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The magnetostriction of single-crystal yttrium iron garnet (YIG) has been measured from 100 to 450°K 
by a capacitative technique in which the sample dilatation shifts the resonant frequency of an oscillator, and 
by standard strain gauge methods. To analyze the data, the theory of magnetostriction in cubic insulators 
is applied to the Neel model of a ferrimagnet. This theory permits evaluation of the individual magneto-
elastic coupling coefficients for each type of site (or sublattice) and for each symmetry of strain mode. The 
values found are B0,2

y(a) =-9.70X10* ergs/cm3, 50,2,yW = 8.95X106 ergs/cm3, Bot2
e(a) = 5.67XW 

ergs/cm3, BQy{d) — — 17.2X 106 ergs/cm3, where a and d refer to octahedrally and tetrahedrally coordinated 
sites, respectively, and y and e refer to linear dilatations and shear modes, respectively; the subscripts on the 
coefficients indicate that these are the coefficients of the lowest order symmetry polynomials, the higher 
order terms being found experimentally to be relatively small. Appropriate averaging of the above constants 
give "effective" constants in good agreement with the mean values found by other investigators. The 
theoretical predictions of the temperature dependence of the magnetostriction constants hi and h% are in 
excellent agreement with the observed values of hi, which has a minimum ( ^ —2.1X10-6) near room 
temperature, and of hi which increases monotonically toward zero with increasing temperature. 

I. INTRODUCTION 

IN this paper we present experimental data on the 
magnetostriction of yttrium iron garnet (YIG) over 

a wide temperature range, and we apply the previously 
derived theory of magnetostriction in cubic insulators 
to the Neel model of a ferrimagnet. The theory and 
experiment are found to be consistent, permitting an 
excellent fit of the observed temperature dependence of 
the magnetostriction constants. This fit yields values 
of the individual magnetoelastic coupling coefficients 
for ions in each specific type of site, with each particular 
symmetry of strain mode. I t is, of course, these single-
ion coupling constants which are amenable to direct 
analysis by crystal field theory. 

In simple ferromagnets the magnetostriction can be 
written as a function of the magnetization, as has been 
noted by Kittel and Van Vleck,1 and as has been 
analyzed in specific detail by two of the authors in a 
paper2 hereinafter to be referred to as I. In a ferrimagnet 
the magnetizations of the several sublattices may have 
different temperature dependences, and the resultant 
magnetostriction curves may, thereby, show fairly 
complicated forms. As one might expect, the magneto
striction is the net result of the magnetoelastic couplings 
of the separate magnetic sublattices to the crystal 
strain, each contribution to the strain depending on 
the sublattice magnetization by the familiar 1(1+1)/2 
law at low temperatures and by the corresponding 
spherical Bessel function dependence at higher tempera
tures.3 The theory, therefore, allows the relatively com-

* Supported by the Office of Naval Research. 
1 C. Kittel and J. H. Van Vleck, Phys. Rev. 118, 1231 (1960). 
2 Earl R. Callen and Herbert B. Callen, Phys. Rev. 129, 578 

(1963). 
3 E. R. Callen and H. B. Callen, J. Phys. Chem. Solids 16, 310 

(1960). 
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plicated experimental temperature dependence of the 
magnetostriction to be unraveled, and thereby yields 
the separate underlying magnetoelastic coupling con
stants. Over the entire temperature range the theoretical 
curves agree with our experimental data for both 
— hi(T), which rises to a maximum near room tempera
ture, and for — Ji2(T), which falls monotonically with 
rising temperature. 

