8 the rate of energy loss is 
obtained by appropriately inserting an energy factor in 
the integrand of an expression for the imaginary part 
of the electron self-energy. According to the usual 
Feynman rules,9 the self-energy of an electron of 
momentum p, energy Ev, and wave function ^p(x) in 
the crystal is given by 

Eseu=e2T-1 / / dxidhdx2dt2\f/v(x1)\l/v*(x2) 

Xexpp£ p f e - / 1 ) ] iT + (2 , l )G + (2 , l ) . (1) 

Here G+(2,l) is the photon propagator in the crystal, 
K+(2,l) is the electron propagator, and the time 
integrals extend from — J / 2 to T/2. Just as in the case 
treated in (A), the electron propagator is given by 

K+(2 A-fikf V 
do) *Ak(x2)iAk*(xi) 

(27r)4co-£k ( l -^) 

Xexp[-fG>(*2-*i)], 5>0 . (2) 

The wave function ^k(x) and energy Ek are no longer 
the free-electron wave function and energy, but are the 

band-theoretic wave function and energy of the electron 
in the lattice, labeled by k according to an extended 
zone scheme.10 The wave functions are normalized to 
1 in the volume V of the crystal and the k integration 
extends over all of k space. 

The photon propagator G+(2,l) is defined as the 
positive frequency part (for fa—h>0) of G(2,l), where 
G(2,l) relates the charge density p(xhti) at time fa to 
the potential cj>(x2,fa) which the charge induces at time 
fa according to 

<£(x2; * > - / dxidfa G(2,l)p(xi,Ji). (3) 

Let us Fourier transform </>(x,i) and p(x,t) according to 

} = £ / dqe* (*+K)"x/ due-*"*] 
ip(x,0) K J 5 I J^ lp(q,K,co)J 

The vectors K are reciprocal-lattice vectors and the 
integration over q extends only over the first Brillouin 
zone of q space. I t is easy to show that <£(q,K,co) and 
p(q,K,co) are related according to11 

0(q,K,a,) = 47r |q+K| - 2 

X E K - ^ ( q + K , q + K " , co)p(q+K", co), (4) 

where €_ 1(q+K, q + K " , co) is defined implicitly by the 
three equations: 

I > < e(q+K, q + K " , c o ^ C q + K " , q + K ' , co) = <SK,K', (5) 

e ( q + K , q + K ' » 

= 8 K , K — | q + K " | - 2 G ( q + K , q + K " , o>), (6) 

and 

G(q+K, q + K 
e2 r 

<fk£ 
< k | f - « ( ^ ) - » l k + q + K ' ) < k + q + K > | 6 < W " ) - ' l k ) C / o ( £ k ) - / , ( £ n . t 4 . , > ) ] 

0 ) + £ k — -Ek-fq-f-K' 
• (7) 

In Eq. (7), fo(E) is the Fermi-Dirac distribution function, normalized to the total number of electrons in the 
crystal; the matrix elements are defined by 

(k | 6T*OH-*> •« | k ' ) = / dx ^ k * (x)e-^+^' V * (x), 

and the co appearing in the denominator is understood to have a small positive imaginary part. From Eqs. (3) and 
(4) and the requirement that G+(2,l) contain only positive frequencies for fai=fa—fa>0, we find that 

G+(2,i)=74- f * iE£ f 
e - K q + ^ q + K ' ^ c o ) 

' | q + K | ^ 
_^i'q • X2i— ioo t2i#iK • x2/>—-iK" • xi (8) 

where the contour C is the same as in (A). The self-energy is obtained by inserting the expressions for G+ and K+ 

into Eq. (1) and evaluating the integrals. The manipulations are precisely the same as those in (A); the result is 

8 S. Engelsberg, Phys. Rev. 123, 1130 (1961); 126, 1262 (1962). 
9 R. P. Feynman, Phys. Rev. 76, 769 (1949). 
10 N. F. Mott and H. Jones (reference 6), pp. 62-63. 
11 S. L. Adler, Phys. Rev. 126, 413 (1962). 
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£ s e l f = ^ r e s i d u e + - £ l i i i e ? w i t h 

-^residue— 47T6 
J Et 

dq e-^q+K, q+K", £P-Ep._q) 
Z Z — L . J . M*(q,K")M(q,K), 

and 

£ 

' * , < ^ , < « P ( 2 T ) 8 K K» | q + K | 2 

4xe2 f r e-i(q+K,q+K",iV)(Ev-E^q) 
line" dqZZ drj -

(2TYJ " K K » ^ ' [ r ? 2 + ( £ p - E p _ q ) 2 ] | q + K | 
•M*(q,K")M(q,K). 

(9) 

(10) 

We have introduced the abbreviation M(q,K)s=(p |expp(q+K)-x] |p—q), the p dependence not being indicated 
explicitly. To obtain the rate of energy loss we need only find the imaginary part of Eseif. From Eqs. (5), (6), and 
(7) denning €_ 1(q+K, q + K " , co), it is straightforward to verify the symmetry e~1(—• q— K, — q— K", it})* 
= e - 1 (q+K, q + K " , irj). Using time-reversal symmetry, which implies that 

< - k | e x p p ( q + K " ) - x ] | - k - q - K ' ) = < k + q + K ' | e X p [ i ( q + K " ) - x ] | k ) , 

it is easy to demonstrate that 

| q+K" h 2 ^ 1 (q+K", q + K , iv)= | q + K | - ^ ( - q - K , - q - K " , «,). 

From these two symmetries we find 

[e - i (q+K, q + K " , « , ) | q + K | - » ] * = ^ ( q + K " , q + K , « , ) |q+K" | -* , 

from which it follows immediately that -Eiine*=-Eiine, or ImEii n e=0. The self-energy of an isolated electron, EfTee, 
which must be subtracted to renormalize EBeu, is purely real. Thus, the sole contribution to ImiWf comes from 
^residue- According to Quinn4 and to Engelsberg,8 the rate of energy loss of the hot electron is obtained by inserting 
a factor 2 [£ p —£ p _ q ] in the integrand of Eq. (10). Thus, we obtain finally for the rate of energy loss of the hot 
electron, 

dFjdt=- / dq E E ; (Ev-Ev^)M*(q,K")M(q,K). (11) 
7T2 J E0<E^q<Ep K X" | q + K | 2 

Equation (11) is the starting point of the detailed 
investigations to be described in this paper. 

I t is helpful first to discuss Eq. (11) qualitatively and 
to list the main effects which one would expect to see in 
a solid which do not appear in the free-electron gas 
problem treated by Quinn. The term of Eq. (11) with 
K = K " = 0 is the analog of the free-electron gas expres
sion, but deviates from it in several respects: 

(1) Instead of €(q,q,o))~1, the local-field corrected 
dielectric constant11 e^Hq^co) appears. 

