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A general method is presented for determining the wave functions of the conduction electrons in noble 
metals containing point defect complexes consisting of interstitials, vacancies, and impurities. The wave 
functions are determined by an integral equation derived from the Hartree-Fock equation. An approximation 
scheme is developed for solving the integral equation taking into account the multiple scattering arising 
from the interacting point defects and the scattering by the lattice distortion associated with the point 
defects. The conduction electron density is derived in general form. The derived wave functions and the 
electron density can be used for a calculation of the interaction energy of point defects and the electric field 
resulting from the conduction electron redistribution. 

I. INTRODUCTION 

IT is important in many studies of metals, in partic
ular, nuclear magnetic resonance,1 self-diffusion,2 

and annealing,3 to know the redistribution of the 
conduction electrons due to impurities, interstitials, 
vacancies, and the lattice distortion associated with 
these point defects. The electron redistribution arises 
from the scattering of the conduction electrons by the 
point defects and the lattice distortion. The point 
defects and the displaced lattice ions represent an 
ensemble of scatterers which give rise to multiple 
scattering. In particular, the multiple scattering due to 
close lying point defects must be taken into account in 
determining the redistribution of the conduction 
electrons. 

Knowing the redistribution of the conduction elec
trons, the electronic contribution to the interaction 
energy of point defects can be calculated. In the past 
the electronic interaction energy of a vacancy-impurity 
pair and two vacancies has been calculated.2'4-7 How
ever, in these previous calculations no attempt has been 
made to determine the conduction electron scattering 
by using a treatment as good as the Hartree-Fock 
approximation. All previous calculations used wave 
functions neglecting the effect of multiple scattering 
due to the interacting point defects and the scattering 
due to the displaced lattice ions. Therefore, the obtained 
results for the interaction energy of point defects, in 
particular, if these lie close together, cannot be regarded 
as being very accurate. 

I t is the aim of the present paper to develop, in 
general form, a method for determining the conduction 
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electron redistribution due to an ensemble of interacting 
point defects in noble metals including multiple scatter
ing by the point defects and the scattering by the 
lattice distortion associated with the point defects. The 
Hartree-Fock equation is used to determine the wave 
functions of the conduction electrons in the imperfect 
metal. Converting the Hartree-Fock equation into an 
integral equation and approximating the total perturb
ing potential by a superposition of perturbing potentials 
due to single scatterers a system of coupled integral equa
tions is derived for determining the scattered waves due 
to the various single scatterers. A suitable approximation 
procedure is proposed for solving this system of coupled 
integral equations. The wave functions are determined 
in detailed form in first order in this approximation 
scheme. Thereby, the scattering potentials associated 
with the single point defects are approximated by 
spherically symmetric self-consistent potentials and in 
the integrals of the coupled system of integral equations 
the scattered waves are replaced by the scattered waves 
arising from single electron scattering by the noninter-
acting point defects and displaced lattice ions. Multiple 
electron scattering due to the displaced lattice ions is 
neglected. The scattering potentials act on conduction 
electron states which are approximated by normalized 
plane waves. 

The conduction electron density resulting from these 
approximate wave functions is derived in general form 
suitable for numerical calculations. 

II. CONDUCTION ELECTRON WAVE FUNCTIONS 

The system of conduction electrons in the metal con
taining M point defects is described by the Hamiltonian 

HM=Y, 
h 2 } e2 

Vt+UXin) + i E - (2.1) 
2m ) 1,1(^3) Tij 

where i and j are summed over all conduction electrons 
and m is the electron mass. UM describes the interaction 
between the distorted lattice, including the M point 
defects, and the conduction electrons. The last term 
describes the Coulomb interaction among the electrons. 
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The wave functions of the conduction electrons are CM is the Coulomb potential due to the conduction 
electrons and is given by determined by the Hartree-Fock equation8 

where 
( # ^ ) H - V = € * ^ , 

(Hk
M)*-*= V2+UM+CM+Ak

M. 
2m 

(2.2) 

(2.3) 

CM(tl) = e*j:(<pk
M(x2) 

< • 

1 

I f l2 

<PkM(r2) 
> 

Ak"v,"(;. 
e2 / 

r1)=--E< 
2 *' \ 

<Pk>M(,ti) 

The exchange operator AkM is denned by 

1 

f l 2 
w) *>*"(rs) W"(rO. 

To obtain a local and eigenvalue-independent operator, AtM is replaced by 

AM{n) = - [/ ^V2P^(r1,r2)p^(r2,r1)A12 pM(tl,Tl) 

(2.4) 

(2.5) 

(2.6) 

with where the potentials C° and A0 are referred to the 
P ^ ( r ^ ) = E , ^ ( 0 ^ f e ) ( , , M = 1 , 2 ) . (2.7) Perfect crystal. Defining a Green's function G by 

{fl»-€Jb}G(r,r/,k)= - 5 ( r - r ' ) , (2.14) ^4M is obtained by averaging Ak
M over &.9 & and kf are 

summed over all conduction electrons. (HM)K~F, and the condition that G as a function of r has the same 
obtained from (#frM)H-F by replacing Ak

M by ,4M, behavior for r—>0 and r->co as the scattered wave 
is split into due to the perturbing potential AHM Eq. (2.2) is 

rewritten as ( # M ) H - F : = # 0 + A # M (2.8) 

H° is the Hartree-Fock operator for the perfect crystal <pk
M(r)= <pk°(r)+ I dY G{x,x',k)AHM{x')<pk

M{xf). (2.15) 
and J 

AHM=AU1
M+AU2

M+ACM+AAM (2.9) 
The electron states <pk

Q on which the perturbation 
represents the perturbing potential arising from the potential AHM acts are determined by 
M point defects and the displaced lattice ions. AUiM is 
given by (#>-<*) **0=0. (2.16) 