Consider the case of several sublattices, which we 
number n— 1, 2 • • •. Then the Hamiltonian is the sum of 
magnetic interactions Hm, the elastic energy He, the 
anisotropy energy Ha, and the magnetoelastic energy 
Hme. The first three terms are given explicitly in I ; 
the magnetoelastic energy is assumed to be the sum of 
terms for each sublattice 

Each term Rme(n) is written in terms of phenomenologi-
cal magnetoelastic coupling coefficients, precisely as in 
I, where we need merely add the sublattice index; 

Hme(n) = - £ E BStl"(n)Z e^Xf^n). (2) 

Here fx labels the irreducible representation (of which 
only five are permitted), j labels the strain modes of 
the /-ith representation, i labels the functions which 
generate the /xth representation (so that i goes from 
unity to the dimensionality of TM), and / labels the degree 
of the spin operators. The quantity e^'3' is then the 
amplitude of the ith strain component in the jth mode 
set which transforms under TM. 3C/,z(w) is a Tensor 
Kubic Operator (TKO); a spin operator of the Zth degree 
in the basic spin operators Sx, Sy, Sz, the set 3d"'*, 
5C2

M,Z • • • transforming as rM. In the term with a given 
n the TKO depends on the spin operators of a lattice 
site of the nth sublattice. 
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At a slightly more fundamental level, in which the 
terms of the Hamiltonian refer to the individual ions 
rather than to the sublattices, terms of lower symmetry 
than cubic appear. However, the summation over the 
various sites making up the given sublattice so combine4 

these terms as to lead to a net Hamiltonian of cubic 
symmetry. 

Minimizing the free energy with respect to the strains 
we obtain a solution completely analogous to that of I. 

1 
*"•>=— Z Bj^nXyn^in^K^iin). (3) 

Here i£/,z(£7l) is a Kubic harmonic (the classical analog 
of the TKO) which depends on the direction of the sub-
lattice magnetization £». The quantity (ynrfW) is the 
average value in the unperturbed density matrix of the 
spherical tensor operator of degree / and order zero. 

In the Neel model all sublattice magnetization direc
tions CW are coaxial. Furthermore, for those TKO's 
permitted by time-reversal symmetry, (3C»M,*(w)) de
pends only on the axis of t,(n) and not on its direction; 
hence, this quantity is independent of the sublattice 
index n. Then 

€ / • > = — L 5 y y ( r ) i ^ ( c ) , (4) 

where 
BJ;l"(T) = Y.n B,.i^n)(yim°(n)). (5) 

Equation (4) is identical to that _obtained in I, but the 
temperature dependence of the B3-j(T), as determined 
by Eq. (5), may be more complicated, of course. 

At low temperatures the average value ( ^ ( n 0 ^ ) ) is 
equal to the 1(1+1)/2 power of the sublattice magneti
zation, precisely as in the ferromagnetic case5: 

whence 
<ty<r>°(*)>=™»I(m)/2, T«TC, (6) 

Bjti^T) = Zn BJ§i"(n)mnl{m)I*. (7) 

At higher temperatures the 1(1+1)/2 power law is 
not valid. However, we have calculated3 the classical 
average ( F ^ D 0 ) in the internal field approximation, 
obtaining the result 

Jz+i/sCiT1 Oo)) 
<F*(n°>= ; ——^/z+i/2(£-1(m0)), (8) 

/i/2(£-1(wo)) 

where Ii is the hyperbolic Bessel function and £~x is 
the inverse of the Langevin function. Equation (8) 
reduces to the 1(1+1)/2 power law as nio approaches 

4 This combination can be shown most readily by reducing the 
full cubic group according to the site symmetry, and by labeling 
the site functions in terms of their cubic parentage. Summation 
over the various equivalent sites, related to each other by the 
operations of the cubic group, then immediately couples the site 
functions to restore cubic symmetry. 

* J. H. Van Vleck, J. Phys. Radium 20, 128 (1959). 

