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Experimental measurements of the specific heat of EuS in the temperature region 1-4°K have been 
analyzed to determine the first- and second-neighbor exchange integrals. The results are: / i = (1.48db0.16) 
X10"6 eV; / 2 =( -0 .11±0 .28 )X10- 6 eV. 

IN two recent papers, McGuire et ah have discussed 
the ferromagnetic properties of some divalent 

europium compounds.1,2 In the second of these papers, 
they present some interesting speculations concerning 
the exchange integrals in these materials. In order to 
account for the probable antiferromagnetism of EuTe 
(whereas other compounds such as EuO, EuS, and 
EuSe are ferromagnetic), they suppose that the ex­
change integral connecting nearest-neighbor E u + + ions 
is positive, but that the second-neighbor exchange is 
negative. They propose that the magnitude of the 
first-neighbor interaction decreases on going from EuO 
through the series to EuTe, but that the magnitude of 
the second-neighbor interaction remains constant or 
increases slightly. In this note, we analyze the infor­
mation concerning the exchange interaction between 
second neighbors in EuS which can be obtained from 
the results of specific-heat measurements on this 
material.3 Our conclusion is that the second-neighbor 
exchange is, in magnitude, less than 25% of the first-
neighbor exchange, and may have the opposite sign. 

In reference 3, a measurement of the specific heat of 
EuS was reported, and analyzed theoretically with 
respect to the series obtained by Dyson4 for a Heisen-
berg ferromagnet. Dyson showed that at low tempera­
tures, the specific heat of spin waves may be expressed 
as: 

C/R=ar/2+pTV2+yT7/2+dT*+ • • •. (1) 

The first three terms of this series are obtained for a 
system of noninteracting spin waves; the term involving 
T4 is a correction for the interaction of spin waves with 
each other. This interaction term is relatively small 
compared to the others if the spin on each site is large 
(it is 7/2 in EuS) and may be neglected at reasonably 
low temperatures. We may, therefore, consider the 
spin-wave system to be one of noninteracting bosons in 
the temperature range from 1 to 4°K to which the 
measurements pertain. 

I t was found in that work that an excellent empirical 
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fit to the experimental specific-heat data could be 
obtained with a=2 .82Xl0~ 2 ; /3 = 6.65X10"3; and all 
higher coefficients zero. If one assumes, in conformity 
with the usual form of the Heisenberg theory, that the 
exchange interaction connects only nearest-neighbor 
magnetic ions, this quantity can be determined to have 
the value 1.23X10-5 eV. Then the formula given by 
Dyson for p yields /3=5.2XH)-3. 

This result is in sufficiently good agreement with the 
experimentally determined /3 to given one confidence 
that spin-wave theory does apply to EuS, but the 
discrepancy is definitely outside the experimental error 
and would be particularly noticeable in the higher 
portion of the temperature region considered. Subse­
quently, McGuire et at2 proposed that the second-
neighbor exchange integral might not be negligible, 
and we decided to attempt a more complete analysis 
of the specific-heat data to see if some limits could be 
placed on this quantity. I t should be noted that such 
an analysis has frequently been considered in connection 
with the specific heats of crystal lattices; however, in 
that case the complexity of lattice vibration spectra 
renders inversion of the specific-heat data impractical. 
The present analysis is made possible by the fact that 
the spin-wave spectrum in EuS is much simpler than 
the phonon spectrum. 

Regardless of the nature of the exchange interaction 
responsible for ferromagnetic alignment in the europium 
compounds, the spin-wave spectrum must have the 
full symmetry of the crystal. This means that the spin-
wave dispersion relation E(q) may be expanded in a 
Fourier series, 

E(q) = Eo-2SZnJne^R\ (2) 

The Rn are direct lattice vectors; the Jn are coefficients 
which are referred to as exchange integrals, although no 
commitment to the Heisenberg theory of ferromagnet-
ism is implied; and S is the spin of an ion. The Jn will 
depend only on the magnitude of the Rn. In the absence 
of an external magnetic field, we may set 

EQ=2S X/n Jn-

In order to calculate the specific heat of a system of 
noninteracting spin waves with E{q) given by Eq. (2), 
it is necessary to perform the integral: 
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in which 0 is the volume of a unit cell, K is BoltzmamVs 
constant, and T is the absolute temperature. 

The terms of the Dyson series for the specific heat, 
Eq. (1) which pertain to noninteracting spin waves 
may be found in the following way: The density of 
states, n(E) is introduced in order to convert Eq. (3) 
into an integral over energy, 

c=aKjQ\ 
PEIKT 

EIKT_ I)2 
-n(E)dE. (4) 

Then the density of states is expanded as a power series 
in the energy: 

n(E) = Y,mbmE™+u\ (5) 

This expression is inserted in (4), and the integration 
is performed with the upper limit made infinite. One 
obtains a set of relations connecting the effective 
exchange integrals with the coefficients a, /3, and y, of 
Eq. (1). As examples, we give the first two such relations 
for a face-centered cubic lattice with first- and second-
neighbor interactions only. 

K/co\2/s 

2 S \ 4 a / 
j1+2J2=—(3Cl[ — ) , (6) 
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FIG. 1. The specific heat of EuS is shown as a function of 
temperature. The smooth curve was computed from Eq. (3) 
with Ji=1.47XlO-6 eV; / 2 = - 0 . 1 0 X l O - 5 eV. The points 
represent the experimental data of reference 3. 

where Co and c\ are numerical constants given by 

co= 
15f(5/2)a 

32TT 8 / 2 

CI== 

4096TT3/2 

105f(7/2)' 
(7) 

Evidently, J\ and J2 could be determined if a and (3 
were known, and knowledge of 7 would likewise enable 
a determination of Jz} etc. 

There is, however, a serious difficulty in this pro­
cedure : If the temperature is high enough for the second 
and higher terms of (1) to be important, it is quite 
likely that corrections resulting from the finite volume 
of the Brillouin zone will also be significant. In this 
case, the upper limit of integration in (4) with n(E) 
given by (5) is finite, and terms of the form e~conat/T 

appear in C. Moreover, the series (5) converges only 
for energies less than that of the first critical point,5 

so that under these circumstances, use of the expansion 
of n(E) is not justified. 

These considerations are important in the analysis 
of experimental results concerning the specific heat of 
EuS even in the temperature range of liquid helium. 
We have, therefore, adopted the following procedure. 
First and second neighbors only are considered in 
Eq. (2). Trial values are assumed for Ji and J2 in this 
equation, and the integral (3) is performed numerically 
on an electronic computer for a number of temperatures, 
using the exact Brillouin zone. The resulting specific 
heat is then compared with experiment, and the work 
repeated until a best fit, in the sense of least squares is 
obtained. No approximations other than the neglect of 
the interactions of spin waves with each other, and the 
restriction to first and second neighbors are made. 

The following results for the exchange integrals were 
obtained: 

7i=(1.48db0.16)XlO-5eV, 

7 2 =(~0 .11±0 .28)XlO~ 5 eV. 

The calculated specific heat is shown as a function of 
temperature in Fig. 1, where it is compared with the 
experimental results. 

The second-neighbor exchange is seen to be consider­
ably smaller than the first-neighbor exchange, and 
quite possibly negative, in general agreement with the 
suggestion of McGuire et al.2 I t is, in fact, too small in 
magnitude to be determined with precision from the 
available experimental data. Additional experiments, 
including the temperature dependence of the spon­
taneous magnetization might be of considerable assist­
ance in determining these quantities more precisely. 
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