M The integral in Eq. (2.15) describes the scattering of 
(2.10) ^ conciuction electrons by the perturbing potential 

AHM. It is required that the scattered wave 
where (j>s(x—xs) describes the change in the lattice 
potential due to the introduction of the point defect s A<pk

M= I dY G(x xf \i)AHM(x,)(pk
M(xt) (2 17) 

at rs in the perfect lattice neglecting the lattice distor- J 
tion and electron redistribution associated with this 
point defect. The perturbing potential AU2

M arises has the behavior 

AJ7i"(r) = £ * . ( r - r . ) , 

from the lattice distortion associated with the M point 
defects and is given by 

and 

lim A(pk
M{x) finite 

r-+0 

lim A<pk
M(x)" 

(2.18) 

(2.19) 

To solve the integral equation (2.15) the perturbing 
where the potential V describes the interaction between 
the ion \x and the conduction electrons. rM° and rM

M 

denote the position of the ion \x in the perfect lattice and potential AHM is expanded as 
distorted lattice, respectively. The change in the 
Coulomb potential ACM and the change in the exchange AH ==AH\ " t ^ 2 7 ^ / + " 
potential AAM are defined by 

and 
ACM(x) = CM-C° 

AAM(x) = AM-A°, 

(2.12) 

(2.13) 
8 F. Seitz, Modern Theory of Solids (McGraw-Hill Book 

Company, Inc., New York, 1940). 
9 F. C Slater, Phys. Rev. 81, 385 (1951). 

+ (AHn
M-AHn^

M)+(AHM-AHn
M), (2.20) 

where the potential AHiM represents a close approxima
tion of AHM and the potentials AH2

M, • • •, AHn
M are 

constructed from the wave functions <pk
M obtained from 

Eq. (2.15) approximating AHM by AH^, AH2
M, etc. 

The corrections (AH2
M—AHiM), etc., to AHX

M involve 
only changes in the Coulomb and exchange potential 
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In order to get a rapid convergence of the expansion AC* and AAS are the changes in the Coulomb potential 
(2.20) AHX

M must closely approximate AHM. It is and exchange potential due to the point defect s. 
assumed that AHM is closely approximated by A(HMy is given by 

M A(#M)*=%)(r-rM
M)-%)(r-rM°) 

A f f ^ ( r ) = E A f f ' ( r - r , ) + E A ^ ( f - r ^ (2.21) + A r ( r - r / ) H A ( F ( r - r ^ (2.23) 

where AH8 is the self-consistent perturbing potential due A < f *» fnd , A ^ a r e t h e Ganges in the Coulomb 
to the single point defect s and A(ff*> is the self- Potential and exchange potential of the conduction 
consistent perturbing potential due to the displaced elecfons d u f t o ^pbc ing the lattice ion M by v ^ r , " 
lattice ion , . A(ff-)" arises from the displacement of 7 / i ^ 
the ion M which results from the M point defects. AH8 ^ 2 U j c o n v e r S e s lapidly, the term {AH AHn jean 
. . , be neglected for n>no{M), where no is a small positive 

integer depending on M. Then using Eqs. (2.20) and 
A^ s ( r - r s ) = ^ s ( r - r s )+AC s ( r - r s )+A^l s ( r - r s ) . (2.22) (2.21) the integral equation (2.15) can be rewritten as 

<PkM(r)= <pk°(r)+ fdY G(r,r',k) j E Af l '+E A(fl*)*+ • • • + (AHnQ
M-AHnQ^M)J^(r'). (2.24) 

Regarding AHiM as a good approximation for AHM the integral equation is approximately solved by substituting 
for <pk

M into the integral the wave function resulting from approximating AHM by AHiM. The wave function 
resulting from Eq. (2.24) by neglecting all corrections to the potentials AHS and A(HMy can be written in the form 

M 

<PkM(t)= «*»(r)+ Z A ( ^ ) « + E A(^)«, (2.25) 
o = 1 

with 

dV G(r,^k)A#*(r'){^°(r')+ E A ( ^ ) H " E A (**")*) (5=1,- • -,M), (2.26) 

and 

dV G(r ,^k)A(f f^{^°( r ' )+ E A ( ^ ) < + £ HfaMY} (M=1,2,- • •). (2.27) 

Equations (2.26) and (2.27) represent a system of coupled integral equations for the scattered waves A(<pkMY, • • •, 
A((pkM)M, A(\l/k

M)1, etc., arising from the various potentials AZP and A(HMy. The first term on the right in Eqs. 
(2.26) and (2.27) gives the contribution to the scattered wave A(<pk

M)s and A(\l/k
MY a s resulting from the Born 

approximation. The additional terms arise from the subsequent scattering of the scattered waves A(<pk
MY and 

Atyk
MY by AHS and A(HMy. 

The system of coupled integral equations for the scattered waves is solved approximating A((pk
MY and A(\l/k

MY by 

M 

A(p*")'=A**4- E A ( A ^ ) { + E A ( A W + - , (2.28) 

*(*»") '=A*/+ £ A ( A ^ ) ' + S A ( A ^ ) « + - . (2.29) 
Hipper) t' 

The scattered waves Ayrf and A^0" are defined by 

A^<= / W G(r,r',k)Ai?*(rO{^0(rO+A^(rO}, (2.30) 

and 

A ^ = fdVG(r,^k)A(fl^(rO)'{^°(rO+A^'(rO}. (2.31) 
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A (A (fk1') and A ( A ^ M ) t arise from the subsequent scatter- and 
ing of A<pk*' and A ^ by AH' and are determined by A(^k

MY== AW+ E MtyfY 

A ( A ^ ^ ^ V G ( r ^ , k ) A ^ ( r O A ^ ( r O (2.32) £ 

and *=1 

A(A\pk
fiy= / d V G( r , r ' , k )A# ' ( r ' )A^( r ' ) . (2.33) In order to get explicit expressions for the scattered 

J waves A(pk% A\f/k/i, etc., the Green's function G defined 
by Eq. (2.14) need be determined. 