FIG. 1. Reduced hyperbolic Bessel functions ti+wix) vs reduced 
magnetization, tno=£(x), for 1 = 2, 4, 6. 

unity. The argument of the hyperbolic Bessel function, 
<£-1(wo), has the physical significance of fxHint/kT, where 
ix is the magnetic moment of a site and Hint is the molec
ular field which acts on it. This field is actually a func
tion of the sublattice magnetizations of other sublattices, 
but when written in the form of Eq. (8) the result can 
be applied to each sublattice simply by interpreting 
mo as the resultant magnetization mn of that sublattice. 
All the underlying coupling of the sublattices are im
plicit in that they have, in effect, already determined 
mn. Hence, 

Bj,i"(T) = ZnBj^(n)Im/2(£-1(mn)). (9) 

In Fig. 1 we plot /z+i/2(£~1(wo)) as a function of mo 
for 1—2, 4, 6. With these plots, and with the sublattice 
magnetizations, mn, known either from the suscepti
bility using the Neel theory or by some other means 
(nuclear magnetic resonance, Mossbauer effect, neutron 
diffraction), one can then obtain the temperature de
pendences of the effective magnetoelastic coupling 
constants directly. 

Although Eq. (4) for the strains is applicable to all 
the k = 0 (infinite wavelength) strain modes, both 
acoustic and optical, in this paper we are only concerned 
directly with the external strains, those signified by 
j—Q in our notation. These are the strains which are 
measured as the external magnetostriction. The mag
netostriction constants are defined by 

5/ 

I 
-=*i £ ti%2+2fa(tifrfi&+c.p.)+ • • •, (10) 

where U and £t- are the direction cosines of the magneti
zation and of the measurement direction, respectively. 
From reference I we recall that the magnetoelastic 
coupling coefficients are related to the magnetostriction 
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constants by 

Ai(r) = iXioo=Ci 

1 15 

^ i i ( r ) - c i 2 ( r )2X(47r ) 1 ' 
-BojlT), (11a) 

1 /15X1/2 

*2(r) = f X i u = i C 2 S — Bo,2<(T). (Hb) 
2cu(T)\4:TrJ 

Because the polynomials of Eq. (10) are not orthogonal, 
they mix the various Kubic harmonics. This orthogo
nality is the advantage of the magnetostriction coef
ficients described in reference I. However, it will turn 
out that in the particular case of YIG there appear to 
be no higher order terms of substantial magnitude in 
Eq. (10), and Eq. (11) is accurate to within 5%. Conse
quently, knowing the temperature dependences of the 
sublattice magnetizations and of the elastic constants 
(which have only a slight temperature dependence) we 
can compare the experimentally determined magneto
striction constants with those found by means of Eq. 
(11), in which we adjust the coefficients Bo^in) to 
obtain the best agreement. 

Yttrium iron garnet is a simple Neel ferrimagnet, to 
which the above theory should apply directly. I t con
tains two magnetic sublattices, with iron ions, respec
tively, on octahedral " a " sites and tetrahedral "d" 
sites. Consequently, there are just two adjustable coef
ficients (one for each sublattice) for each of the meas
ured magnetostriction coefficients. 

II. MAGNETOSTRICTION OF YIG, EXPERIMENTAL 

The temperature dependences of the saturation mag
netostriction constants, hi and &2, of YIG wrere measured 
over the temperature range from liquid nitrogen to 
450°K. The sample, a 0.250-in. sphere, grown by 
Nielson,6 was prepared with four flat surfaces cut along 
the [001], [001], [110], and [110] directions. 

Standard strain gauge techniques, introduced by 
Goldman,7 were used to measure the temperature 
dependence of hi over the entire temperature range and 
the temperature dependence of h\ above room tempera
ture. This method is schematically represented by 
Fig. 2(b). Two strain gauges were mounted side by side; 
one on the YIG crystal, Rs, and the other on a dummy 
sample, Rd. The gauges were, then, connected as part 
of a Wheatstone bridge with large adjustable resistances 
RJ and R/ in parallel with Rs and Rd. If the change in 
resistance of the active gauge due to the strain of the 
sample is compensated for by changing Rs', the mag
netostriction is given by 

\=RsARs'/(RsyF, (12) 

where ARs
f is the change in Rs' and F is the gauge factor. 

