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Thermal Fluctuations of a Single-Domain Particle 
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A sufficiently fine ferromagnetic particle has a uniform vector magnetization whose magnitude is essen
tially constant, but whose direction fluctuates because of thermal agitation. The fluctuations are important in 
superparamagnetism and in magnetic aftereffect. The problem is approached here by methods familiar in the 
theory of stochastic processes. The "Langevin equation" of the problem is assumed to be Gilbert's equation 
of motion augmented by a "random-field" term. Consideration of a statistical ensemble of such particles 
leads to a "Fokker-Planck" partial differential equation, which describes the evolution of the probability 
density of orientations. The random-field concept, though convenient, can be avoided by use of the 
fluctuation-dissipation theorem. The Fokker-Planck equation, in general, is complicated by the presence 
of gyroscopic terms. These drop out in the case of axial symmetry: then the problem of finding nonequili-
brium solutions can be restated as a minimization problem, susceptible to approximate treatments. The 
case of energy barriers large in comparison with kT is treated both by approximate minimization and by 
an adaptation of Kramers' treatment of the escape of particles over barriers. The limits of validity of the 
discrete-orientation approximation are discussed. 

1. INTRODUCTION 

A SUFFICIENTLY fine ferromagnetic particle 
consists of a single magnetic "domain."l The 

direction of its magnetization M is determined by the 
applied field H and by internal forces. Let the free 
energy per unit volume be F(0,#), where 6 and <j> are 
angular coordinates that describe the orientation of 
M; and let v be the volume of the particle. When the 
difference between the maximum and minimum values 
of V(Q,<t*)v is very large in comparison with the thermal 
energy kT, we may (for any reasonable measurement 
times) ignore thermal agitation and calculate the static 
magnetization curves by simply minimizing V (with 
respect to 6 and <£) at each H. This is the familiar 
Stoner-Wohlfarth2 calculation; it leads to hysteresis, 
because in certain field ranges there are two or more 
minima, and transitions between them are neglected. 
When the differences in V(6,4>)v are very small in 
comparison with kT, thermal agitation causes continual 
changes in the orientation of the moment of an in
dividual particle; and in an ensemble of such particles, 
it maintains a distribution of orientations characteristic 
of statistical equilibrium, so that the number of particles 
with orientation within solid angle dQ( = sinM?d<£) is 
proportional to e~VvlkTdtt. The behavior is like that of 
an ensemble of paramagnetic atoms; there is no 
hysteresis. This phenomenon is called "superpara
magnetism." 3 Under intermediate conditions, changes 
of orientation occur, with relaxation times comparable 
with the time of a measurement; the result is an observ
able lag of magnetization changes behind field changes, 

* Fulbright fellow, spring-summer 1962; on leave from Depart
ment of Electrical Engineering, University of Minnesota, 
Minneapolis, Minnesota. 

1 For a summary of the theory, see W. F. Brown, Jr., Magneto-
static Principles in Ferromagnetism (North-Holland Publishing 
Company, Amsterdam, 1962), Chap. 6. 

2 E . C. Stoner and E. P. Wohlfarth, Phil. Trans. Roy. Soc. 
(London) A240, 599 (1948). 

3 For a review, see C. P. Bean and J. D. Livingston, Suppl. J. 
Appl. Phys. 30, 120S (1959). 

a phenomenon called "magnetic after effect" or "mag
netic vicosity."4 Each of the three types of behavior— 
stable ferromagnetism, superparamagnetism, and lag
ging response—is useful for some purposes but 
undesirable for others, so that theoretical understanding 
of each is of practical importance. Furthermore, an 
understanding of the nonequilibrium behavior of this 
relatively simple system may contribute to the under
standing of more complicated processes, such as thermal 
nucleation of domain structures.5 

This problem can be approached through simplifi
cations that have proved successful in the theory of the 
Brownian motion and other stochastic processes.6 The 
most important simplification is the assumption that 
the random thermal forces have correlation times much 
shorter than the response times of the system (e.g,. 
of the Brownian particle). This simplification makes 
possible the replacement of an integral equation (the 
Smoluchowski or Chapman-Kolmogoroff equation) by 
a partial differential equation (the Fokker-Planck 
equation). In effect, it reduces the random forces to a 
"purely random" process, with a "white" spectrum. 
According to the quantum-mechanical Nyquist 
formula,7-8 the spectrum of thermal-agitation forces 
may be regarded as white up to a frequency of order 
kT/h (~1013 sec"1 at room temperature); this corre
sponds to correlation times of order 10-13 sec. The 
response time of a single-domain particle is of the order 
of the reciprocal of its gyromagnetic resonance fre-

4 L. Neel, Ann. Geophys. 5, 99 (1949). 
6 A. Aharoni, J. Appl. Phys. 33, 1324 (1962). 
6 S . Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943), Chap. 

I I ; M. C. Wang and G. E. Uhlenbeck, ibid. 17, 323 (1945). 
Both these papers are reprinted in Selected Papers on Noise and 
Stochastic Processes, edited by N. Wax (Dover Publications, 
Inc., New York, 1954). 

7 H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951). 
8 L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon 

Press, London, 1958), Chap. 12. 
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quency, i.e., ^10~10 sec.9 The basic assumption of the 
Brownian-motion treatment is, therefore, allowable. 

In previous treatments of this problem,3 it has usually 
been assumed that (Fm a x— Vm-m)v/kT is large enough 
to justify a discrete-orientation model. Thus, when 
V=V(d), with minima Vi and V2 at 0 = 0 and w and 
with a maximum Vm at dm(0<dm<ir), it is assumed that 
tii particles of an ensemble have 0 = 0 (orientation 1) 
and m have 0 = 7r (orientation 2), and that a particle in 
orientation i ( = 1 or 2) has probability vij per unit time 
of jumping to orientation j (== 2 or 1). The approach to 
statistical equilibrium is then described by the equation 

ftl= ~7l2= floV2l— fliVn. (1.1) 

By analogy with other such problems, one writes 

Vij=Ci,iT<v'»-vMkT (1.2) 

and sets aj equal to some quantity associated with the 
particle arid having the dimensions of a frequency—for 
example, the natural frequency of gyromagnetic pre
cession about orientation i. This simple model will 
break down eventually as v/T decreases, because the 
distribution will no longer be sufficiently concentrated 
near 0 = 0 and ir. One purpose of the present work is to 
find at what v/T the model becomes unreliable. 

The first detailed calculation was that of Neel.4 

Some steps in Neel's derivation fall short of complete
ness,10 and it provides no criterion for the validity of 
the discrete-orientation model. 