A (A *>**')* and A (A**")* arise from the subsequent Approximating in H° the lattice potential by the 
scattering of A«p*«' and A ^ by A(HMY and are obtained potential resulting from an uniform distribution of the 
from Eqs. (2.32) and (2.33), respectively, by replacing i o n charges; e.g., neglecting in H° t he s t ruc tu re of t he 
AH* b y A(HMY. T h e higher t e rms in the expansions l a t t i c e potential, Eq. (2.14) is reduced to 
(2.28) and (2.29) arise from higher multiple scattering 
of the conduction electrons by the perturbing potentials. 2m 
The number of terms which have to be taken into (V2+*2)G(r,r ' ,k)==—-5(r-r ') , (2.36) 
account in these expansions depends mainly on the , , , , .' 

• ano. tnen solved DV 
separations among the point defects and decrease with J

 e%k\t~x'\ 
increasing separations. G(r,r ' k) = (2.37) 

With the help of the expansions (2.28) and (2.29) the ' ' lirfi2 | r - r' | ' 
system of coupled integral equations (2.26) and (2.27) 
can be reduced to the set of uncoupled equations w m ' c h Y i e l d s t n e required behavior of the sca t te red 

wave Aifk
M for r —> 0 and r —» oo. 

^£, I n the following, explicit expressions a re der ived for 
A(<pk ) s = A(pk

s+ ^ g A (A<pk')
s
 t h e s c a t t e r e ( i W aves A(pk

s, A (A <pk
f)5, and Axp^. Assuming 

spherical ly symmet r i c potent ia l s AHS and approx imat -
+ X ) A ( A ^ ) S + - • •, ( s = l , "',M)} (2.34) ing <pk° b y a normalized p lane wave, one obta ins , as 

** shown in detai l in Appendixes A and B, 

4TT oo /2H-1X 1 / 2 

V1'2 1=0 \ 47T / 

and 
47T 

A(A«^(R.)) ' = ^ k - r < Z E * W X F Z w * ( # k , r ^ k , r ^ (2.39) 
V112 l,h m 

V is t he vo lume of the crysta l . Yio, Yim, and Yhm a re spherical harmonics . #k,r,s and <Pk,TLa a re defined by 

# k , r „ = # k ^ - # r „ , *>k,ru = <£k~ <pru, ( 2 . 4 0 ) 

where the polar angles $k and &Tils and the az imutha l angles <pk and <pTta are defined b y 

k= (Mk.^k) a i l d r ' « = (rtB,&rt.,<Prtt). 

Correspondingly, the angles $k,R5, $Rs,rts, and (pn8,rt3 are given. Rs and rts are defined by 

2?.= | r - r „ | , r*.= [r,—r«|. (2.41) 

The functions IV and Hhim
s and the coefficients <xhim are given by Eqs. (A8) and (B6) and (B4). Assuming that 

AHS(R/) tends rapidly to zero with increasing R8', it follows from Eq. (A4) that for large Rs the scattered waves 
A(fk

s and A(A<pk
t)8 can be written in the form 

A«*'(R.) = —fi°(k) , (2.42) 
RS^*> -J/l/2 R 

and 
pik'Tt / Vt \pikRs 

A(A^(R S ) )« = — - M k , — ) , (2.43) 

10 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1955). 

file:///pikRs
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where the scattering amplitudes / i s and fts are given by 

with 

and 

with 

Swm oo /2H-1\ 1 / 2 

fi*(k)= E ( ) Fl0(^lR.,0)a)|'(t), (2.44) 
W i=o \ 4TT / 

«|-(ft)= f dRJ R«MkR.OM'(R/)Fi'(k,R9')9 (2.45) 
Jo 

< & • 

)Yhm($Ra,TU,<PRs,Tl,)&hS(k,rts), (2.46) 
fl2 l,h m 

Phs(k,rts)= f dR/*Rs
fjh(kRsOAH°(Rs')ahlJ(rts,k,Rs% (2.47) 

Jo 

Ff and aum are given by the Eqs. (A6) and (B3). 
As shown in detail in Appendix C, the scattered wave Ai/^ arising from the displaced lattice ion p is given by 

Air oo 
A ^ / ( R M ) = ^ " ' H F^(^R M f V p,^RpTM)F»«*(^k.Vw^.VM)^l»»» ' , (^ ,*A) , ( 2 « 4 8 ) 

V1^2 t,n g,m 

where the function Ktgnm* is given by Eq. (C8). RM and the displacement vM are defined by 

RM=r-rM°, vM=rM*-rM°. (2.49) 

Assuming that with increasing RJ A(#M(R/))M tends rapidly to zero A ^ can be written for large JRM in the form 

eik'T» / R„\e^R^ 

R,-OO F i / 2 \ ^ y ^ 

where the scattering amplitude is given by 

/ RM\ Swm 
/ 2

M ( ^ , k , ] = X) X) ^*(^k,VM )^k )VM )^nm(^RM fVM^R/x>V/x)7<(7nmM (^^)- ( 2 . 5 1 ) 
\ i ? M / ft2 <,nfir,m 

7«flnmM is defined by 

Y*»«M(I>M,*) = E ^-^(47r)1/2(2^+l)1/V(^; (g-m)mg) [ dR/ ^ / ^ p ^ - ^ f e ^ M O ^ ^ ^ ^ ^ A O i ^ ^ / ) . (2.52) 

<K##; (g~m)mg), Uptg-mf, and Ffnm
M are defined by Eqs. (E3), (C5), and (C9), respectively. 