(2) There appears the factor|(p—q]exp(—iq-x)|p)|2. 
This factor is smaller than 1, corresponding to the fact 
that the hot electron is not always attenuated without 
transfer of momentum to the translational motion of the 
lattice. 

(3) The energies and wave functions which determine 
e~1(q,q,co) according to Eqs. (5)- (7) are not free-electron 
energies and wave functions; this has a strong effect on 
the hot-electron range. 

The third of these effects is discussed in more detail in 
Sec. IV. 

The terms of Eq. (11) with K ^ O or K'VO do not 
appear in the free-electron case. They can be divided 
into two classes: 

(1) Those with K ' ^ K ^ O correspond to umklapp 
processes, in which momentum K (say) is given to 

translational motion of the lattice, the process occurring 
with weight | (p—q|exp[—^(q+K)-x] |p) | 2 . These 
terms clearly add to the rate of energy loss. 

(2) The terms with K " ^ K would not appear were it 
not for local-field corrections to the dielectric constant,11 

which cause the e-^q+K, q+K", «) with K V K to be 
nonvanishing. These terms may be regarded as a com
posite effect of local-field corrections and of umklapp 
processes. I t is not obvious from inspection whether 
they increase or decrease the rate of energy loss of a hot 
electron. 

The sum of the terms with K?^0 or K ' ^ O is estimated 
in Sec. I I I . 

Let us note, finally, that in the limit when the hot-
electron energy Ev becomes much larger than the typical 
orbital electron energy of a rydberg, the states ^p(x) and 
^p_q(x) are very nearly plane wave states over most of 
the region of the q integration. In this case, 

i!f*(q,K,,)Jtf(q,K)««K-io5K,o 

and the umklapp and umklapp-local-field terms drop 
out. Thus, these terms have essentially no effect on the 
well-known formulas for the stopping power of materials 
for fast electrons.12 

12 Experimental Nuclear Physics, edited by E. Segre (John Wiley 
& Sons, Inc., New York, 1953), Vol. I, Part II , Sec. 2. 
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III. UMKLAPP AND UMKLAPP-LOCAL-FIELD EFFECTS 

In this section we discuss in detail the effect on the 
hot-electron range of the terms in Eq. (11) with K or K" 

unequal to zero. To see why the sum of these terms must 
be carefully estimated, let us consider the sum of the 
weighting coefficients of those terms with K=K": 

EK^o|<p-q |exp[- ; (q+K)-x] |p) | 2 

= / (/x^x,^p_q*(x)^p_q(x
/)^p(x)1Ap*(x,) exp[-*q- (x-x ' ) ] £ K exp[-^K- ( x - x ' ) ] - | (p-q |exp(-^q-x) |p) | 2 

= Va-
1 ^x |^ p _ q (x ) | 2 | # p (x ) i 2 - | (p -q | exp( - iq -x ) |p ) | 2 «F a - 1 / dx\uv{x)\*-\ (12) 

Here Va is the unit cell volume, the subscript 0 indicates 
integration over the unit cell, and uv(x) is the cell 
periodic part of ̂ P(x): ^p(x)= V~m exp(tp-x)i/p(x). To 
gain an idea of the magnitude of the integral in Eq. (12), 
we use the Schwartz inequality in the form, 

/ Jx|wp(x) |4^ / d x x - 1 ! ^ ) ! 2 / 
J P Lj p J I—/ JF 

dx x~ 

where the integrals are taken over an atomic polyhedron 
containing an atom at x=0. Then Jp dx x~2=47rrp, 
where fp is the mean atomic polyhedron radius, and 
Jpdx | wp(x) 12x-1= Vp/rCj where VP is the atomic poly
hedron volume. We may regard the rc so defined as an 
average core radius since the periodic part uv(x) is 
largest in the core region. Thus, we have 

Va-'f dx\u,(x)\^Vp-1f J X | ^ P ( X ) | 4 

>Wp/rc)\ (13) 

In metals in which the core diameter is smaller than the 
diameter of the atomic polyhedron, which is usually 
the case, (rP/rc)

2>l and the sum of the weighting 
coefficients of Eq. (12) is of order unity. Thus, if apart 
from the weighting coefficients |M(q,K)|2, all of the 
umklapp terms made to the q integration in Eq. (11) a 
contribution roughly equal to the contribution of the 
K = K " = 0 term, their net effect, when summed up, 
would be to increase significantly the rate of energy loss. 
So we must clearly examine carefully how many K 
values actually contribute appreciably. 

To do this we use a one-OPW7 model for the valence 
electron wave functions and energy levels, this being the 
simplest model which takes into account the largeness 
of the wave functions in the core region. Since the one-
OPW model accounts quite well for the valence electron 
properties of aluminum,13 the calculations will be done 
explicitly for the case of this metal. The model will be 
used only for calculating approximate estimates of the 

matrix elements; in performing the various integrations 
involved in evaluating the hot-electron attenuation the 
matrix elements will be treated as constants. The one-
OPW wave function for a valence electron of momentum 
k in Al is given in Appendix I, along with numerical 
values of its various parameters. The energy surfaces in 
Al are nearly equal to the free-electron surfaces 
(E^^k2/2m) over most of the Brillouin zone. 

The first step is to calculate approximate expressions 
for the components €-1(q+K, q+K", co) of the inverse 
dielectric constant. We will treat the off-diagonal com
ponents, e(q+K, q+K", co), K 'VK as small per
turbations compared to the diagonal components 
e(q+K, q+K, co). Then first-order perturbation theory 
gives 

e-^q+K, q+K, co)«e(q+K, q+K, co)"1, 

e-^q+K, q+K", co)~e(q+K, q+K, co)"1 

XG(q+K,q+K",co)|q+K"|-2 

Xe(q+K",q+K",co)-1. 