6 J. W. Nielson, Airtron Inc., Morris Plains, New Jersey. 
7 J. E. Goldman, Phys. Rev. 72, 529 (1947), 
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FIG. 2. Schematic diagrams of methods used to measure mag
netostriction. (a) Capacitative method; (b) compensated strain 
gauge method. 

Unfortunately, the method has the disadvantage that 
at low temperatures the change in magnetoresistance of 
the strain gauges with magnetic field orientation becomes 
large and not reproducible from one gauge to another. 
I t is not unreasonable to have a pseudostrain of 
~0.4X10~ 6 with these gauges at low temperatures. A 
more direct method, although somewhat more difficult 
because of bonding techniques, was used to measure 
the small values of h\ occurring below room tempera
ture. This method is depicted by Fig. 2(a). The sample 
was bonded between two plates; a metal plate serving 
as a support and an aluminum-plated silica disk serving 
as one plate of a parallel plate capacitor. The other 
capacitor plate was one face of a Be-Cu ring which was 
placed around the sample. The capacitor was, then, part 
of a free-running Hartley oscillator, whose frequency 
was monitored by an electronic counter. For small 
changes in length, the magnetostriction is simply pro
portional to the change in frequency of the oscillator. 
Taking into account the distributed capacity of the 
leads, Cd, the magnetostriction is given by 

81 2eAl+(Cd/Cp)Af 

I L O m f 
(13) 

where e is the permittivity of free space, A the area of 
the capacitor plates, Cp the value of the capacity, L 
the length of the sample, / the frequency of the oscil
lator, and Af the change in frequency with strain. At a 
frequency of 5 Mc/sec, a strain of 10~7 produces an easily 
detectable frequency shift of ~ 1 0 cps. This method has 
the advantages of eliminating the problem of magneto-
resistance of the strain gauges and variation of gauge 
factor with temperature, while still permitting the 
investigator to use relatively small samples. Room-
temperature values of the magnetostriction as a function 
of magnetic field are shown in Fig. 3, for the field 
parallel and perpendicular to the measurement direc
tion, and for the measurement direction along the [001] 
and [110]. Saturation occurs below 2 kG, after which a 
small volume magnetostriction is observed. The values 
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of hi and A2, to second degree in the magnetization 
direction cosines, are given by 

(bl{6\ / « ( 0 ) \ 

/si(e)\ /si(o\ 
(14) 

where [pl(6)/l~]i is the strain along the [001] direction 
when the magnetic field is rotated in the (110) plane. 
[pl(6)/Q2 represents the strain along the [110] direction 
when rotation is in the (001) plane. Here 6 is the angle 
between the measurement direction and the magnetic 
field. Although complete symmetric curves of sin20 
were obtained at room temperatures, only the values of 
8l(6)/l for 0 = 0 and 6=T/2 are depicted in Fig. 3. 

Room-temperature measurements of hi and hz were 
made on two samples, one grown by J. W. Nielson and 
the other by J. R. Cunningham of the Naval Ordnance 
Laboratory. The agreement was better than 2%. The 
saturation magnetostriction, As, of a polycrystal of YIG 
prepared by Cunningham was — 2.22X10 -6, which is 
also within 2 % of that calculated from the single-
crystal measurements. 

The temperature dependences of hi and hi are shown 
in Fig. 4. Both coefficients are small and negative. The 
quantity — h2 is larger than —hi and decreases mono-
tonically from about 8X10 - 6 at liquid nitrogen tem
perature to about 2X 10~6 at 450°K. The coefficient —hi 
peaks near room temperature with a value of 2.1 X 10~6. 
All higher degree coefficients have been found to be 
less than 5% of hi and hi at room temperature. 