The scattered waves A(Ai^)s, A(A(A<£>fcOOs> e t c , can in principle be determined using the same mathematical 
treatment as for the evaluation of A^ s , A(A<^)S, and A^M. 

III. THE DENSITY OF THE CONDUCTION ELECTRONS 

The density of the conduction electrons in the distorted metal containing M point defects is given by 

P*(r) = E* **"***", (3.1) 

where k is summed over all conduction electrons. Approximating <puM by 

M 

^ M = ^ ° + Z A ^ + E A ( A ^ ) » + E A f r (3.2) 
fi=l 8,t(8J*t) {I 

pM can be rewritten as 
pM(r) = p°+Aps-s-+Apm-s-. (3.3) 

p° is the conduction electron density in the perfect metal. Apss- arises from the single electron scattering by the 
point defects and the displaced lattice ions. Apms- arises from the multiple electron scattering by the point defects. 
Apss- is split into 

Aps-s- = Apis-3+Ap2ss-+Ap3
ss-+Ap4s-s-+Ap6

s-s', (3.4) 
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with 
M 

Api s-= E E {^°*A^*+c.c.+A^*A^}, (3.5) 
5=1 k 

AP !r•= E E { ^ A ^ ' + c . c . + A ^ A ^ * } , (3.6) 
/i A; 

AP3
s-s-= E l A P i % ( , (3.7) 

AP4
s-s-= E E A ^ ' A f c (3.8) 

ft,p(n^v) k 

and 
AP5

8-s-= E E {A^**A^+c.c.}. (3.9) 
s,/x k 

Api8-S- represents the sum of the density changes Aps due to the point defects. Ap2
ss* represents the sum of the 

density changes Ap̂  due to the displaced lattice ions fi. Ap3
s-% Ap4

s,% and Ap3
ss- arise from the interference of the 

different scattered waves. Apms- is split into 

Apm.s.==Apim.s._|_Ap2m.s._|_Ap3m.S. + Ap4m.s. j (3 JQ) 

with 
A P l —= E E{^°*A(A^0 8 +cc.} , (3.11) 

Ap2
m--= E E {A^'*A(A^')8+c.c.}, (3.12) 

8ts',t (t^s) k 

Ap3
m-8-= E E {A^"*A(A%08+cc.}, (3.13) 

and 
Ap4m.s.= £ EA(A^05*A(A^^)5 ' . (3.14) 

The various terms into which pM is split are now evaluated by replacing the summation over k by an integration. 
Using Eqs. (2.38), (2.39), (2.48), and (E8) the following results are obtained: 

4 M oo 2/+1 rkF 

AP l
s - s— E E / dk k^jtikRsWikM+c.c.+^ik.RsWik^)}, (3.15) 

7r «=i z=o 4T JO 

4 [ rkF 

Ap2
s-s-=-E E (-iy<r(nlq;m(-g)(m-g))\inYq(m-.g)(d^,v„<PR>vl.) dk^jnikR^Ki^^iv^R^) 

IT fi l,g,n,m,q [ 7 0 
~kF -J 

+c.c.+ Yq(m^g)(^R(ltYli,<pRli,vll)
yE / dk k2Kigvg^{v{l,k,Rli)Knmi'9'iX{vll,kyRlx)\, (3.16) 

I'.9' JO J 

/ ^ a + l V ' 2 

ljl+l'+at 1 
8,t(s7*t) 1,1',a,m \ 47T 

AP3ss-= E E 16(-l)^+<'+«( — j <r(/r«;m(-m)0)FJm*(t?R8,r„,^.'r(.) 

X F , ( _ m ) ( ^ , r f ^ R , r J dkkW*(k,Rs)QlfKk,Rt)ja(krts), (3.17) 
Jo 

Ap4
s-s-= E E 16iPa(nPn'; ay(a+y))Dam

n(<pv^v^v,,vv)Y^^rv,tYvy<Pry,tvv) 
H,v(n?£v) l,g,n,m,l',g',n',a,P,y 

pkF 

XFz</*(^R^v^^RM,vJFr^(^R„v„^R„v,) / dk &2ir^nmM*(fyA^)^Vn'(«+^ (3.18) 
Jo 

and 

Aps8 '8- E f E 1 6 ( - l ) V + ^ ( ^ ; 7«(7+«))F / 3 7*(^,v„^„v,)F f , (^R M ,v„^.v,) 

d* *Wi*(MO*«»»c»wM(«fc,M^J>(fri»)+c.c. . (3.19) 
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The terms arising from multiple scattering are given by 

/ 2 a + l \ 1 / 2 / /2a+l \ 1 / 2 

Apim.s.= £ ( £ l6(-l)n+mil+n+al J ahlma(nal;mOm)a(hnq;m(-m)0) 
s,t(s5*t) \l,m,h,n,a,q \ 4:TT / 

dk kWhlm°(rts,k,Rs)jn(kRs)ja(krts)+c.c.\ (3.20) 

Ap2m.s.= X ( Z \6{-\)Hl+n+«ahlmv(md\(m-mm)YaSi*($TU',r«,<Prn>,ru) 
s,t,sf (s^t) \l,m,h,n,a,fi 

/

kF \ 

dk kWMtn°{ruXRs)Vn°'\k,Rs,)ja{krts,)+c.c\ (3.21) 
Ap3

ms-= E ( E 16if+fohf(y+a)<T<finf-,ya(y+a))Dam
n(<pv,,,tt,,&v„,rl.fl) 

H,s,t(s9^t) \l,g,n,m,f,h,a,f},y 

XFjT*(t> ) ^ * ( ^ R M , V w ^ R M . V M ) ^ ( T + « ) ( ^ R . , r « . , ^ R - i r „ ) 

X / dkkWhf(y+a)°(rts,k,Rs)Klsnm»*(v„XR>)JiJ(kr¥)+c.c.\, (3.22) 

and finally 

s,t,s' ,t' {s7^t,sf7^t') \l,m,h,,l' ,m',h' ,ct,fi 

X •* /3(a—ra) r<sJ^Rs.r<s) ^h'm' ($R«',rjV> VRs' .r t 's ' ) 

x f rf**2ffw,,^(r«.A*.)^ (3.23) 

To determine the interaction energy of point defects and the electric field resulting from the conduction electron 
redistribution, it is necessary to rewrite in pm all expressions involving two coordinate systems in a form referring 
only to one coordinate system. This can be achieved with the help of the transformations (D2) ancl (E4). The 
obtained expressions are given in Appendix F. 