(14) 

Some further approximations on e-1 are necessary in 
order to make the calculation tractable. We remark that 
by completeness of the u*, 

E ^ ^ K K k l e x p C - ^ q + ^ - x l l k + q + K ' ) ! 2 

= l - K k | e x p [ - i ( q + K ) . x ] | k + q + K ) | 2 . (15) 

In the one-OPW model, 

| ( k | e x p C - t ( q + K ) - x ] | k + q + K ) | ^ l , 

implying that the left-hand side of Eq. (15) is much 
smaller than one. Consequently, in the expression of 
Eq. (7) for G(q+K, q+K", co) we neglect all terms 
which are quadratic in matrix elements of the type 
<k|exp[-*(q+K)-x]|k+q+K'>, KVK. This gives14 

6-Kq+K, q+K, co)«e^(q+K, co)" (16) 

13 W. A. Harrison, Phys. Rev. 116, 555 (1959); 118,1182 (1960); 
B. Segall, ibid. 124, 1797 (1961). 

14 Core screening effects are negligible: The core polarizability 
ac is roughly equal to nVc, where Vc is the core volume and 
n=Vp~1 is the number of cores per unit volume. Thus, 
a=(rc/rP)3<KU 
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and 
e2 r <k|*-««+*>•" |k+q+K)(k+q+K | e «*«") •« |k ) [ /„ (£ k ) - / 0 (£k + , + K ) ] 

G ( q + K , q + K ' » « - / <2k 
IT2 J CO+£fe — £k+q+K 

e2 /• <k|e-«"+K>-|k+q+K")(k+q+K"|e'<i+K")-|k)[/o(£k)-/o(£k+q+K»)] 
+ - / < & . (17) 

£2 /" 
— /d 
7T 2 7 

where 6^ denotes the free-electron gas dielectric constant calculated by Lindhard. The formula for e^ is given in 
Appendix II . Inserting Eqs. (16) and (17) into Eq. (11) and making a change of variable in the second term of 
Eq. (17) leads to 

dEv e2 

dq [£p-E p_ q ]Cir(p 5q)+Z)(p ?q)+F(p,q)] (18) 

with 
e ^ - K q + K ^ e ^ q + K ^ c o ) ,2 

2T(p,q) = I m I L 
K ^ K - | q + K | 2 | q + K " | 2 w2 

r 2Re[^(q 7 k,K,K / 0M(q ) K)M*(q 7 K-)] [ /o (£ k ) - /o (^ k + q + K)] 
X / dk , (19) 

J CO+£k~ Êk+q-f-K 
and 

e ^ ( q + K , c o ) | M ( q , K ) | 2 

P(p,q) = Im E ; • (20) 
K^O | q + K | 2 

The free-electron gas kernel F(p,q), which arises from the K = K" = 0 term of Eq. (11), is given by 

F(p,q) = Im6-1(qJco) r
2(M(q,0)[2. (21) 

In writing Eqs. (19) and (20), we have made use of the definition 

# ( q , k , K , K ' 0 - < k | ^ ^ (22) 

In order to make the calculation tractable, we replace 2 Re[i?(q,k,K,K / /)i^(q,K)if*(q,K / /)] by an appropriate 
average over k. This gives 

K(p,q) = Im £ E <2 ReRMM*)aYkGF(q+K, «). (23) 
K*K" | q + K | 2 | q + K / , | 2 

Let us only consider hot electrons very close to the Fermi surface, that is, with EV^E0. Then it is an excellent 
approximation to replace |e^(q,co)|2 in the denominators by \eFi(q,0)\2^(l+ks

2/q2)2, where ks is the reciprocal 
Thomas-Fermi screening length. Using the Lindhard result in an approximation valid for small 00, 

Ad(2k0-q) 3 < 7 r o ) 6(x)=l, x>0, 
€F2(q,co) = , A = , 

q* v0
2 2 v0 = 0 , x<0. 

(v0 is the Fermi velocity, k0 is the Fermi momentum, and cop is the plasma frequency), we find that K(p,q) = A (p,q) 
+£(p ,q )+C(p ,q ) with 

^4(p,q)= E (2 Re^(q,k,0,K)M(q,0)M*(q,K))avk 

K^O {ks
2+q2) (ks

2+ I q+K 12) 

J e(2k0-\q+K\)ks
2 q6(2ko-q) 

t |q+K|(£ s
2+|q+K|2) k2+q2 

(24) 
d(2k0-q)ks

2 q+K|6>(2/feo-|q+K|)l 
X ' 

' ?(*.«+?*) £s
2+|q+K|2 
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C(p,q)= E Z (2ReJg(q,k,K,K-0M(q,K)M*(q,K-0U-—— 
O^K^K'̂ O (ks

2+1 q+K|2) (ks
2+1 q+K" |2) 

| 0 ( 2 £ o - i q + K ' W |q+K|e(2^0- |q+K|) | 
X l | q + K " | ( ^ + | q + K " | 2 ) ^ + | q + K | 2 J 

We also find, by use of Eq. (16), that 

| M ( q , K ) | 2 A 0 ( 2 £ o - | q + K | ) 
#(p,q) = - Z • • 

K*, | q + K | ( ^ + | q + K | 2 ) 2 

To get an explicit expression for the hot-electron 
attenuation we must make several more approxima
tions. First, we note from the expressions for the one-OPW 
matrix elements in Appendix I that the quantities 
M(q,K), Af*(q,K"), and 22(q,k,K,K") are all real, and 
for small K and K" are all negative. For larger K, 
M(q,K) becomes positive and then tends to zero. Since 
the factors multiplying the matrix elements are largest 
for small K and K", we replace M, Af*, and R by 
negative constants in evaluating the sums over K and 
K" and cut off the sums at values of K and K" at which 
the matrix elements are still negative. To try to be a 
little less crude, we actually use two cutoffs and two con
stants, corresponding to the 2s,p and Is core orbital con
tributions to the matrix elements. The sums over K and 
K" are then replaced by integrals, and finally the q 
integration is. performed. The results of these manipula
tions may be expressed in the form of ratios (the 
expression for F, the rate of energy loss in a free electron 
gas, is given in Appendix I I ) : 

(A+B)/D=iy2(l+y2) 

X [ - 2 a T ( l + 7 2 ) - 1 + ^ l n ( i + T - 2 ) ] , 

C/D= (2MVaks*/<ir*)at3(l+y2), 

D Va 2 7 ( 1 + T 2 ) - 1 

- = | M |2—k0* , 

F IT2 Y C l + T ^ + t a n - K T - 1 ) (25) 

a=J[ (A2/2£s) - tan"1 (\2/2ks) 

+ (Ai/2£ s)- tan-1( \1 /2& s)] , 

/ 3 = 4 1 n ( l + y - * ) - ( l + 7 2 ) - 1 , 

y=ks/2kQ. 
The two terms in a are, respectively, the 2s, p, and Is 
orbital contributions, with 2s, p, and Is cutoffs of X2/2 
and Xi/2. Numerical evaluation of these formulas, 

The step function 6 expresses the condition that €F2 must 
vanish for there to be a plasmon pole. Let us consider 

16 By using a one-OPW model we have calculated a "minimal" 
effect common to all solids and arising from the presence of the 
cores. Appreciable mixing of OPW's could lead to certain of the 

using the value M2~0.02 estimated in Appendix I, gives 

(A+B)/D=-3.7, 

C/£>=0.85, (26) 

D/F=0.16. 