<^ 

2 3 
H(KILOGAUSS) 

FIG. 3. Field dependence of the magnetostriction of yttrium 
iron garnet at room temperature. The curves show the changes 
in length along the [100] and [110] directions, for the magnetic 
field parallel (0 = 0) and perpendicular (0 = 7r/2) to the measure
ment directions, 

IOO 150 200 250 300 350 400 450 500 550 
TEMPERATURE (°K) 

FIG. 4. Magnetostriction of single-crystal yttrium iron garnet 
as a function of temperature. The calculated curves, shown by the 
solid lines, are based on sublattice magnetization data of Roberts 
(reference 9). Dashed lines result from extrapolation of his data. 

III. ANALYSIS AND DISCUSSION 

To compare our measurements of hi(T) and hi(T) 
to the theoretical equations (11) and (9), we require 
the temperature dependences of the sublattice magneti
zations and of the elastic constants. To our knowledge, 
the latter have been measured only at room tempera
ture,8 but it is to be expected that the elastic constants 
vary by at most a few percent between 450°K and abso
lute zero, and, hence, we neglect this variation and 
employ the room-temperature values. 

Roberts9 has determined the YIG sublattice magneti
zations10,11 from liquid-helium temperature up to 400 °K 
by means of nuclear magnetic resonance. To compare 
theory and experiment it remains only to substitute the 
sublattice magnetization data at each temperature into 
the functional dependence of the reduced hyperbolic 
Bessel function /5/2(£~1(wo)) illustrated in Fig. 1, and 
to adjust the two magnetoelastic coupling coefficients 
(one for each sublattice). Letting a refer to the 
octahedrally coordinated sublattice and d to the tetra-
hedrally surrounded ions, the coupling coefficients ar
rived at in this fashion are 

B0,2
7(a)^ - 9 .70X10 6 ergs/cm3, 

B0,2
y(d) = 8.95X106 ergs/cm3, 

£0l2
e(a) = 5.67XlO6 ergs/cm3, 

B0,2
e(d)= - 1 7 . 2 X 1 0 6 ergs/cm3. 

(15) 

This choice of coefficients yields the solid curves of 

8 A. E. Clark and R. E. Strakna, J. Appl. Phys. 32, 1172 (1961). 
9 C. Roberts, Compt. Rend. 251, 2684 (1960). 
10 The sublattice magnetizations of YIG have also been esti

mated by R. Pauthenet, Ann. Phys. (Paris) 3, 424 (1958) by 
means of his magnetization measurements and the Neel theory. 

11 del. Solomon, Compt. Rend. 251, 2675 (1960) reports room • 
temperature values by Mossbauer measurements, 
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Fig. 4. The dashed line extensions are based upon an 
extrapolation of the sublattice data of Roberts up to a 
Curie temperature of 560°K. I t will be seen that the 
classical approximation, Eq. (8), is satisfactory. This is 
to be expected in the case of YIG, in which both mag
netic sublattices are populated by Fe3+ 6S5/2 ions. Be
cause of the high multiplicity of the iron ion there is 
little distinction between quantum and classical aver
ages. This classical approximation is, of course, conven
ient but peripheral to the theory, and for a spin of lower 
multiplicity one could calculate the dynamical expecta
tion value of yp, the spherical tensor of degree I and 
order zero, with respect to the Brillouin internal field 
distribution function, or for any other appropriate 
model. 

The array of magnetoelastic coupling coefficients of 
Eq. (15) is noteworthy. These coefficients, which repre
sent the strain-induced changes in anisotropy energy of 
octahedral and tetrahedral ions are the fundamental 
quantities that one would like to compare to the results 
of an atomic calculation. Unfortunately, no such calcula
tion has yet been performed on a garnet. However, a 
qualitative comparison can be made to Tsuya's12 

analysis of the magnetostriction of ferrites. In both 
materials there are octahedrally and tetrahedrally co
ordinated magnetic ions. In both materials the magneto
striction is small when the magnetic ion is in an S state 
(as is Fe3+) thereby eliminating spin-orbit coupling 
in the unperturbed ground state. 