IV. THE CONDUCTION ELECTRON DENSITY AT LARGE DISTANCES FROM THE SCATTERERS 

The integrations over k in the formulas of the previous section need, in general, to be performed by numerical 
methods. However, at large distances from the scatterers, e.g., the point defects and the displaced lattice ions, all 
integrals over k can be evaluated analytically as follows. It follows from Eqs. (2.42), (2.43), and (2.50) that the 
wave function <pk

M which is given by Eq. (3.2) can be written at large distances from the scatters in the form 

<PkM(R„) = — ( e * - * ' + f t — ) , (4.1) 

where the scattering amplitude fm is given by 

/ M = E E *-'*(41r)1 '2(2»+l)1/2Fn0(^,r„0)i„(^s<r)e*-^{/1 '+/2 '+ E e**"f»}. (4.2) 

Equation (4.1) yields the conduction electron density 

1 r ( exp[-**R,(cosi»k|R.-l)] l/Ml2l 
p"(R.) = p°+— / d'klf" + c . c . + ^ - M . (4.3) 

« r « 4w«Jk<kp I Ra RS J 

Now for large i?„ the first term in the integral contributes essentially only for cos#k,R„« 1, e.g., k/^«R^/i?ff. One 
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gets, therefore, 

B^»o 2ir2 2RSJo 

kF \ nkF 

dk HfM)k/^Rff/Rae™R'+c.c. — / dk k Im(fM)m^/Rff 

Using the well-known optical theorem, 

one obtains 

PM(K) = P«+ 

r 4x 

jdn\f«\*=j 

- f 
r2i?,2 Jo 

*R<r 

Im(/*)k,t_E,/J„ 

+ 4r 
• f d3k \fM\\ (4.4) 

Jtff J k<fcp 

dkk{fM)m^,iR„e™R°+c.c. 

(4.5) 

(4.6) 

Again, for large R<r, e2ikR* varies quite more rapidly than (fm)k/k=Ra/R,. Therefore, the integral can be readily-
evaluated. The result is 

1 
P^(R f f) = ffi {<JM(k = kF)h,k-*.,R*i***'+c.c.}, (4.7) 

with 
32TT2W 

* 2 * n,q,qr 

, • /2H-1\U S 

Td7nmS(»s,^J')I r(9*(^R„v„¥'R,,V8) 

/2/+l\1 '2 

( — - ) m'( 
1=0 \ 47T / t,g,n,m 

XFnm(#R,.v.,¥>R,.V.)+ E E ^(4x) 1 / 2 (2 /»+l) 1 / 2 a W m er( /^ ' ; ( -OT)0(-w)) 

<(^«) l,h,m,p,p' 

XPh$(kFSts)jp(krfts)Yp,m*(dR,trt8,<PKfftrts)Yh^ (4.8) 
For R^Tscr this expression can be simplified by putting RS=R<T. 

V. CONCLUDING REMARKS 

The scattering of the conduction electrons due to 
point defect complexes in noble metals has been 
treated in general form by using the Hartree-Fock 
approximation. The scattering potentials act on electron 
states approximated by plane waves. The electron 
scattering due to the lattice distortion associated with 
the point defects is taken into account in determining 
the wave functions of the conduction electrons. The 
multiple electron scattering due to the point defects is 
determined in first order. However, using the same 
mathematical treatment multiple electron scattering 
can be determined in higher order. To what extent 
multiple scattering need be taken into account in 
determining the electron wave functions depends on 
the strength of the scattering potentials and on the 
separations between the interacting scatterers. If the 
scattering potentials overlap or lie very close together, 
multiple scattering will play an important role. Also, 
for example, multiple scattering has to be taken into 
account in determining the conduction electron redis
tribution resulting from a split interstitial when re
garded as an extended defect consisting of a vacancy 
and two interstitials lying symmetrically with respect 
to the vacancy. 

In the past it was thought that only the lattice 
distortion associated with interstitials must be taken 
into account in determining the electron redistribution 
due to point defects. However, there exists now some 
experimental evidence13 that the relaxation of the lattice 
around vacancies is much stronger than expected 
and, therefore, will have some effect on the electron 
redistribution. 

The perturbing potentials due to the point defects 
have been assumed to be spherically symmetric. This 
is no main limitation of the outlined method. I t has 
been shown in the case of scattering due to the lattice 
distortion how the scattering by arbitrarily shaped 
potentials can be treated. 

The essential limitation of the expressions derived in 
this paper arises from the neglection of correlation 
among the conduction electrons and from the neglection 
of the lattice potential in H0, e.g., from using plane 

11 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Parts I 
and II. 

12 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957). 