Thus (A+B+C+D)/F=-0.30. If the cutoffs are 
taken as X2/3 and Xi/3 instead of X2/2 and Xi/2, the 
effect is reduced to (A+B+C+D)/F= - 0 . 1 6 . Thus, 
assuming the validity of the model used and the ap
proximations made, the combined effect of the umklapp 
and the umklapp-local-field terms is to decrease the hot-
electron energy-loss rate by 16-30%. Since the approxi
mations made are quite crude and especially since the 
small value of C results from the near cancellation of two 
terms which are considerably larger, the numerical 
results of Eq. (26) should be treated with some skepti
cism. However, certain semiquantitative conclusions 
can be reasonably drawn from the model calculation: 

(1) The absolute value of the sum of terms A+B+C 
is of the same order of magnitude as D (A-\-B-\-C 
« - 2 . 6 0 ) ; 

(2) The net correction to the hot-electron attenuation 
resulting from the umklapp and umklapp-local-field 
terms, in the one-OPW model,15 is not large and is 
probably of order 30% or smaller; 

(3) This correction does not necessarily lead to an 
increase in the attenuation, as would be obtained if 
only the umklapp term D were kept. I t is clear that the 
sum of umklapp-local-field terms A+B+C is more than 
capable of cancelling the positive contribution from D. 

I t is also of interest to determine the effect of umklapp 
processes and of umklapp-local-field effects on the 
plasmon creation probability. Near the plasmon pole 
the perturbation theory expressions of Eq. (14) for the 
off-diagonal components of e -1 are not valid. Conse
quently, let us restrict ourselves to obtaining an esti
mate of the umklapp contribution to the plasmon 
creation rate, neglecting all local-field corrections. Using 
€F(q,w)~ (1—cop2/co2)+ieF2, an approximate expression 
valid near the plasmon pole, we find for the umklapp 
contribution, 

| p | ~Xi /3 , the value for which the largest number of 
umklapp processes would be expected to contribute. In 

matrix elements M being much larger than the estimate obtained 
using the one-OPW model, and might lead to a larger umklapp 
and umklapp-local-field effect. 

D'= / <fqE — 01 1 ) . (27) 
7T2 J E0<E^q<Ep K I q + K | 2 \ | q + K | F o 2k6 ) 



1660 S T E P H E N L . A D L E R 

this region, only the Is core orbital contributes ap
preciably to M(q,K). Approximating ilf (q,K) by a 
constant, replacing the sum over K by an integral and 
carrying out the K and q integrations leads to a simple 
result, which may be expressed as the ratio of D' to the 
rate of energy loss by plasmon creation in a free electron 
gas, F' (the expression for F' is given in Appendix I I ) : 

U Va 2pn{v-h) 

F' 2TT2 l n [ > - f t o ) / ( # - * 0 ] (28) 

v=(h*+2mupyi\ n=(p2-2niupy^, p=\v\. 

Numerical evaluation in the case of Al, for p^4:k0} gives 
Df/Ff—0.37j greater than in the low-energy case treated 
above. Of course, in order to obtain the total deviation 
from the free-electron gas plasmon creation rate, local-
field corrections would have to be taken into account. 
What is important to note here is that at certain 
energies, in order to calculate the plasmon creation rate 
to better than 40%, umklapp and umklapp-local-field 
effects must be considered. 

IV. FERMI SURFACE SHAPE EFFECTS 

In this section we discuss changes in the value of the 
K = K " = 0 term of Eq. (11) which result from solid-

state effects. Since this term is the principal contribution 
to the hot-electron attenuation, careful study of it is 
warranted. Let us first consider the case of a one-OPW 
metal. As we saw in the last section, we then have 

and 

e -^q+K, q+K> co)~eF(q+K, w)~ 

| ( p - q | e x p ( - i q - x ) | p ) | 2 ^ l . 

Thus, in the one-OPW case the K = K " = 0 term has 
nearly the same value as in the case of a free-electron 
gas. In other words, it is not appreciably affected by the 
addition of core orthogonalization terms to the free-
electron gas wave function. 

Large changes do appear, however, when the energy 
surfaces and electron wave functions differ appreciably 
from those of a free electron. To make the dependence 
of the hot-electron absorption on the function E& more 
apparent, let us cast the K = K " = 0 term of Eq. (11) 
into a different form. First of all, let us neglect local-field 
corrections. In other words, we take a-1 (q+0, q + 0 , w) 
« e ( q + 0 , q + 0 , co)"1, where e(q+0, q + 0 , w)=€(q,w) is 
the RPA dielectric constant defined by Eqs. (6) and (7). 
Substituting the expressions for e2(q,co) obtained from 
Eqs. (6) and (7) into the K = K " = 0 term of Eq. (11), 
we find 

e4 r 

TTZ J E< 
-dEp/dt=—9 J dq 

eA , i ? p - i ? o 

7T3 K ' 7 0 

{(Ep-Ep_q)Kkk-?"q-xik+q+K')|2 |(^-d^q 'x |p)l2 

r X [ / o ( # k ) — / o C £ k + q + K ' ) ] c > ( i i p + i i k — £ p _ q — £ k + q + K ' ) } 

J K, 

dSn 

-a |Vq£p i 
q*\e(q,Ep-Ep_q)\ 

dSt 
q ^ p - q I J ^k=#k- fq+K"-« 

{Kk|^- |k+q+K') |^{p-q| e-Vx|p) |2[- / o ( £ k )_ / o ( i ? k + q + K , ) ] } 

x . 
I V k ( - E . c - i W K ' ) k 4 | e ( q , £ p - £ p - q ) | 2 

Equation (30) has been obtained from Eq. (29) by writing 

(30) 

dq-
I Vq(£p-q-E v ) \ 

and by denoting Ev—Ep-q by a. A further rearrangement of terms can be made, using the property of the zero-
temperature Fermi distribution function that 

/0(£k)-/o(iWKO = / o ( i W 

Since in the integrand of Eq. (30), £k+q+K' = ^ k + « ^ - £ k , the term /0(£k+q+K')[l~~/oCEk)D does not contribute. 
We would like to explicitly carry out the integration over the variable E&, so as to be able to eliminate the factor 
/o(£k)[l—fo(Ek+q+K>)lz=fo(Ek)[l--fo(Ek+a)'] by incorporating it into the limits of that integration. We do this 
by writing 

dSk=dkudki=dkn\ dki/dEk | dE*, 

where dku and dkx are elements of length in the surface Ek+q+K' = -£k+a parallel and perpendicular, respectively, 
to the intersection of this surface with the surface Z2k=#. We may thus write (denoting the product of matrix 
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elements by P): 

f P / o ( £ k ) [ l - / o ( £ k + a ) ] r r \dkL/dEk\P 
/ dS = / ^ / „ 0 3 ) [ l - / o 0 8 + a ) ] / dkir, 

J Et+n+K'-^k+o V k ( £ k - -Ek+q+K') J | Vk(£k~ -Ek+q+K') I ./ ./I |Vk(-Efc —.Ek+q+K') 