A possible mechanism might be the variation of 
dipole-dipole (or pseudo-dipole-dipole) energy with 
strain. Tsuya has shown this effect to be of the order of 
magnitude that we observe in YIG. However, our theory 
of the temperature dependence assumes a one-ion 
magnetoelastic perturbation, and the close agreement 
with experiment tends to strengthen the plausibility 
of this one-ion assumption. Furthermore, the one-ion 
model is in agreement with the conclusions of Folen and 
Rado13 and of Geschwind14 concerning the magnetic 
anisotropy energy of ferrites. Indeed, the one-ion nature 
of the magnetic anisotropy implies the same character
istic of the magnetostriction, since the magnetostriction 
arises from the variation of anisotropy energy with 
strain. 

That the strain potential, the variation with crystal 
strain of the electrostatic energy of an ion, plays an 
essential role in determining the atomic magnetoelastic 
coupling coefficients is suggested by the comparison of 
our phenomenological coefficients of Eq. (15) and the 
second degree strain potential constants, p (2), calculated 

12 N. Tsuya, Sci. Repts. Research Insts. Tohoku Univ. Ser. B 
8, 161 (1957). 

13 V. J. Folen and G. T. Rado, J. Appl. Phys. 29, 438 (1958). 
w S, Geschwind, Phys. Rev, 121, 363 (1961), 

by Tsuya for the spinel. Tsuya gives: 

Octahedral (b) sites Tetrahedral (a) sites 

27 
T 7 p10o (2) = WD, Pioo(2) = -WD, 

36 
r€ PIII™=—WD, p m (2) = 

8X6 

5(3)1/2 

8X16 

15 (3)1'2 

(16) 

-WD. 

Here W and D are crystal field splitting parameters. I t 
will be noted that Tsuya's array of constants displays 
the same sign variation as our magnetoelastic coef
ficients, though the actual magnitudes differ, even after 
correction of our coefficients for the relative populations 
(24 tetrahedral, 16 octahedral sites per unit cell). The 
strain potential is, of course, to be combined with some 
perturbative term quadratic in the spin operators, such 
as spin-orbit coupling to second order, or intra- or 
interactomic spin-spin interaction to first order, to 
produce the magnetoelastic spin Hamiltonian our theory 
presupposes. I t is mentioned incidentally that the rela
tionships between our magnetoelastic coefficients and 
those of Becker and Doring15 are 

2(47r)1 '2 

So tr(a)+S0 ia*(<0 = fti(0°K), 

£ o , 2 e ( f l O + 3 0 , 2 6 W - - f — ) &2(0°K). 

(17) 

I t is informative to compare our measurements to 
reported values of static magnetostriction and of 
dynamic acoustic wave rotation and resonance. The 
only published data of the static magnetostriction we 
find are the polycrystal measurements of Nakamura and 
Siguira.16 While our suitably averaged (X s=§ Aioo+fXin) 
single-crystal values agree within 2 % with our own 
polycrystal measurements on several samples of different 
origin, these values all differ markedly from those of 
Nakamura and Siguira. These authors report a room 
temperature XS = 0.37X10~6, which is far outside our 
experimental uncertainty of ± 5 % . 

On the other hand, the magnetoelastic coupling coef
ficients we derive from our magnetostriction measure
ments do agree reasonably well with the results of several 
dynamic measurements. To make this comparison at 
any temperature we average the effective coupling 
coefficients for the sublattices at that temperature. For 
while our theory allows of a separation into the indi
vidual sublattice magnetoelastic coupling coefficients 
other investigators report only macroscopic averages. 