13 Suggested by Professor D. Lazarus by means of recent 
experimental results obtained by his collaborators at the Univer
sity of Illinois. 
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waves instead of Bloch waves for the unperturbed The wave functions and electron density which have 
electron wave functions. been derived in this paper will be used in a continuing 

I t is possible to include in cpM or pm, respectively, the paper to calculate the interaction energy of point 
effect of electron correlation by using many body defects. 
techniques. Also, it seems that the proposed treatment ACKNOWLEDGMENTS 
of the electron scattering can be extended to Bloch I t i s a p i e a s u r e to thank Professor J. S. Koehler, 
electrons. The scattering of plane waves can be regarded professor F. Seitz, Professor L. Tewordt, and Professor 
as a good approximation if the scattering potentials A. Kratzer for their support. The author is very much 
cover essentially lattice regions where the Bloch waves indebted to K. Kliewer for many helpful discussions and 
can be fairly well approximated by plane waves. a critical reading of the manuscript. 

APPENDIX A: DERIVATION OF Acpk
s 

The scattered wave A<pk
s arising from the single scattering of the conduction electrons by the potential AHS 

is given by 

A*»«(R.) = fd'R/ G(R.,R.',k)Aff'(R.')¥>*'(R.O (Al) 

with 
<Pks=<pk°+A<pk\ (A2) 

Equation (Al) is derived in the same way as Eq. (2.17). The Green's function G is determined by Eq. (2.14). It 
is now assumed that AHS is spherically symmetric. To perform the angular integrations in Eq. (Al) G, as given by 
Eq. (2.37), and <?&* are expanded as 

oo /2n+\\l>2 

G(R.,R.',k) = E YnQ@R9tJla,fl)Gn(Ra,R.',k), (A3) 
n=0 \ 47T / 

with 
2imk f in(*«.)*n ( 1 )(*^.0, Rs<R/ 

Gn(R.,R;,k)= X (A4) 
ft2 \jn(kRs')hn^{kRs), RS>R/ 

and 
eik'Ts oc / 2H-H 1 / 2 

^ ( R S ) = 4 T T — E - n J F ro(^.R.,0)F,-(ft,«.). (A5) 
V112 i=o \ 4?r / 

The functions j n and hn
a) are the nth spherical Bessel function and the nth spherical Hankel function of the first 

kind, respectively. rs gives the lattice position of the point defect s. V is the volume of the crystal. The function 
Fis is determined by 

Ff(k,Rs) = jl(kRs)+ f dRs' R/'GiiRs^/^AH^R^Ffik^) (A6) 

which results from Eq. (A2) by using Eqs. (Al) and (A5) and expanding ^ ° , approximated by a normalized 
plane wave, into spherical harmonics. It follows from Eq. (Al) using the expansions (A3) and (A5) and Eq. (A6) 

, e*k.r. „ /2/+U1/2 
A^'(R.)=4ir E il[ FM(t^R.,6)Q,'(ft,*.) (A7) 

V112 i=o \ 4TT / 
with 

a,*(fe,20=MW-i*(MO- (A8) 
To determine Fi% the Coulomb potential 

P-(R/)-pP(R/) f Ps R/ 
AC»(Rs) = e2 d*Rs' 

J IR. Rs 

and the exchange potential 

(A9) 

eU f p'K«,K/ 2 / r pP(R.,R.') * / 1 
A^^(RS)= / d»2?.'—; — ^ /p« (R . ,R , ) - / d»R.'- ^/p»(R8 ,R s) (A10) 

2 [J |R8-R/| / J |R.-R.'| / I 
need be evaluated by using Eq. (A5). The density matrix p8(Rs,R/) is given by Eq. (27) replacing <pk

M by ^*s. 
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p'(Ra') is given by p8(R/,R/). Using 
1 00 

P 8 ( R * , R / ) = - £ ( 2 / + 1 ) # « ( C O S ^ > K # 0 P I ( * . , X / ) , (All) 
7T2 1-0 

with 

Pl(R8,R8') = dkWMkR9)MkRA+MkR^ (A12) 
./o 

and expanding | Rs—R/|~x in Legendre polynomials, one obtains 

AC*(RS) = — Z (2J+1) / dk k2 / dU/ 2? / 2 Yo( i ? s , £ / ) { i ^ / )M^ (A13) 
f 1=0 J o ^ 0 

and 
AA*(R8) =—- E (2/ /+l)c2(/T7; 000)1 f dR8'R8'

2yi,,(R8yR8')Pl*(R8,R8')^ 
T 1,1',I" \J / t=0 

- f dR/R^yVf(R8,R/)Pl^(RSfR/)Pl
fo(R8)R/) / Z (2t+l)Pt*(R.,R.)\. (A14) 

Jo / <«-o J 
The function YJ// is given by 

1 / R8\
l" 

yi»(Rs,Rs')=— ( — ) , * . < * / , 

1 /R.'\l" 

~RS\R8) ' 
Rs>Ra'. (A15) 

&/ is the Fermi wave number. The c(VV'l\ 000) are Clebsch-Gordan coefficients.12
 Pi°(R8,R8') is obtained from 

Eq. (A12) putting SV=0. 
Fi8 can now be determined self-consistently by expanding AC8 and Â 4* as 

AC8=ACi8+(AC2s-ACi8)+- • •, (A16) 
and 

A^ 5 =A^i 8 +(A^2 s -A^i a )+- - - . (A17) 

ACi8 and A 4̂i* are determined from Eqs. (A13) and (A14) by using a wave function approximating <pk8 closely. 
AC28 and AA2S are determined from Eqs. (A13) and (A14), using for <pk

8 the wave function resulting from approxi
mating AC8 and A 4̂S by ACi8 and AA18. By continuing this process the higher terms in Eqs. (A16) and (A17) 
are determined. 