= / dp dk„-—— = —, (31) 
J EQ—a J I | Vk(£k--Ek+q+K') ( 

I: intersection of Ek+q+K' = a+/3 with E k =/3. Finally, we must evaluate \dkL/dEk\ = {dE^/dkil"1. Now \dE^/dkL\ 
— | Vk^Ek • ̂  |, where $ is a unit vector in the surface Ek+q+K' = E k + « (q held fixed) normal to the line of intersection 
of this surface with the surface E k =/3. Clearly 

V k(-Ek — Ek+q+K') 

I V k (Ek~ Ek+q+K') I 

is a unit vector normal to the surface Ek+q+K' = Ek+ce, and 

VkEkXVkEk+q+K' 
s=-

|VkEkXVkEk+q+K'| 

is a unit vector in the surface tangent to a line of constant Ek. Hence, u=fXs, and we easily find that \dEt/dki\ 
= | VkEkXVkEk+q+K'| I Vk(Ek—Ek+q+K') I-1- Thus, we obtain finally 

eA rEp~EQ , | <P—qU-?*q'xIp>|2 rEo r | < k | e - ^ - x ! k + q + K / } | 
-dE9/dt=- / adal d S , — —^—T, / W dku~ -, (32) 

W o J a |VqEp_q|g4 |e(q,o:)|2 K JEo_a ) x | VkEkXVkEk+q+K'| 

S: Ep_q=Ep—a, 1: intersection of Ek+q+K'=:a+jft with Ek=|8. 
Is is important to note that no approximations have been made in the foregoing rearrangement procedure. Now 

consider the case when EP~E0. Then we may write 

f-EQ 

/ dfiKfc*-)~aK(Ev\ 
J EQ—<X 

where K denotes the integrand of Eq. (32), and then set a equal to zero where it appears in the denominators and 
in the remaining limits of integration. Noting that e2(q,0) = 0, this gives 

e*(Ep-Eoy f ^ q | < p - q | < r ^ | p > | 2 f K k | ^ * | k + q + K ' ) | 2
 f ^ 

— dEp/dt= / JL / ^ n > (33) 
7T3 3 J8> |VqEp_q|^€l(q,0)2 K>JV |VkEkXVkEk+q+K'| 

S': E p_q=E 0 , V \ intersection of Ek+q+K'= E0 with and 
E k = E 0 , a result which only involves VkEk and the | ( k | e x p ( — i q - x ) | k + q + K ' ) | ^ 0 . 
electron wave function tK(x) at points k on the Fermi , T , ,, x ,, . ^ . , , . ~ . ± . 

t T? 4.- /in\ - T V • £ Note that the sum of these weighting coefficients is 
surface. Equation (33) gives an explicit expression for , 1 & & 
the coefficient of (Ep—E0)3, the leading term in a power ^ 
series development of dEv/dt around EV=EQ. The ap- L K ' | ( k | e x p ( — i q - x ) | k + q + K ' ) | 2 = l . (34) 
proximations made on the integrand of Eq. (32) to ob- ^T , xr, ., _ . Tr, 
tain Eq. (33) are only valid if the resulting integrals in *<* a11 values of K can contribute: The vector K con-
Eq. (33) converge. If these integrals diverge, a more taljutes o n l y * there is a point k on the Fermi surface 
singular behavior of dEjdt at the Fermi surface than a n d a v e c t

1
o r * f r o m t h e PJ>mt ~V ° n t h

r
e F e r m i f rffCe 

/£ —JS V is indicated t o an^" o t n e r P o m t o n the t e rmi surface, such that 
In the case of a free' electron gas, k + q . + K ' a l s o l i eS

T .on t h e J e r m i S U J * a f • ^ sy™bols> 
this is E k = E _ p = E_p+q=Ek+q+K' = E0.) This condition 

| ( k | e x p ( ~ i q - x ) | k + q + K / ) | =5K ' ,o is satisfied only for a few of the smallest reciprocal 
-. i , i xrt (\ 4. £ ±-u xrt • -̂  / ? - ? \ vectors K'; clearly a necessary, but not sufficient condi-

and only the K = 0 term of the sum over K in Eq. (33) ±. , v.\ f ., ^ • .i ' i jr,\ >> ~ •, , '•,. ^ 
, . u , T , i £ i ^ i ^ v ^ tion for K to contribute is that K ^ 2a, where a is the 

contributes. In the case of a real metal, . ,. ^ r ^ -r. ' r r^i •-• 
,'i; maximum diameter of the rermi surface. Thus, if 

| ( k | exp(—iq-x ) |k+q) | < 1 ^ | ( k | e x p ( — i q - x ) | k + q + K / ) | 2 is appreciable for values 
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FIG. 1. Geometric inter-
-P-Mv/ . V . \ pretation of Eq. (35). The 

line / ' is the intersection of 
the Fermi surface, displaced 
by q+K' , with the undis-

-» _* — placed Fermi surface. 
p+q + K'̂  

of K' which do not satisfy this condition, only part of 
the sum of Eq. (34) contributes. This would tend to 
reduce the rate of energy loss of the hot electron. 

Let us now consider in detail the effect of the shape 
of the surface E k on the hot-electron energy-loss rate. 
Since we are not primarily interested in effects arising 
from the detailed nature of the matrix elements, we 
replace | (k | exp (—iq • x) | k + q + K ' ) |2 by an appropriate 
average over k: 

K k | e x p ( - ; q - x ) | k + q + K ' > | 2 - > 

< |<k | exp ( - iq .x ) | k+q+K '> | 2 > a v k =5(q ,K0 . 

Denoting | (p—q|exp(—iq-x)|p) |2 by \M(qfi)\2 as 
before, we have 

dEv e4 (Ev-Eoy 

dt 

/ K ' = 

E/x', 
3 K' 

^M(q ,0 ) l 2 5(q ,K) 

£'|Vq£p-q|[<Z2ei(q,0)]2 

J v 

dku 

\ V k ^ k X Vk^k+q+K' 
(35) 

with S' and V the same as in Eq. (33). A geometric 
interpretation of the line integral is simple. The surface 
integral is over all vectors q such that — p + q lies on the 
Fermi surface. For each such q, we translate the Fermi 
suiface first by q and then by K'. This translated Fermi 
surface either does not intersect the original Fermi 
surface, or intersects it, in general, in a line. Clearly 
| Vk^kXVk^k+q-fK'l is the magnitude of the cross 
product of the gradients of the two surfaces at a point on 
this line of intersection; dku is the element of length of 
this line and J*dku extends over the entire line of 
intersection. This geometrical construction is illustrated 
in Fig. 1. If the original and displaced Fermi surfaces 
are tangent along a part of the line of intersection which 
is of finite measure, the line integral 

dku 

I Vk^kX Vk^k+q+K' 

diverges. This fact leads to a strong dependence of J& 
on the Fermi surface geometry. Note that the presence 
of a factor q* in the denominator of the integral fdSq 

leads to no divergences. According to Eq. (6), e(q,0) 