In an acoustic wave rotation experiment at 500 

15 R. Becker and W. Doring, Ferromagnetismus (Julius Springer-
Verlag, Berlin, 1939) p. 136. 

16 A. Nakamura and Y. Siguira, J. Phys. Soc. Japan 15, 1704 
(I960), 
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Mc/sec, Matthews and LeCraw17 measure an average 
coupling coefficient at room temperature of 5e=—6.8 
X106 ergs/cm3, while Hall and Bailey17 find B*= -3 .7 
X106 ergs/cm3. Evaluating the room-temperature sub-
lattice magnetizations from the data of Roberts,9 we 
arrive at the basis of our data at 

5c=^o,2€(^)/5/2(£-KWa)) + ^0 )2
€W/5/2(£- 1 (^)) 

= -5.85X106 ergs/cm3. (18) 

It is only the Ve strains which are excited in the shear 
wave rotation experiments; this technique does not 
yield the average I \ magnetoelastic coefficient. 

However, we can compare our I \ data by considera
tion of the determination of the macroscopic coefficients 
recently made by Smith and Jones,18 who measure the 
shift in magnetic field for resonance with sample strain. 
A uniaxial stress is applied along the [110] direction, 
and the shift in field for resonance measured along the 
[100] and [110] axes. In this fashion the authors can 
determine both the average Ty and T« coefficients. They 
report that at room temperature By= —1.65 X106 

ergs/cm3, Be= — 6.37X106 ergs/cm3. The Ty coefficient 
of Smith and Jones is in very close agreement with our 
value of 

5 r = 5 o i 2 n ^ ) / 5 / 2 ( £ - 1 ( w a ) ) + 5 o , 2 n ^ ^ / 2 ( £ - 1 ( ^ ^ ) ) 

= - 1.6X 106 ergs/cm3. (19) 

Furthermore, it is seen that their 1% coefficient agrees 
rather well with our value, as given in Eq. (18). 

Yet another technique in the investigation of mag
netoelastic coupling has been employed by Turner19 

17 H. Matthews and R. C. LeCraw, Phys. Rev. Letters 8, 397 
(1962). 

18 A. B. Smith and R. V. Jones, T. Appl. Phys. Suppl. 34, 1283 
(1963). 

19 E. H. Turner, Advances in Quantum Electronics (Columbia 
University Press, New York, 1961), p. 427. 

and by Olson.20 In this experiment one observes the 
dependence of onset of instability with increasing rf 
power as a function of steady dc field, in parallel pump
ing ferromagnetic resonance. The onset of instability 
is suppressed by the coupling of spin waves to phonons. 
The values of Bt reported by Turner and by Olson are 
again within the range of those measured by other means. 
Olson, however, attempts to relate the measured mag
netoelastic coefiicient to the theory of the temperature 
dependence of a ferromagnetic model. Olson invokes 
both the lowest degree shear coefficient, B0y, and a 
fourth-degree coefficient Bo,ie which he evaluates as 
1.6 times as large as B0)Z

€ and of opposite sign. As we 
have mentioned, our data show that any higher degree 
coefficients, of either 1% or T7 type, are at most 5% of 
the 1=2 coefficients at room temperature [or, on the 
basis of the /( /+l) /2 power law, are less than 10% at 
0°K.] 

As a final comment, it is interesting that, although 
each sublattice has a monotonically decreasing magneti
zation (with increasing temperature) and that the hyper
bolic Bessel functions are monotonic functions of their 
argument, the crystal magnetostriction can display a 
maximum. This can come about if, as in the case of hi 
in YIG, the two sublattice coupling coefficients are of 
opposite sign (and comparable magnitude) and the coef
ficient of smaller magnitude is associated with the sub-
lattice whose reduced magnetization decreases more 
rapidly with increasing temperature. That is, for YIG, 
\Bo,2

y(d)\ < \Bot2
y(a)\ and Roberts data shows that 

md(T)/md(0)=ma decreases with increasing tempera
ture more rapidly than does ma. 

Indeed, if the coefficient of larger magnitude (but 
opposite sign) is associated with the faster decreasing 
magnetization, the material could display a magneto
striction compensation point even in the absence of a 
magnetization compensation point. 

20 F. O. Olson, Suppl. J. Appl. Phys. 34, 1281 (1963). 