APPENDIX B: DERIVATION OF A (A?**)8 

The scattered wave A(A^0* is defined by Eq. (2.32) as 

A(A«%0'= U'R.' G(R8,R8',k)AH8(R8')A<pkK (Bl) 

To perform the integration the scattered wave A ^ ' need be expressed in terms of R8. Using the addition 
theorem for spherical harmonics and the transformation formula (D2) A<pkl is expressed in the coordinate system 
( X . X ' ) ^ ) by 

A ^ = 4 T T E E ^ a w m ^ ^ ^ k . r ^ ^ k . r j F ^ ^ . r ^ ^ . r J a w m ' ^ , , ^ ^ ) , (B2) 
V112 l,h m 

with 
2A+l(A-f»)! rr»+R' /R2-rt

2-Rt
2\ /R.*+ru*-Rt\ 

aw'fr*., W = / WiWPiH )Ph
m[ )RtdRh (B3) 

2rt8R8(h+m)\Jltt8-Rt\ \ 2rt8Rt / \ 2rt8R8 / and 

CLh.lm~\ 
^(2A+l)(Z+ro)!(A-ro) 

/ {2l+\){l-m)\(h+m)\\li2 

«wm=( ) . (B4) 
\(2A+l)(Z+ro)!(A-ro)!/ 
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Using for the Green's function G the expansion (A.3), the angular integrations in Eq. (Bl) can be performed. 
The result is 

eik.Tt 

A(A<p*0* = 47T L il<XhlmYlm*(&ktXit,<pk,tjYhm(#K8,tu,<PRs,tu)Hhim
8fa^^ (BS) 

V112 hh,m 
with 

Hhlm*(rts,k,R8) = f dR,' Rs'
2 G*(U.,U/,ft)AH-(U.Oawml(r*.,*,*./). (B6) 

Jo 

APPENDIX C: DERIVATION OF A ^ 

The scattered wave A^tf arising from the perturbing potential A(HMY associated with the displaced lattice ion 
H is given by 

AMR,0 = J ^ G ( R ^ k ^ (Cl) 
with 

**"= rf+AM (C2) 

To perform in Eq. (Cl) the angular integration G, A(HMY, and ^ are expanded into spherical harmonics as 

G(RM,R/,k) = £ F „ ( ^ R ; I , V M ^ R M , V M ) F „ * ( ^ R / , V M ^ R / , V M ) ^ ( ^ ^ / ^ ) , (C3) 
t,g 

A(̂ (R/))"= £ Tnfowns.vJUrfW), (C4) 

with 

^ / ( ^ O ^ y ^ A C ^ ^ / ^ F ^ ^ R ^ . v . ^ R / . v , ) , (C5) 

and 

^"(i?/) = 4 ^ — - £ iWim(^,v^R,.y,)Ynm*^k^,^,v^FlnJ'(vli,k,R^)- (C6) 

Substituting these expressions into Eq. (Cl) and performing the angular integrations one obtains 

with 

AMR„) = 4,r—- Z F4fl(^R(l,vM^R/,,v,)F„m*(t?k,vM,^,v(,)ii:<l,„m''fe,^-R,), (C7) 
V ' 2 t,0,n,m 

Kign*f(ynk&) = 2: * W ; (g-fn)tng) f dRJ R,'2 GtiR^R^kW^^HR^Fin^iv^R;). (C8) 
*.*> ./o 

It follows from Eqs. (C2), (Cl), and (C6) that Fjnm
M is determined by 

Fmmfl(vfi,k,Rlt)=:jn(kRti)+ £ cr (^ ; (s-m)ms) f dR»'R»'2Gt(R»9R^k)Up^mf(R;)Flnm*^ (C9) 

To determine UP(8-mf the potential A(HMy, which is given by 

A ^ ^ ^ ^ ^ - r ^ - ' U ^ - O + A C ^ r - r ^ + A ^ ^ r - r / ) , (CIO) 
is evaluated as follows. Expanding ^(r—rM

M) in a Taylor series around rM° and assuming that ^(r—rM°) is spher
ically symmetric, one gets 

A(HMY= £ («")« COS^RM,V, +AO+A4". (Cll) 

Using 
c o s ^ . v ^ E / 1 ^(a)^o(^R„vM,0), (C12) 

with 

<Va) = [dQcosaxYpoixfi), (C13) 
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Eq. (Cll) can be rewritten as 

A(HMY= E E (v»yd^ F ^ R ^ V ^ + A ^ + A ^ . (C14) 
«=i e dRp" 

AO and AA* are now evaluated by using Eq. (C7). AC is derived in the same way as ACS in Appendix A. The 
result is 

( - i> f rkF r 
AO(R,) = 16e2 E a(nlq;m(-g)(m-g)) p F . ^ ^ v ^ R ^ ) / dk W / dR;R^jn(kR,f) 

l,0,n,m,q 2q-\~l [ Jo Jo 

XKiannf*(vnk,R/)yq(Rfl,R/)+c.c.+^ 

X E / dkP 'dR/RS*KWg.*(v»k,RrOKn«i^^ (CIS) 

Using 
4 

p " ( R M , R / ) = - E ^ i f f * ( ^ R M . V M , V R M , V M ) F n m ( ^ R / , V ^ ^ R / , V > ^ n m / i ( ^ / x , ^ 0 , ( C 1 6 ) 
7T t,g,n,m 

with 

P W ( J ? » * / ) = / dkkHjtikR^jtikR^S^Sn.t+i-iyi'Kn^/iv^R^jtikR,) 

+inKtgnm^(v,,k,R„)jn(kRlt')+ £ J ^ v ^ , * , ^ ) * * - ^ ' ' ^ * / ) } , (C17) 

and expanding [ p " ^ ) ^ ) ] - 1 in a Taylor series in terms of Ap"(R^)/p°(RM,R„), one obtains for A A" 

AA»(R„)=-e* £ £ VsnmS'n'm'Bp°Yq(g+m^m)(dR„,v„<p^,v,)[ dRJ R ^ R M 
l,g,n,m,l' ,g',n',m' fi,p,q JQ 