Stacey11 has proposed for "a domain or domain wall" 
a formula of the form (1.2) with aj= (ir2/6^/3)(kT/h). 
He derives this formula by assuming that the random 
forces have an upper cutoff frequency of order kT/h 
(he thereby omits the zero-point energy of the equiv
alent oscillators), and by identifying the energy 
available for surmounting the barrier with an energy 
associated with the random field. Thus, he neglects 
altogether the process by which the system under 
study acquires the energy from the random field; that 
is, he assumes an instantaneous response of the moment 
to the field. According to the estimates presented 
above, it is this response time, and not the correlation 
time of the field, that limits the rate of fluctuation of 
the moment. 

The theory to be presented is based on a Brownian-
motion approach. I t uses the discrete-orientation 
simplification only as an approximation valid under 
certain special conditions. The basic model is described 
in detail in Sec. 2; the corresponding Fokker-Planck 
equation is derived in Sec. 3. Further calculations, 
related to the case of axial symmetry, are presented 
in Sec. 4. Conclusions are drawn in Sec. 5. 

9 For example, W. F. Brown, Jr., J. P. Hanton, and A. H. 
Morrish [Suppl. J. Appl. Phys. 31, 214S (I960)], Table I, find 
resonance frequencies of 4.45 to 5.20 kMc/sec for four -y-Fe203 
powders of different axial ratios. 

10 W. F. Brown, Jr., Suppl. J. Appl. Phys. 30, 130S (1959). 
11 F. D. Stacey, Proc. Phys. Soc. (London) 73, 136 (1959). 

2. BASIC MODEL 

An individual particle has uniform vector magneti
zation M, of magnitude Ms determined by the tempera
ture T. The orientation of M is described by angles 6 
and <j> such that MX=MS sin0 cos0, My=Ms sin0 sin<£, 
Mz=Msco§6. A particle with orientation (0,$) will be 
assumed to be in internal thermodynamic equilibrium 
at temperature T, with Helmholtz free energy per 
unit volume A{6,4>,T) determined by crystalline 
anisotropy, magnetic self-energy ("shape anisotropy"), 
or both. The particle is not necessarily in external 
equilibrium with the applied field H. The Gibbs free 
energy per unit volume is12 V{dy<j>,T,H) = A(6,<j>,T) 
— M H , which we shall write simply F(0,0); the total 
(Gibbs) free energy is V(6,4>)v, where v is the particle 
volume. 

In the absence of thermal agitation, changes of M are 
assumed to obey Gilbert's13 equation 

dM/dt=yMXZ-dV/dM-ijdM/df], (2.1) 

where 70 is the ratio of magnetic moment to angular 
momentum, and where 77 is a dissipation constant; 
dV/dM means the vector whose components are 
dV/dMx, etc. [If Eq. (2.1) is solved for dM/dt, the 
result is of the same form as the Landau-Lifshitz14 

equation.] When 7 = - M - H , - d F / d M = H ; thus in 
general — dV/dM represents the conservative part, and 
— rjdM/dt the dissipative part, of an "effective field." 

A particle with instantaneous moment-orientation 
(6,4>) can be represented by a point on the unit sphere. 
A statistical ensemble of such particles can be repre
sented by a distribution of points over the unit sphere, 
with surface density W(6,<l>,t); as the particles undergo 
changes of moment orientation, the representative 
points move, and there is a net surface-current density 
J. The total number of points is conserved; we may 
normalize fWd^l to unity, so that W is a probability 
density, or to some large number, so as to avoid the 
mental difficulty of a fractional number of points in dtt. 
Because of the conservation of points, W and J satisfy 
a continuity equation 

dW/dt=-V-J; (2.2) 

here and hereafter, expressions containing the operator 
V are to be expressed in spherical coordinates with the 
radial terms omitted. In the absence of thermal 
agitation, J=Wv, where v is the velocity of a represen
tative point at (0,0); that is, v = (dM/dt)/Ms, wherex 

dM/dt can be found from Eq. (2.1). Insertion of this J 
into Eq. (2.2) gives a partial differential equation for 
W(0,<l>,t); it describes how W would decay toward 
static equilibrium under conditions of appreciable 
dissipation but negligible thermal agitation. We shall 

12 See reference 1, p. 96 ff. 
13 T. L. Gilbert, Phys. Rev. 100, 1243 (1955). 
14 L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 

(1935). 
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see later [cf. Eq. (3.22)] that this is the limiting case 
T/v->0. 

We now suppose that in the presence of thermal 
agitation, the dissipative "effective field", —vjdM/dt 
in Eq. (2.1), describes only the statistical (ensemble) 
average of rapidly fluctuating random forces, and that 
for an individual particle this expression must be 
augmented by a term h(/) whose statistical average is 
zero. Thus, the "Langevin equation" 15 of our stochastic 
process is 

(dM/dt) = yMXt-dV/dM-ri(dM/dt)+h(t)J (2.3) 

Concerning the components hi(t) ( i = l , 2, 3) of the 
"random field" h(/) we make the following assumptions: 
that the process h(/) is stationary; that the joint 
distribution of any finite set of the quantities hi>(t'), 
hi>>(t"), • • • is normal (Gaussian), with means equal to 
zero; that hi(t) and hj(t+r) are correlated only for time 
intervals r much shorter than the time required for 
an appreciable change of M according to Eq. (2.1); 
and that the statistical properties of hi(t) are in
dependent of the orientation of the x, y, and z axes. 

These assumptions, apart from the last, are similar 
to those made about random forces in Brownian motion 
theory.6 The last assumption, that the statistical 
properties are isotropic, is made primarily to simplify 
the calculation; the anisotropic case will be discussed 
briefly at the end of Sec. 3. 

By virtue of the correlation assumptions, we may 
simplify the process to a purely random one and write 
the correlation functions 

<A.-(/)Ay(H-r)) = /*^ ( r ) , (2.4) 

where, because of the stationarity, MJ is a constant; 
( } means "statistical average of." For isotropy of the 
statistical properties, /x*7==M ŷ> where JJL is a single 
constant. Thus 

<fc(0> = O, .<MO*i(H-r)) = juM(r ) . (2.5) 

I t follows that if 
„t+At 

Ki= / hi(t')dt', 

then 
{Ki)=0, {KiKj^vSijM. 