= 1 — #~2G(q,q,0), and from Eq. (7) and the fact that 
(k | exp (—iq-x ) | k+q+K / ) approaches <5K',O as q ap
proaches zero, 

e* r MEj-MEt+J 
hm G(q,q,0) = km — / ak • 

"wzj £k--Ek+, q->0 q->0 -.2 

dS* 

T2 J Ek=EQ I Vk^k| 
(36) 

Equation (36) may be taken to define ks for a non-
spherical Fermi surface. Thus, as q approaches zero, 
q2ei(qfi) approaches ks

2. To emphasize this we will take 
€i(q,0)«l-\-ks

2/q2 throughout the following calculations. 
Let us now consider specific Fermi surface models. We 

will evaluate in detail only 70 ; treatment of JK', K ' F ^ O , 
would be similar. First consider a spherical Fermi 
surface, Ek~k2/2in. Let us define L(q) by 

i (q) = 
dku 

| Vk^kXVk^k+ql 

/ ' : intersection of Ek=Eo with £k+q= ^o. Then it is easy 
to show that for spherical energy surfaces L (q) = 2-Km2/q. 
The infinity at q = 0 results from the fact that as q ap
proaches 0 the spheres approach tangency along their 
entire circle of intersection. Taking the matrix elements 
M and S in Eq. (35) to be unity, we find 

Jo= f 
J E-0—.t 

dSa 2irm2 

p_q~2*o I Vq£P-q I (q2+ks
2)2 q 

2TT2W3/ 2k0k, 2ir2mz/ 2fak8 2k0\ 
= +tan~ 1—), (37) 

hks* \ks
2+4:ko2 ks / 

where the q integration is easily performed in spherical 
coordinates with the z axis along p. Multiplying by the 
factor (Ep—E0)h

4/(3-wd) yields a result agreeing writh 
the free-electron gas formula of Quinn. 

The isotropy of hot-electron attenuation shown by a 
free-electron gas disappears when the Fermi surface is 
anisotropic. This can be seen explicitly by considering a 
Fermi surface which is an ellipsoid of revolution, 
E^=kz

2/2mz-\- (kx
2+ky

2)/2my and taking p to make an 
angle x with the kz axis. One finds that L(q) = 2irm2niz 

X[m2qz2-hmmz(qx
2+qy

2)']~m, giving the following result 
for JQ (again taking M=S=1): 

Jo=%Ta2b4E< 
Jo 

dcj> [E+2F sm<f>+G sin20]-2 , 

(38) 
a= (2mzEQ)ll2

J b= (2mE0)
m, 

E=ks2+Wu2+4(a2-Ui) cos?xu\ 

F=^uz(l — u2)1I2(a2~b2) sinx cosx, 

G=4u2(l-u2)(a2~b2) sin2
x. 



R A N G E OF H O T E L E C T R O N IN R E A L M E T A L S 1663 

The forms of E, F, and G clearly show that J depends on 
the orientation of p. The <f> integration can be evaluated 
explicitly, but the remaining integration over u cannot 
be integrated in elementary functions, for general %• 

Radically different behavior from the spherical case 
is found when we consider a cylindrical Fermi surface 
of finite length, E k = (kx

2+ky
2)/2m for —L^kz^L. 

Such a Fermi surface could in principal occur in a solid, 
the two "open" ends touching opposite Brillouin zone 

faces. Using cylindrical coordinates and writing qr and 
qz, respectively, for the radial and axial components of 
q, we find 

2m2(2L-\qz\) 
i ( Q ) = — • • (39) 

qlW-qrW2 

Substituting this into Eq. (35) for Jo (taking the matrix 
elements as unity for simplicity), setting p—q=t ' 
= (feo cos<£, ko sin<£, t') and p = (ko,0,l) gives 

2mz r2* rL 

Jo= I d<t> dtf — 
k0

2 Jo J - L |si: 

2L-\l-V 

| s i n * | [ * . a + 2 f t o
2 ( l - c o s 0 ) + ( l - O 2 ? 

(40) 

The reason for the divergence is clearly the fact that for all displacements q for which qr=0 (axial displacements), 
the displaced and original Fermi surfaces are tangent along their intersection, making L(q) infinite. Whereas 
L(q)= GO at isolated points q does not necessarily make Jo diverge, L(q)= <*> along a line (a one-dimensional 
continuum) in q does. In order to obtain an expression for the rate of energy loss, we must return to Eq. (32), 
using which we can obtain an explicit expression for the leading term in dEv/dt when EV^E0. The evaluation is 
complicated and we only give the result: 

dEp 2e4w3( rL I 1 
= / dt,{2L-\l-tf\)[ 

L(l-tf)2+ks2J 3 [(j-/')2+*.2+4*o2]' ;)1 (Ev-EoY 

We see that dEv/dt* ( E p - E o ) 3 | l n [ ( E p - E 0 ) / E o ] | , , 
which explains why we get an infinite answer when we 
attempt to compute the coefficient of (Ep—£0)3. Clearly 
a material with a cylindrical Fermi surface would 
exhibit a much greater hot-electron absorption than 
would be expected on the basis of a free-electron gas 
model. 

Since a cylindrical Fermi surface model is a very un
realistic one, it is important to look for more general 
conditions under which the coefficient of (Ep—Eo)z 

diverges. One such condition may be expressed as 
follows: 

(i) Suppose the Fermi surface contains a straight-line 
segment of finite length, and that the normals to the 
Fermi surface along this straight line are all coplanar. 
Then dEv/dt is more singular than (Ev—E0)

3 for all p 
on the line segment. 

This is easy to see. For p on the straight line segment, 
the values taken by q include translation of the Fermi 
surface along the line segment. For these special values 
of q, the displaced Fermi surface and the original Fermi 
surface are tangent along a finite portion of their line of 
intersection (that is, along the overlap of the displaced 
and the original line segment). Hence, for all these 
values of q, L(q) is infinite, making J0 infinite. A useful 
special case of (i) is: 

(ii) Suppose the Fermi surface contains a straight-
line segment of finite length, and that a plane containing 
this line is a plane of reflection symmetry of the energy 
surfaces. Then for p on the line segment dEv/dt is more 

I (Ev-Eo\ 
X hi i 

I V Eo J 
+0[(EP-£o)3]. (41) 

singular than (Ep—E0)
z. This result follows from (i) by 

noting that, if the line is contained in a plane of reflec
tion symmetry, the normals to the line all must lie in 
this plane and, hence, are coplanar. A direct, analytic 
proof of (ii) is presented in Appendix I I I . 