(2.6) 

(2.7) 

The next step is to use the Langevin equation (2.3) 
and the statistical properties of h(/) to calculate the 
quantities needed in the Fokker-Planck equation. The 
calculation can be carried out either in angular co
ordinates (6,(1)) or in Cartesian coordinates (x,y,z) in 
the space of representative points, in which the unit 
sphere is x2+y2+z2 — 1. That Cartesian coordinates can 
be used results from the fact that Eq. (2.3) keeps each 
representative point on a sphere x2+y2+z2 = const; we 
may, therefore, replace the surface density W (0,<£) by a 

15 S. Chandrasekhar, reference 6, Eq. (184); M. C. Wang and 
G. E. Uhlenbeck, reference 6, Eq. (48). 

volume density of representative points, ultimately to 
be of the form 5(r—l)W(d,<f>). The Cartesian method 
has the advantage of symmetry but is no less laborious; 
we shall therefore present only the (#,</>) method. 

This calculation will be carried out in Sec. 3. First, 
however, we digress to present a simpler, intuitive 
method of taking account of thermal agitation in Eq. 
(2.2). As has been seen, J in the absence of thermal 
agitation is equal to W\, where v is (dM/dt)/M8 as 
computed from Eq. (2.1), i.e., with neglect of thermal 
agitation. Let us now add to this J a diffusion term 
— k'VW; its tendency is to make the distribution more 
nearly uniform. Direct justification of this intuitive 
procedure would be difficult; but in fact it gives the 
same result as the Fokker-Planck method of Sec. 3, 
with considerably less labor. 

The intuitive procedure gives for the components 
o f / 

Je=-

j < t > — 

/ dV 
(* ' 
A 3d 

where 

dV 1 dV\ dW-\ 
• )w+k'— , 

66 sm0 d<j>/ d6 J 

dV 1 dV\ 1 dW~\ 
'—+h' )W+k' , 

dd s in0 dcj}/ sine d<t> J 

l / 7 o 

(2.8) 

(l/Yo2)+ijW .* MZ(l/y(?)+v*Ms^ 
(2.9) 

substitution of (2.8) in (2.2) gives 

dW 1 d 

dt sin# 66 

1 dV\ dW' 
)W+k'— 

sin<9<90/ 86. 

1 d f r / 
sm0 (hf 

inBddi LA 

1 d f/ dV 1 dV\ 
\(g'—+h' )W 

in6dd>[\ d6 sin6 dd>/ 

+k'-
l dW) 

sin# d<j> J 
(2.10) 

The Fokker-Planck method will lead directly to the 
partial differential equation (2.10), without introduction 
of the current-density components JQ and /^ . 

3. THE FOKKER-PLANCK EQUATION 

Let #i—0, £2=<£; and let P(xhx2,t)dxidx2 be the 
probability of a value in dx±dx2 at time L Then the 
Fokker-Planck equation is16 

dP d Id2 

— = (AiP)+ 
dt dXi 2 dXidXj 

(BijP). (3.1) 

Summation over repeated subscripts is understood. The 
quantities A 4- and Bi}' are functions of x\ and x2 defined 

16 S. Chandrasekhar, reference 6, p. 31 ff.; M. C. Wang and 
G. E. Uhlenbeck, reference 6, Eq. (39a). 
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by 
1 1 

Ai= lim — (Axi), Bij= lim —(AxtAxj), (3.2) 

where Axi is the change in Xi in time At; the statistical 

averages ( ) are to be evaluated by use of the Langevin 

equation (2.3) and the statistical properties (2.5) of 

Hi). 
If Eq. (2.3) is written in angular coordinates and the resulting 

two simultaneous equations are solved for 0 and 4>, the result is 

(3.3) 

(3.5) 

<j>=-gf (smd^Pe'+h' (sin0)~2P V 

Here h! and g' are given by Eq. (2.9), and 

Pe'=-dV/dO+P9, P<,'=-dV/d4>+P*, (3.4) 

where PQ and P+ are the contributions of h(/) to the generalized 
forces (torques) corresponding to 0 and <j>: 

Pe = Ms{hi(t) cos0 cos0+WO cos0 sin<f>—hz(t) sin0}, 
P<t, = Ms{ — hi(t) sin0 s i n ^ + ^ W sin0 cos<£}. 

Equations (3.3), when expressed directly in terms of the random-
field components hi(t), are of the form 

Xi = Fi(x)+Gik(x)hk(t) (*=1, 2, • •. , n), (3.6) 

where x represents the n variables (here, n — 2), and 
summation over m values of k (here, m — 3) is understood. In the 
corresponding equations of standard Brownian-motion theory, 
Fi(x) and Gik(x) are constants; the nonlinearity of the present 
problem complicates the calculation. To evaluate Ai and Ba by 
Eqs. (3.2), we need Axi only to terms of order At for Ai and only 
to terms of order (At)112 for Bij. For a typical member of the en
semble, Axi itself is of order (At)112, since ftt+Athk(t')dt' is of this 
order by the second Eq. (2.7). 

For simplicity of notation, shift the origins so that at the 
beginning of the interval At considered, t = 0 and ^ = 0. Expand 
Fi(x) and Gik(x) in Taylor's series: 

Pi (x) = Fi+Ft. jXj+iFi, ilXixi+.. • •, 
G*fc (#) = Gik+Gik, jXj-hiGik, HXJXI-\ , 

where, for example, Fi,j means dFi/dXj evaluated at xi 
= x2~ • • • =0 . Then by integration of Eq. (3.6) with respect to /, 
we get 

xi(t)=Fit+Fi,j\txj(h)dh+- • '+Gik[
tfo(t1)dh 

Jo Jo 

+Gik, j f
 tXi(h)hk(h)dh+ • • •. (3.8) 

Jo 

From (2.7) it follows that the terms on the right in (3.8) are of 
the following orders in the small quantities x and t: t, xt, • • •, t112, 
xt112, — -. We deduce that x is of order t112 and that the terms are of 
the following orders in t: t, t*[2, • •, tl!2, t, • • •. To the first order 
in t, 

Xi (t) = Fit+Gik f *hk (h)dh+Gik, j f txj (h)hk (h)dh; (3.9) 
Jo Jo 

and in the last integral we may express Xj(h) to order tlf2, namely, 
as GuSo'ihiitidh. Thus, 

hk(h)hi(t2)dt2. (3.10) *i(t) = Fit+Gik f'hkMdti+GiMGji Vdh V\ 
Jo Jo Jo 

The second term is of order t1/2, the others of order /; therefore, 
to the first order in / 

Xi(t)x3(t) = GikG3i Vdh Vhk(tdh(h)dh. (3.11) 
Jo Jo 

We now take the statistical average in (3.10) and (3.11) 
di vide by t, and let / —» 0. It is easily seen that the double integral 

in (3.10) is half that in (3.11). Thus, by use of (2.7) 

Ai = lim -(xi(t)) = Fi+yGikJGjk} (3.12) 
t->o t 

Bn = lim -{xi (t)xj(t)) =nGikGjk. (3.13) 

In the original notation, at the instant t considered the variables 
have values x%\ the functions Fi, Gjk, and Gik.j — dGik/dXj are 
evaluated at these values of the x's. 

In standard Brownian-motion theory, quantities such as 
(xi(t)xj(t)xp(t)) vanish faster than At, so that Eq. (3.1) contains no 
partial derivatives of third or higher order. This remains true 
here, for the only effect of the variability of Fi and Gik in (3.6) is 
to add terms of still higher order in At. 

In the present application 

(3.14) 

M^~lGw = h' cos0 cos<f>+gf sin0, 
Mr^Gvi — h! cos0 sin<£—g' cos<f>, 
Ms~

1Gn=-h' sine, 
Ms~

lG2i = g' cot0 cos<£—h' csc0 sin<£, 
M^lG22 = g' cotd sin<j>+k' csc0 cos<£, 
Ms-

lG2,= -g'. 

Partial differentiation of Eqs. (3.15) with respect to 0 and 0 gives 
the formulas for the twelve quantities Gikt,- (i, j= 1, 2; k= 1, 2, 3). 
Substitution of the values of Fi, Gjk, and Gik,j in Eqs. (3.12) and 
(3.13) gives 

Ai= -h'VQ+g^smeyWt+yMt^+g'2) cot0, 

Bn=»Ma
2(h'2+g'2), 

Bi2~B2i — 0, 

where 

and 

F^-h'Ve+g'^meyW*, 
F2= -g'(smd)-lV$-h

f(sm$)-2Vt, 

V6=dV/d$, etc.; 

(3.15) 

B22=v>Ms
2(h'2+g'2)csc2e. (3.17) 

Substitution of (3.16) and (3.17) in (3.1) gives the 
partial differential equation satisfied by P. By the 
definitions of P and W, 

P=Wsm6. (3.18) 

With some rearranging and some manipulating of 
derivatives, the equation satisfied by W can be reduced 
to the form (2.10), with 

k'=yM*(k'*+g>z) = h -
7<f 

1 + Y o W * 2 
(3.19) 

To relate the constant kf or n to other constants, we 
impose the requirement that in statistical equilibrium 
(dW/dt=0), W must reduce to 

W0=A0e~v^^^kT (3.20) 

in accordance with statistical mechanics. Substitution 
of (3.20) in (2.10) leads to an identity only if 

k' = kTh'/v, (3.21) 
whence 

\x~2kTt\/v. (3.22) 

Without the terms in g', the partial differential 
equation (2.10) would be formally the same as the 
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corresponding equation for an electrically permanently 
polarized particle or molecule (as in Debye's theory 
of polar molecules) with inertia neglected. In the 
magnetic problem ordinary inertia plays no role, but 
instead we have the gyroscopic terms in g'. In statistical 
equilibrium these terms cancel out of the partial 
differential equation (2.10) but not out of the current-
density components (2.8); there is a steady divergence-
less current density, i.e., a mean precession, even in 
equilibrium. 

By assuming a solution of the form T (t)F (6,4>), we 
can show that the general solution of Eq. (2.10) is of 
the form 

W=Wo+Z AnFn(9,<l>)e-^, (3.23) 

where Fn satisfies (2.10) with d/dt replaced by — pn. 
The eigenvalues pn and the corresponding eigen-
functions Fn are determined by the requirements of 
single-valuedness and of finiteness; the equilibrium 
term Wo is the eigenfunction corresponding to the 
eigenvalue po=0. The constant AQ in Wo is determined 
by the normalization condition, the constants An by 
the initial conditions, e.g., by the prescribed values of 
W at / = 0 . Solution for Fn{d,<t>) by separation of the 
variables 0 and <$> is in general not possible, because V 
in general depends on both variables and because 
derivatives with respect to both occur in the gyroscopic 
terms. 

At this point two facts are helpful. First, except in the 
very early stages of an approach to equilibrium, the 
only appreciable time-dependent term in Eq. (3.23) 
will be the term n=l, corresponding to the longest 
finite time constant 1/pi. Second, the problems of 
greatest interest are those in which the free-energy 
density has axial symmetry, V=V(d). If the initial 
distribution also has axial symmetry (e.g., when a 
uniaxial particle is subject to a change in value of an 
applied field always directed along the particle axis), 
we may assume W=W(d). The gyroscopic terms then 
drop out of Eq. (2.10) (though there is still a current 
density J^), and the equation for Fn reduces to an 
ordinary differential equation. Section 4 will be devoted 
to this case. 

First, however, we stop to consider the second Eq. (2.5) and its 
anisotropic generalization (2.4) from a different point of view. 
Choose new coordinate axes with Oz along the direction that M 
has at some instant t0. Consider a time interval (/I,^) about t0; 
take t2 — k short enough so that throughout it Mx and My (re
ferred to the new axes) are small, but still long in comparison 
with the correlation times of the thermal fluctuations. Then by 
expressing Gilbert's equation (2.1) to the first order of small 
quantities and solving for Mx and MVJ we find 

Mx = iWs
2(^3Cx-g,3CJ/),\ 

Mv=Ms*{g'Mx+h'3Q,y),} 
where 

Wx=-dV/dMx, 5Cy=-dV/dMy; (3.25) 

we suppose V expressed in the form V(Mx,My). To the linearized 
set of equations (3.24) we may apply the fluctuation-dissipation 

(3.24) 

theorem17 and the theory associated with it. We then regard 
Eqs. (3.24) as describing only the behavior of the statistical 
means of Mx and Mv; on these are superposed spontaneous 
fluctuations 8MX and dMy, whose statistical properties (and those 
of their time derivatives) can be found by use of the standard 
formulas of the theory. From this point of view the "random-
field" components hx, hy are formal concepts, introduced for 
convenience, and defined as the values of 5CX and 3Cy necessary, 
according to Eqs. (3.24), to produce the fluctuations 8MX and 
8My. In this way we find 

(hi(t)h^+r))=(2kTV/v)8ij)(r) (3.26) 

for i, j= 1, 2 in the new xyz axes. The component hz has no effect 
and may be assigned at will. If we require it to have such proper
ties that (3.26) holds also when i=3 or j=3 or both, then (3.26) 
becomes invariant to a rotation of the coordinate axes and, 
therefore, holds for i, j=l, 2, 3 in the original axes, in which M 
has an arbitrary direction. We may now remove the restriction to 
a short time interval, since the same result follows for any to. 