Note that while the conditions (i) and (ii) suffice to 
make Jo infinite, they do not in general suffice to make 
JK, KT^O infinite. Thus, a statement analogous to (i) for 
JK would require either: (iii) that the straight line 
segment of (i) should be parallel to K and longer than 
| K |, or (iv) that there should be two parallel straight 
line segments in the Fermi surface, one translated by K 
from the other, with the normals to the Fermi surface 
along the two-line segments lying in two parallel planes. 
These conditions are more restrictive than those of (i) 
and are, therefore, less likely to be approximately 
realized in a real metal. 

We infer from (i) a general qualitative result: 
Flattening of the Fermi surface tends to increase the 
hot-electron absorption. Recent band calculations16 and 
hot-electron experiments1 on copper suggest a possible 
confirmation of this rule. The Fermi surface of Cu is 
greatly flattened in certain regions. This is illustrated in 
Fig. 2, obtained from the band calculation of Segall,16 

which shows the intersection of the reflection plane 
(110) with the Fermi surface. Clearly, much of this line 
of intersection is very nearly linear, and hence the condi
tions of (ii) are approximately satisfied. One would, 

3B. Segall, Phys. Rev. 125, 109 (1962). 
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COPPER 
x u 

FIG. 2. Intersection of a (110) plane with the surfaces of constant 
energy for Cu. The estimated Fermi energy is —0.183±0.010 
Ry. The dashed curve is the intersection with the free-electron 
sphere. Note the flatness of the Fermi surface as compared with 
the free-electron sphere. 

thus, except an unusually large hot-electron energy-loss 
rate in Cu for hot electrons near the flat region of the 
Fermi surface. Recent photoemission experiments1 on 
Cu indicate an anomalously short hot-electron range. 
It is possible that these results, rather than being due to 
oxidation of the Cu surface, as suggested by Crowell 
et al.,1 may be attributed to unusually large hot electron 
attenuation produced by flattening of the Fermi surface. 
Further experiments on copper, with special efforts to 
guard against contamination of the surface, would be of 
interest, as would be numerical calculation of Jo using 
available information16'17 on the energy surfaces in Cu. 

It is worth pointing out that the effects of flattening 
of the Fermi surface on hot electron attenuation and on 
the anomalous skin effect18 are very similar: the flatter 
the Fermi surface, the greater the hot-electron attenu
ation and the greater the anomalous skin effect. Thus, 
there should be a rough correlation between the sizes of 
these two effects in different metals. Copper shows a 
very large anomalous skin effect,17 so the anomalously 
large hot-electron attenuation in Cu found by Crowell 

<p-q|exp[-*(q+K)-x] |p>AyVq 

et al.,1 if correct, would provide an example of this 
correlation. The similarity also suggests that it might be 
possible to use hot-electron attenuation as a tool for 
studying Fermi surface properties, via Eq. (33), much 
as the anomalous skin effect is used for this purpose.18 

However, complications introduced by the electron-
phonon interaction,6 by umklapp and local-field effects 
discussed above, by many-body corrections to the RPA 
and by uncertainties in the p to be used in Eq. (33) 
arising from direction changes in scattering and from 
crystallite structure of samples, might make such an 
application of hot-electron range experiments un
feasible. Further investigation of this question would be 
worthwhile. 
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APPENDIX I 

We give here the one-OPW wave functions for valence 
electrons in Al and outline the procedure used to obtain 
from them the estimates of the matrix elements quoted 
in the text. Letting N denote the number of unit cells in 
the crystal, Va the unit cell volume and R„ a lattice 
translation vector, we may write the one-OPW wave 
function \J/k (x) as7 

i//k(x)=(iVFa)-1/2exp(ik.x) 

-iV-1/2 £ , £„ , , exp(4-R0i4n,(kKz;k(x-R0. 

The atomic wave function uni-k is given by 

Uni;k(x) = xr1Pni(x)Ylo(x-ku), 

where Pni is the radial part, Yw is a spherical harmonic, 
and ku is a unit vector in the k direction. The core 
orthogonalization coefficient Ani(k) is given by7 

Anl(k) = l47r(2l+l)Va-
1Jl2il f dx xPnt(x)jl(kx). 

Jo 

Evaluation of (p—q|exp[—i(q+K)-x]|p) using this 
wave function leads to the result 

X / dx M*n/i';p-q(x) exp[-*(q+K)*x> i P(x) |. (Al) 

= 5K.O-5(K) \ZmA n l *(p -q )A n l (p -q -K)P l l (p -q ) u ' ( p - q - K ) J 

+Z«z Ani(j>)Anl*to+K)Pi[pu> (p+K) j - x ; (pM»'i'*(p-q) 

17 A. B. Pippard, Phil. Trans. Roy. Soc. (London) A250, 325 (1957). 
18 A. B. Pippard, Proc. Roy. Soc. (London) A224, 273 (1954). 
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Here 5(K) is the crystallographic structure factor, Pi is the Ith. Legendre polynomial, and the normalization factors 
are denned by N^l-S(0)Zm\Am(p)\2. 

In calculating the orthogonalization coefficients in Al, orthogonalized Slater radial orbitals19 are used (in the 
following equations, a0 is the radius of the first Bohr orbit in hydrogen): 

Pu = Ar exp(—Xir), P2s = Cr2 exp(—\2r) — Dr exp(—Xif), P2p=Br2 exp(—X2r); 

^ = 2Xi3/2, £=(2/\/3)X2
5 /2 , C = J 5 ( l - a 2 ) - 1 / 2 , D = Aa(l-a2)~l/2; 

These radial orbitals lead to 

24 X2
5/2Xi3/2 

" ^ ( \ i+A2)4 ' 

2A\l 

12.7 
• X i = -

#0 

4.4 
X 2 = — . 

/ 4 T T \ 1 / 2 

Als(k) = I— J A2s(k) = 2C 

A2p(b) = i(-

47r\1 / 2rC(3X2
2-^2) 

Vj L (\2
2+&2)3 

12ir\1/2 SkB\2 

DXi 

(Xi2 + ft2)2-

" 
VaJ (X2

2 + ^ 2 ) 3 

Using these expressions, we obtain an explicit form for the Is orbital contribution to Eq. (Al): 

47T 

<p-q |exp[ - f (q+K)-x] |p> 1 . iVpiV M =«K i o 1 6 X 1
5 5 ( K ) { [ X 1

2 + | p - q i 2 ] - 2 [ X i 2 + i p - q - K | 2 ] ~ 2 

v a 

+[Xi 2 + |p | 2 ] - 2 CXi 2 +Ip+K | 2 ] - 2 -16Xi 4 [4Xi 2 + |q+K | 2 ] - 2 CXi^^ (A2) 

Now let us use Eqs. (Al) and (A2) to estimate the matrix elements. In Eq. (A2), we notice that for q, K, and 
p—q small compared to Xi, the three terms in the curly bracket are nearly equal, and so the negative part cancels 
half of the positive part. We assume that this is approximately true for Eq. (Al), i.e., that 