Equation (3.26) is equivalent to the second Eq. (2.5) with ix 
given by Eq. (3.22). From this alternative derivation it can be 
seen that the anisotropic generalization would require not only 
replacement of (2.5) by (2.4), but also replacement of the damping 
term — r)dM/dt in Gilbert's equation (2.1) by an anisotropic 
term. 

Strictly, the moment of a particle undergoes thermal fluctuations 
of its magnitude as well as of its direction. The exchange forces 
keep the fluctuations of magnitude small, and in the present 
calculation we simply neglect them. 

4. THE CASE OF AXIAL SYMMETRY 

When V and W are independent of <j>, Eqs. (2.8) 
and (2.10) reduce to 

J9=-[h'{dV/d6)W+k'dW/df\, 

J*=-g'(dV/d6)W, 

dW 1 d 

dt sin0 dB 
- sin0 W-
H L 

dV dW-i 
—W+k'— 
ee ee J 

Equation (3.23) reduces to 

with 

W=W0+T, AnFn(d)e-^, 
n = l 

Wo=A0e~r^ikT. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The only effect of the gyroscopic properties is the 
presence of a current component J$, which can be 
ignored in the calculation of W. With 

x==cos0 (4.5) 

as independent variable, Eq. (4.2) takes the form 

dW d | 

dt dx[ 
[1-

r < 
- * 2 1 h'-

dv dW-
W+k'— 

dx dx . 
(4.6) 

When dW/dt=0, the differential equation can be 
integrated directly; imposition of the conditions of 

17 See reference 7; H. B. Callen, M. L. Barasch, and J. L. 
Jackson, Phys. Rev. 88, 1382 (1952); H. B. Callen and R. F. 
Greene, ibid. 86, 702(1952); R. F. Greene and H. B. Callen, ibid. 
88, 1387 (1952); reference 8. 
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finiteness at x=dtl leads again to the equilibrium 
solution Wo. 

The differential equation satisfied by Fn can be 
written 

—j[l-*2>-^—[^W+XF=0, (4.7) 
dx[ dx J 

where 
(3^v/kT, X^pv/kTh. 

If 
F=e-*v<l>(x), 

this becomes 

d ( d<t>\ 
— (l -x 2 )e-^— +Xe-^0 = O. 

(4.8) 

(4.9) 

(4.10) 

The eigenvalues Xn are determined by the requirement 
that <j> must be finite at x= ± 1 . The lowest eigenvalue 
is Ao=0; it corresponds to the equilibrium solution 
0O= const. (Note that the symbol <£ is now being used 
in a new sense.) 

A. General Principles 

Analytical solution of Eq. (4.10) is easy only when 
V= const, or for any finite V(x) in the limit ^—> 0? i.e., 
T - > oo. Then 

X n = » ( » + ! ) , <j>n^Pn{00), (4.11) 

where Pw(#) is a Legendre polynomial. This solution 
may be used as a starting point in a perturbation 
calculation for small /3(Fmax— Fmin). 

For other conditions, a more useful starting point is 
the restatement of the problem as a minimization 
problem.18 The nth eigenfunction cj)n of Eq. (4.10) 
minimizes the functional 

£>[>]=/* (l-x2)e-evl<l>'(x)Jdx (4.12) 

under the constraints of constant 

(4.13) J3T>]= f e-»v[jt>(x)Jdx 

and of vanishing 

/" e-^<l>{x)<t>m{x)dx (4.14) 

for ra~ 0, 1, 2, • • •, n— 1; Xn is equal to the correspond
ing minimized value of #[(£]/#[</>]. We are primarily 
interested in the value of pi and, therefore, £cf. the 
second Eq. (4.8)] of Xi. For it, the last set of constraints 
reduces to the single constraint 

<rPv<l>i(x)dx=09 (4.15) 

since <£0(#) = const. By approximate minimization one 
can evaluate Xi approximately; and by two approximate 
minimizations, of which one errs (if at all) upward and 
the other (if at all) downward, one can set upper and 
lower bounds to Xi, and thus to pi. 

When /3(Fmax— F m i n ) » l , the case usually en
countered, one can use either the approximate method 
just described or the following physical principle: 
When high (as compared with kT) energy barriers 
separate the minima of vV, equilibrium within the 
distribution about a minimum will be established much 
faster than equilibrium between different minima. 
Therefore, except in the initial stages of a transient 
process, it is legitimate to assume that the distribution 
about the minimum Si is of the form Biit)e~^V{e); the 
problem then reduces to finding the variation with time 
of the functions Bi(t), which can be related to quanti
ties fii(t) [cf. Eq. (1.1)] that describe the relative 
numbers of particles with orientations near 6{. A 
method of formulating and solving this problem is 
suggested by Kramers5 treatment of the escape of 
particles over potential barriers.1 

These various approximations will be discussed in 
the following subsections, B through D. 

B. Low-Energy-Barrier Approximation 

By standard perturbation theory,20 we can derive the 
following series solution of Eq. (4.10) in powers of fi: 

m 

0 ( « + l ) - m ( « H - l ) ] H , (4.16) 

X.= »(»+l)+|87«„+i8*Z:' VnmVmn/ 
m 

\jt(n+l)~m(m+l)~]-\ ; (4.17) 

here un is the nth normalized eigenfunction for the 
unperturbed case V~ const, 

and 
Un^[_{2n+\)/2ji*Pn{x), 

Vn 
• = / > 

dun dV 
X' 

dx dx 

(4.18) 

(4.19) 

In the case of greatest interest, a particle with 
uniaxial anisotropy constant K in a longitudinal field H, 

In this case 

V= ~HMS cosO+K sin20 

= —HMsx—Kx2+const. 

~HM 

18 R. Courant and D. Hilbert, Methods of Mathematical Physics 
(Interscience Publishers, Inc., New York, 1953), Vol. 1, p. 398. 

(4.20) 

(4.21) 
19 H. A. Kramers, Physica 7, 284 (1940); S. Chandrasekhar, ref

erence 6, pp. 63-70. 
20 R. Courant and D. Hilbert, reference 18, pp. 343-346. In the 

present case the perturbation (3V'(x) affects the term in d4>/dx 
rather than the term in <f> in the differential equation, but the 
changes required are minor. Formulas read from books on quantum 
mechanics are too specialized in that they assume that the matrix 
(Vnm) is Hermitian; here it is not, for in general Vnm and Vmn are 
real and unequal. 
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(4.22) 

where 

*»c»-i) = n(n+l)/[(2»-1) (2n+l)]1'2, 

anw)=-n(n+l)/Z(2n+l)(2n+3)Ji*, 

bnn=n(n+l)/{(2n-l)(2n+3)}, 

bn(n-2)= (n-l)n(n+l)/ 

{ ( 2 » - l ) [ ( 2 » - 3 ) ( 2 w + l ) ] 1 / 2 } , (4.23) 

6n(n+2)=— n(fl+l)(h+2)/ 

{(2n+3)Z(2n+l)(2n+5)Ji*}>, 

the other a's and b's vanish. Thus 

4 96 1 
X i = 2 — £ Z + (t3Ky+-(l3HMs¥+' • -. (4.24) 

5 875 5 

Unfortunately, these formulas apply to the case of 
least interest, the case in which @K (—Kv/kT) and 
pHM8 (=HMsv/kT) are small. 

C. High-Energy-Barrier Approximation 

Formulas for the case t>(Fmax— Vmin)^>kT can be 
derived by two methods: the Kramers method and the 
method of approximate minimization. We consider for 
simplicity the case in which 7(0) has a minimum Vi at 
0=0 , a minimum F 2 at 0— ir, and a maximum Vm at 
e=Bm (O<0m<7r), with £ ( F m - F i ) » l ( t = l , 2). 

In the Kramers method1* we assume from the outset 
that equilibrium has been attained within the regions 
0 ^ 0 ^ 0 1 and 0 2 ^ 0 ^ T T separately (0i<0w<02) and that 
all but a very small fraction of the members of the 
ensemble have orientations within one or the other of 
these regions. The choice of d\ and 02 is not critical, 
since most of the particles have orientations very close 
to 0 or 7r; all that is required is that e~^V(di) be very 
small in comparison with e~$Vi but very large in com
parison with e~$Vm (i= 1, 2), conditions easily satisfied 
w h e n / 3 ( F w - F , ) » l . 

In the regions (O,0i) and (02,7r) we have 

W(B) = W%ir+™-y*\ ( i= 1,2) (4.25) 

where W^W{G) and W2=W(ir). Almost all the 
particles in (0,01) have orientations very close to 0, and 
almost all in (02,7r) have orientations very close to ir. 
If we normalize fWdSl to be the total number n of 
particles, then the numbers n\ and n2 in the two groups 
are 

ni=27rWie^Ii, (4.26) 
with 

/•0i 

1 = / , 
Jo 

I1= / g-erm si^de, I,= / e~»v^ waBdO. (4.27) 
/ 
Jd2 

Because of the rapid decrease of the exponential factor 
with distance from the minimum of V, we may in I\ 
replace 7(0) by its Taylor's series about 0, truncated 
at the 02 term (the 0 term vanishes); replace sin0 by 0; 

and replace the upper limit 0i by <*>. With these approxi
mations and the corresponding approximations in 72, 
we get 

Ii=e-»v*/pki9 (4.28) 
where 

i ! s r ( 0 ) , i 2 s r ( i r ) . (4.29) 

In the region (0i,02), W is very small; but it must be 
sufficient to maintain a small net flow of representative 
points from the overpopulated toward the under
populated minimum. We assume that this flow can be 
approximated sufficiently by a divergenceless current 
density, so that the total current I— 27r(sin0)/0 is 
independent of 0. Then by the first Eq. (4.1), since 
*' = *'/& 

6W dV 131 
h/3—W= . (4.30) 

36 dd 2irhf sin0 

On multiplying by the integrating factor e$v and 
integrating from 0i to 02, we get 

We?v = -(0l/2Th')In 

where 

Im= / d>vde/smB. 

(4.31) 

(4.32) 

In this case we replace V by its Taylor's series about 
the maximum, truncated at the (0—0m)2 term; replace 
sin0 by sin0w; and integrate from — oo to + oo. Then 

where 
= (2v/Pkndll*ePv*/sin0m, (4.33) 

(4.34) 

Now by Eqs. (4.25), the left member of Eq. (4.31) 
i s J F 2 ^ 8 - J ^ 7 l ; o r b y E q . (4.26), (n2/l2-n1/I1)/2<n: 
Equation (4.31) relates this to the current, 7, from the 
region (O,0i) to the region (02,7r). But since practically 
all the representative points are in these regions, 
7 = —ni=n 2 . Equation (4.31), therefore, gives 

n1=—n2= 
h! (n2 ni\ 

Pln\h 111 
(4.35) 

This is of the form (1.1), with 

Vii=VI$IJii (*=1, j=2ori=2, i = l ) . (4.36) 

With the approximations (4.28) and (4.33), this 
becomes 

vij=Cijr*<v«r-™, (4.37) 
with 

Cij= A'Ai(sin0TO) (pkJ2iryi\ (4.38) 

When V is given by Eq. (4.20), with K>0, there are 
two minima whenever \H\MS<2K. If, following 
Neel,4 we define a critical field Hc by 

HCMS^2K, (4.39) 
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then the condition for existence of two minima is 
| H | < Hc. The maximum is at 

cos6m=-H/Hc^-~~e. (4.40) 

In this case 

V! = -HM» V2 = +HM99 Vm = hHeM9(l+€2), (4.41) 

ki^HcM.Q+e}, k2=HcMs(l-e), 

Formula (4.4-4) gives 
km=HcMs(l-e

2). (4.42) 

= A'( J (#Jlf.)8 /*(l±€)2(l=Fe) (4.43) 
C21) \2irkT/ 

7oW« fvH*Ma\
1/2 

l+(yovMs)2 

/vHe
6Ma\"* 

\ IwkT J 
e2)( l±e). (4.44) 

Numerical calculations based on this formula were 
reported earlier.10 

To attack the case /3(T/
m~ K ; ) » l by the method of 

approximate minimization, we note that with 6 as 
variable the quantity to be minimized is 

# [ > ] = / e~Pv(d(t>/dd)2sm8dd 
Jo 

(4.45) 

and that the constraints are 

# [ > ] = / e-Pv<t>2sin6dd = const=H (4.46) 

and 

#[<M>o]=/ e-^v<t>sinddd=0. (4.47) 
7 o 

Because of the constraint (4.47), </> must change sign in 
(0,7r). Because of the exponential factor, #[</>] and 
#[j£,</>(J depend mostly on the values of </> near 0 and w 
and not on the details of the change from 0i=0(O) to 
<£2=E<£(7r), provided it is not concentrated near these 
points; on the other hand D\j>~] can be kept small only 
by concentrating the large values of | d*j>/d6 | near 6m. 
We can, therefore, expect to get a good approximation, 
when |S( Vm— F i ) » l , by constraining 4> to have constant 
values 0i in (O,0i) and <t>2 in (02?TT) and minimizing D\j>~] 
under the modified constraints Rfy~] = H' and 
^ I D ^ O D ^ O , where in Hi the integration extends from 
0 to #i and from #i to 7r, with omission of the very small 
contribution from the interval (6h62). The choice of #i 
and 82(0<6i<6m<82<7r) is, as before, not critical. 