< p - q | e x p [ - i ( q + K ) - x ] | p ) i ^ ^ 

+EnU»i (pM»z*(p+K)P , [p» - (p+K)u]>. (A3) 

Equations (A2) and (A3) are now used to calculate, for reason for the choice of the Is and 2s, p cutoffs as 
small q, K, and p—q, numerical estimates of the smaller than 0,8Xi, and O.8X2, respectively. 
averages of the squared matrix elements over the direc
tions of p and p—q. Using ^4is(&o)~ 0.149, A2s(k<y) 
« 0.084, A 2p (&o)~ 0.068, we find that 

<|M(q,K)|2)a 

( |M s(q,K)|2)8 

*0.02, 

*0.008«Q.01, 
(A4) 

APPENDIX II 

We state here some properties of the free-electron gas. 
The RPA dielectric constant for the free-electron gas 
was first calculated by Lindhard.20 I t is given by 

€FZ 

where Af(q,K) is the entire matrix element, Eq. (A3), 
and M«(q,K) is the Is orbital contribution, Eq. (A2). In 
the numerical estimate of the contribution of umklapp 
processes to the plasmon creation rate quoted in the 
text, the value of the matrix element | Ms \2 given in (A4) 
was multiplied by J, a correction for the decrease of Ms 

with increasing K. 
From Eq. (A2) we see that Ms(q,K) is negative for 

small K, but then becomes positive as K increases, since 
the first two terms in the curly bracket decrease faster 
with increasing K than does the third term. Thus, 
neglecting p and q in comparison with K, we find 
that M , ( K ) < 0 for |K | <0.8Xi, and Ms(K)>0 for 
|K | >O.8X1. Qualitatively similar behavior is expected 
for the full matrix element M. This behavior is the 

€Fi(q,w) = l -

z€Fl-r1>eF2, 

?)0)v
2 [ 1 

qv 

1 / 3 - M + l \ 
+ - [ l - ( s - M ) 2 ] l n 

82 \z-ix-\J 

1 /2+/X+1 
+ - [ l - ( 2 + M ) 2 ] l n • 

82 \z+V m-
€ F 2 ( q , w ) = -

3o)v 

(A5) 

qW 

ITTM, Z+fJL<l 

\z — fJ,\ < 1 < 2 + M 

| * - j L t | > l 

19 H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry 
(John Wiley & Sons, Inc., New York, 1958), p. 163. 

X ^ ( 7 r / 8 s ) [ l - ( s - M ) 2 ] , 

0, 

where z—q/2ko and ti — w/qvo. 
20 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys. 

Medd. 28, No. 8 (1954). 
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The rate of energy loss for a hot electron of E^E0 in a 
free-electron gas is4 

dEp 2 m ¥ r 2k0ks 2h~] 
F= = + t a n ~ 1 — ( £ P - £ o ) 3 . 

it 37r^0^s
3L^s

2+4^o2 k8 J 
(A6) 

The rate of energy loss due to plasmon creation in a 
free-electron gas, in the notation employed in the 
text, is4 

dEv me2o)J v—ko 
F ' = = In . (A7) 

dt p p—fx 

APPENDIX III 

We give here an analytic proof of the assertion (ii): 
Suppose the Fermi surface contains a straight line 
segment of finite length, and that a plane containing 
this line is a plane of reflection symmetry of the energy 
surfaces. Then for p on the line, dEv/dt is more singular 
than ( E p - ^ o ) 3 . 

Proof: Let us take the straight line segment to be 
along the z axis of our coordinate system, with the origin 
at p, which is assumed to lie on the line segment. Let the 
energy surfaces be symmetric under the reflection 
% —> — x. Then we clearly may write 

E^E0+yF(z)+y2G(x2,y7z)+x2R(x2,y,z). 

We assume all the functions appearing here to be 
analytic in a neighborhood of x=y=0. The condition 
E=Eo defines a surface y=A(x,z); by hypothesis 
A(0,s) = 0. Consider now the two possible cases: 

Case I : R(x2fi,z)^0. 
This implies that R(x2,0,z)^xN~2r(z)+O(xN) with 

N even, N^2 and r{z) finite. Thus A(x,z) = xNH(x2,y,z) 
with finite H(0fi,z). 

Case I I : R(x2fl,z) = 0. 
This implies R(x2,y,z) = yQ(x2,y,z), so that E equals E0 

on a strip of the xz plane, making Jo clearly singular. 
Let us restrict ourselves to the nontrivial Case I. We 
may write E=Eo-{-[y—xNH(x2,y,z)^\B(x2,y,z), where 
the function B is well behaved for small x and y. We 
wish to calculate a lower bound for the integral Jo, 
which we recall is given by (taking matrix elements as 

unity for simplicity) 

r dSq r dkn 

h> |vq£p-q |?4ei(q,0)2 )v | Vk^kX VtEk+qf 

S': £p_q=i£o, V\ intersection of E^=Eo with E^+CL~Eo. 
Clearly, 

£ q = E0 implies qy=qxNH(qx
2,qy,qz); 

Ek=E0 implies ky=kx
NH(kx

2,ky,kz)', 

E k + q = E 0 implies ky+qy= (kx+qx)
N 

XHl(kx+qx)
2, ky+qy, kz+qj]. 

Combining these equations gives 

kx
NH{kx\ky,kz)+qx

NH{qx\qmqz) 

= (kx+qx)
NH[(kx+qx)

2, ky+qy, kz+qz~] 

which for qx9^0 implies that 

kx=a(k,q)qx 

with a((0,0,&s),(0,0,£g)) finite. Now it is easy to 
calculate that 

V k £ k | / = ^ ( k ) [ - ^ g ^ - 1 i J ( k ) ^ - i , 1,0] 
- ^ V 3 ( k ) V k # ( k ) , 

- ^ ( a + l ) ^ 5 ( k + q ) V k H ( k + q ) , 

where the subscript / means that the derivatives have 
been evaluated on the Fermi surface. Thus, for 
E k = £ k + q = = E 0 we have 

| V k £ k X V k £ k + q | ^ \B(k)B(k+q)\ 

XNUHik^al^+lHik+q^la+l^-^q^-1 

+0fe/)^/-1T(k,q), 
with 7 finite. Writing J*dSq = J " ^ ^ ^ | s e c n n ( q ) - y w | , 
where nM(q) and yu are unit vectors, we have 

r |secnw(q)-yw| dqxdqz r dku 

J o ^ / / • , (A8) 
Js> |v q£P_ qk 46i(q,0) 2 qx

N^ J r 7(k,q) 

which clearly diverges, since N^ 2. Thus, J 0 is singular, 
and dEv/dt is more singular than (EV — EQ)Z. 