The modified constraints are equivalent to 

<t>i2Ii+4>2*h=H, 

4>lll+.<t>2l2=0, 
(4.48) 

where Ii and 72 are again defined by Eqs. (4.27). 
Equations (4.48) can be solved for <£i and <j>2 (except 

for an indeterminacy of sign): 

4>i—C/I\, 02=—C//2, 

C2=^/[(l / /1)+(l/ /2)] . 
(4.49) 

We may, therefore, minimize D\j>'] for specified 
0(0i) = 0i and 0(02) = 02. Then in (6i,62), 4> satisfies 

d / d<f> 
e~^v~~ sinfl 

) - • 

Integration gives 

(4.50) 

(4.51) d4>/dB=AePv/smB, 

and further integration from 6± to 62 gives 

^/m=01-4>2, (4.52) 

where 7W is defined by Eq. (4.32); this evaluates A. 
To evaluate \i=D\j>~]/H we now substitute (4.51) 
in (4.45) with limits 61 and 62, since elsewhere dcj)/dd= 0; 
insert the value of A from (4.52); substitute the values 
of 0i and <j>2 from (4.49); and divide by H. Thus, 

\ih' V 1 / 1 1 \ 
# 1 = — = - ~ ~ + - ) . (4.53) 

This method gives directly the reciprocal pi of the 
longest finite time constant. To find the same quantity 
by the Kramers method, we set n2~n-~ni (n= const) 
in Eq. (4.35) and transpose the n\ term to the left; 
pi is the coefficient of n\. I t is equal to ^12+^21 and is 
again given by Eq. (4.53). Thus, the minimization 
method gives the same time constant as the Kramers 
method. I t also gives formulas for 

W=e~Pv(AQ+Aicl>e-^t) 

in the various regions (O,0X), (61,62), and (62,ir); these 
may now be interpreted physically in terms of Hi and 
n2, with the same results as by the Kramers method. 
The minimization method has the advantage that it 
justifies, on the basis of a purely mathematical approxi
mation, simplifications which have to be injected 
arbitrarily in the Kramers calculation; in particular, 
it avoids the arbitrary assumption of a divergenceless 
J in (eh82). 

The further simplifications that follow from the 
approximations (4.28) and (4.33) may now be intro
duced as in the Kramers method. Then 

pi= vi2+v2i^cne-^v™-v^+c2ie~^v™-v*\ (4.54) 

where cu and C21 are given by Eq. (4.38). 

In equilibrium, Eq. (1.1) with the approximations (4.37)-(4.38) 
gives 

n2/ni^pi2/v2i= (ki/ka)e-Kv*-Vi). (4.55) 

In general, ki^k2, and, therefore, n2/ni9£e~^^Vr'r^ = e~
v{VT~v^)lkT'. 

The violation of the Boltzmann distribution law is only apparent. 
The n\ particles with orientations in (O,0i) are not equivalent 
to m particles each of orientation 0 = 0 and free energy Viv; they 
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constitute an ensemble with partition function ZI — 2-KVII and 
Gibbs free energy21 (per particle) Gi——kT InZi, where vd£l is the 
number of microstates for which the moment orientation is within 
solid-angle element dQ. It is this free energy Gi, not the value vVi 
characteristic of particles with 0 exactly zero, that must be used 
in the Boltzmann factors to find n\ and n^ in equilibrium. With 
the approximation (4.28), 

<r<?i/*r=Zi = 27r,,/i= (27rv/pk1)e-^; (4.56) 

a similar formula holds with subscript 2. The equilibrium m's are 
in the ratio 

tto/n^e-tQr-GMkT^ (k1/k2)e-^v^v^, (4.57) 

in agreement with (4.55). 
One can change the power of T in the coefficient of the ex

ponential function in va by including or not including a particular 
free-energy term, such as that just discussed, in the argument of 
the exponential. Such terms may be different for single-domain 
particles, for domain walls, and for other models of magnetization 
reversal. Therefore, no great significance can be attached to 
formulas for a,- [in Eqs. (4.37)] that are derived without con
sideration of the specific properties of the model. 

The approximate-minimization method described is 
easily extended to the case in which V(6) has more than 
two minima separated by energy barriers large in 
comparison with kT. The results are the same as would 
be obtained by assuming that tii particles of the en
semble have orientations near the minimum Bi and that 

w^ZJ ' (njvji—nivij), (4.58) 
i 

and evaluating the Vi/s by the Kramers method. 

D. Other Approximations 

The method of approximate minimization can be 
used to obtain approximate values of the pi's and fa's, 
and in particular of pi and fa, when neither of the in
equalities v(Vmax_— Fmin)<<.&r is satisfied. 

For example, assume a solution of the form (x = cos0) 

<j> = Xn CnXn, (4.59) 

where the sum may include even or odd powers or both and as 
many terms as one wishes. Then 

# M = S « 2 m CnCmfim (qn+m-2 ~ 0n+m), (4.60) 

(4.61) 
where 

qp= f1 e~^xvdx. (4.62) 

The extrema of D\j>^/H\jf>~] satisfy 

dZ>M-X5#[>] = 0, (4.63) 
21 R. H. Fowler and E. A. Guggenheim, Statistical Thermo

dynamics (Cambridge University Press, London, 1939), pp. 67-68. 
Let the system under consideration be the particle plus an ideal 
permanent-magnet field source, so that the energy es in microstate 
s includes the energy of the microscopic moments in the field. 
Then vV(0) is the free energy of a particle specified to have 
orientation 0, whereas G\ is the free energy of one specified only to 
have an orientation in (0,6i). Therefore, e0llkT= S s e~€s,kT and 
e-vV(fi)ikT= 2J8(fl) e-es(hT} w nere the first sum is over microstates 
compatible with an orientation in (0,#i) and the second over 
microstates compatible with the specified 6. It follows that 
gr-Giikr^ %k Vke~vVWlkT6£lk, where vkAilk is the number of micro-
states with d—dkto within solid angle Attk, and the summation is 
over AlVs for which 6 is in (O,0i). On going over to an integral we 
get Eq. (4.56) if we suppose that vk — v, independent of 0&. 

where 

X=Z>M/#M, (4.64) 
and where the variables are the C»'s. This gives the homogeneous 
system of linear equations in the Cn's 

Xm \nm(qn+m-2 — qn+m) —tyn+m2Cm = 0; (4.65) 

the compatibility condition is 

| [nm (qn+m-2—qn+m) - Mn+ml | = 0. (4.66) 

If the term Cox0 is included in (4.59), one solution will be \ = 0, 
Co^O, Cn=0 for n^O; this is the equilibrium solution of the 
original problem and is rigorous. Any other solution <#nof (4.65) and 
(4.66) then automatically satisfies the orthogonality conditions 
H[cf),<f>m] = 0 with respect to the equilibrium function 0o=Co and 
to previously obtained approximate solutions <f>m of the form 
(4.59) ( w = l , 2 , • • • ,»—!) . The desired approximate value of 
Xi for the original problem is therefore the smallest nonvanishing 
eigenvalue of (4.66). The term Cox0 need not be included in (4.59) 
if the condition #[<£,1] = 0 is satisfied by symmetry. 

In the case of a uniaxial particle in zero field,12 with V = — Kx2, 

qv = 2 exp(ax2)xvdx, (4.67) 

where 
a = Kv/kT; (4.68) 

#o can be found from tables22,23 of ftf exp(t2)dt, and recurrence 
formulas for the other qj's can be derived by integration by parts. 
One can then solve with successively larger numbers of terms in 
Eq. (4.59) until the agreement of successive values is satisfactory. 
The labor would be considerable. 

Since this method introduces constraints in the minimizations, 
it gives a value of Xi that errs, if at all, upward; it therefore 
provides an upper bound for Xi. In general, minimization of 
^ I D A ] / # I [ 0 ] will give an upper bound to Xi if D\\j>~] ̂  D\j>~] and 
HiL<f>l^HL<f>l for every <f> and if the minimization is performed 
either rigorously or under constraints; it will give a lower bound if 
DiL4>~\^D\jf>~\ and H\{<f>~\^H\j>~\ and if the minimization is 
performed rigorously. It is difficult to obtain useful lower bounds 
because of the last condition.24 

In the case V= —Kx2, a lower bound can be found 
by replacing the factor e~^v==exp(vKx2/kT) = exp(ax2) 
by 1 in D\j>] and by ea in H\jf]. The eigenvalues of X 
in the resulting minimization problem are then t~a 

times the eigenvalues of X in the original problem with 
F=const; therefore \n>n(n+l)e~a, and in particular 

Xi>2e~<\ (4.69) 

The discrete-orientation approximation (4.54), for 
V= —Kx2, gives 

Xi= WVirW2e-«, (4.70) 

which is compatible with (4.69) only if a> (TT/4)1/3=0.92. 
Thus for a<0.92, the value of Xx by (4.70) is certainly 
too small. 

22 H. G. Dawson, Proc. London Math. Soc. 29, 519 (1898); 
E. Jahnke and F. Emde, Tables of Functions [(B. G. Teubner, 
Leipzig, 1933), 4th ed. (Dover Publications, Inc., New York, 
1945)], p. 32. 

23 N. Arley, On the Theory of Stochastic Processes and Their 
Application to the Theory of Cosmic Radiation (John Wiley & Sons, 
Inc., New York, 1943), pp. 222-227. 

24 Other methods of obtaining lower bounds are discussed by 
S. H. Gould, Variational Methods for Eigenvalue Problems (Uni
versity of Toronto Press, Toronto, 1957). 



1686 W I L L I A M F U L L E R B R O W N , J R . 

E. Application 

For any specific form of the function V(8) or V(x) 
(x=cosd), the methods described in Sees. 4B-D can be 
used to calculate Xi and hence pi, and also <£i if it is of 
interest; some of these methods can be extended to \n 

and 4>n with n>\. Except in the trivial case V~ const, 
it is necessary to use approximate formulas; but 
accurate values can be found at the cost of compu
tational labor, and upper and lower bounds to \ n can 
be established by the general methods described in 
Sec. 4D. 

The case of greatest interest is the case V=Ks'm26 
— HMS cos#, a uniaxial particle in a longitudinal field12; 
and here the most important question is to how small a 
value of v/T the high-energy-barrier approximation, 
which leads to Eqs. (4.44) and (4.54), is legitimate. A 
partial answer to this question in the case # = 0 , where 
Eq. (4.54) is equivalent to Eq. (4.70), was given in the 
discussion of Eq. (4.69): The formula is certainly 
wrong if a^Kv/kT=HcMsv/2kT is less than 0.92. A 
more stringent criterion could be established by 
numerical calculations based on Eq. (4.66) in the range 
a~ 1. A less satisfactory method is to compare values of 
\i (or px) based on the high-energy-barrier approxi
mation with values based on the low-energy-barrier 
formula (4.24). Such a calculation, for the iron particles 
considered in reference 10, shows that the two formulas 
agree in order of magnitude at a = 0.5 (l/pi= 2.8X 10~10 

sec by the first formula, 1.4X10~10 sec by the second) 
but disagree by two orders of magnitude at a = 0.05 
(3.5X 10 -9 sec vs 1.2X 10~n sec; the high-energy-barrier 
formula gives a spurious minimum of l/p± as a function 
of v/T at v/T=k/HcMs, when a = l / 2 ) . For order of 
magnitude, therefore (and this is often all that matters), 
the high-energy-barrier formula seems to be useful 
even slightly below the point (a = 0.92) at which it 
becomes certainly wrong. For iron particles at room 
temperature,10 this corresponds to a spherical particle 
of radius about 40 A. 

5. CONCLUSIONS 

The Brownian-motion approach to this problem is 
based on legitimate simplifications, and it yields to 
analysis up to the point where a partial differential 
equation is to be solved. Beyond this point, analytical 

methods fail except in trivial cases. When V=V(6), 
the approximate methods developed seem adequate 
for all cases of interest. When F=F(0,<£), practical 
techniques of solution remain to be developed. Formu
lation of the problem as a minimization problem seems 
possible only when the gyroscopic terms drop out, as 
they do when V=V(0). 

The analysis of the case V=V(0) shows that the 
high-energy-barrier approximation is usually sufficient; 
this reduces the continuous distribution of orientations 
effectively to a discrete distribution and leads to 
formulas (1.1)—(1.2) and to numerical calculations of 
the type illustrated in reference 10. Further study of the 
case V=V(8,(j}) might, therefore, aim specifically at 
developing a high-energy-barrier approximation for this 
case. 

Formulas for the case V= V{6tf>) would have another 
application, quite apart from superparamagnetism and 
magnetic viscosity. When one attempts to calculate 
static magnetization curves of a single-domain crystal, 
one finds that the initial orientation sometimes becomes 
unstable while two or more other equilibrium orien
tations are still stable.25 One must then determine to 
which of the remaining orientations an irreversible 
jump can occur, and with what probabilities. This 
problem can be studied by use of Eq. (2.10). 
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