+ * ' • I - Plgnm {R^Ry! )pl'g'n' i 

X [ P ° ( ^ A ) ] - \ (C18) 

y,\Plgnmli*{R^Rl/)pl'g'n'm'iX{R^Rli
,)[ 1 1 ) — Plgnm0"'{R^R^pVg'n' TO'° (2?M ,2?/) 

I \ P°(^A) / 

where the coefficients r)gnmg'n>
m'Ppq are given by 

32 (—1)0'+™-™' 
ygnmg'n'm'0p9= <r(n'fin; m'(m—tn')m)ar(t'f}p; g'{m—m'){g'+m—m')) 

<JT 2/3+1 
X<r(#g; g(m'-<m-g'){g+mf-m-g')). (C19) 

From Eqs. (C.14), (C.15), and (C.18) it follows that 
^p / ( l^ ) = ( ^ , / ( ^ ) ) i + ( ^ ( i ^ ) ) 2 + ( ^ p / ( i ^ ) ) ^ (C20) 

with 

( ^ W W ) i = V * E (*•)"<*„<«> , (C21) 
a - l ^ M

a 

(-1)9 ( '/•**• r00 

(U^iRjy- 16e* E cr(n/#; («+*)(-*)?) i» rf* &2 / <«V R^jn{kR,f)Klgn^9f {v^R,f) 
l>a>n 2p+l { Jo Jo 

XyP(R„R/)+c.c.+ E / dkk* / ^ ^ „ . / ( » ^ 0 

. Xff.<*,)iV ' («, ,W>>'*(***/)}, (C22) 
and J 

(*7p/(J?,)),= - e * £ E %«»•'»'"'",*/ dR; R^y^R^R/)\pignr/'{RmRl/)pva'n'm'''{RmRl/) 
l,g,n,m,l' ,g',n' ,m' /3,«,t? y Q [ 

X ( * p A . * - « ' - * ' - m " " ( ^ F p / ( ^ , v , ^ R „ V M ) [ A P ^ ( R / x ) - + . • • ] ) 

— Plgnm°* (Rfx,RiJ./)pl'g'nf m'°(RfrR^dp,£q,g+m'-g'-m \ [ P H ^ M A ) ! " 1 * ( C 2 3 ) 
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The terms.(£/p/)i , (U p/)2, and (Up/)z result from Av, A O and AA*, respectively. 
To solve now Eq. (C9) self-consistently, (Up/)2 and (Up/)z are expanded as 

(tf,«")*= ( I W + U I V V - (ffp/V>+- • •, (C24) 
and 

( ^ p / ) 8 = ( ^ p / V + { ( ^ p / V - ( ^ p / ) 8 1 } + - - - . (C25) 

(UPJt)21 and (Up/)z
l are first approximations for (£/,,/)2 and {Up/)z. (Upq

fi)2
2, (Up/)z

2 are determined from Eqs. 
(C22) and (C23) by using Finm" which results from approximating (Up/)2 by (Up/)2

1 and (Up/)z by (Up/)z
l. 

The higher terms in Eqs. (C24) and (C25) are determined in the same way. 

APPENDIX D: THE TRANSFORMATION H(Rh^h<pt)=H'(Rs>^s><ps) 

Using (see Fig. 1) 

FIG. 1. Illustration to transformation (Dl). 

<Pt=<ps, Rt
2 = Rs

2+rts
2—2rtsRscos&s, cos#s= (Rt cos$t+rts)/Rs, cos#f= (Rs cos#s—r ts)/R t, (Dl) 

the transformation J?(Rtftt)<Pt) = H'(R8,&s,<Ps) is evaluated by expanding H and Hr in spherical harmonics. One gets 

^ i (^ i )P i w ( cos^ ) = Efc«««(r*.,*.)i>*m(cosd.) (D2) 

with the coefficient functions aWm given by 

2h+l Qi-m)\ /•"<+«• /Rs
2-rts

2-Rt
2\ /Rs

2+rts
2-Rt

2\ 
ahim(rts,R8) = r / Kl{Rt)RtPlA )pA )dRt. (D3) 

2rtsRs (h+m)\ Jlrta-Rsi \ 2rtsRt I \ 2rt8Rs I 

APPENDIX E: THE ANGULAR INTEGRATIONS IN AgM. 

To perform the angular integrations in ApM, the integral 

.r2?<^ri,r2)^
rZ2»i2(^ri.r3><^ri.J"3)-^Z3W3(^ri)r3, <^ri,r3) ( E l ) 

has to be evaluated. This is done by using the expansion12 

^ m ^ ^ F ^ (#,<?) = £ * (r(hhl; WiW2(mi+ra2))FZ(mi+m2)(#,<?), (E2) 
with 

/ ( 2 / i + l ) ( 2 / s + l ) \ ^ 
<r(lihl', mim2(mi+m2)) = ( ) c(hl2l; m1m2(mi+m2))c(hl2l'> 000), (E3) 

\ 4 T T ( 2 / + 1 ) / 

where the c's are Clebsch-Gordan coefficients, and the formula12 

Yim(#,<p)= L Dm>J(afifl)Ylm,Q',<p'), (E4) 

which describes the transformation of spherical harmonics under the rotation of the axis of the polar coordinate 
system, a is the azimuthal angle and P the polar angle of the new polar axis, to which &' refers with respect to the 
original polar axis. The Clebsch-Gordan coefficients are determined from12 

r (h+h-h)l 
c(hhh; m1m2mz) = dm3tmi+m2\ (2 / 3 +l ) (h+h—l2)l(h+l2—h)l(h+m1)l(l1—m1)l(l2+m2)l 

L G1+/2+/3+I ) ! 

-11/2 ( - l ) r 

X(h-m2)[(h+mz)\(h-mz)\ £ —C(fi+fc-/8-f)!(fe-wi-r)!(fc+f»2-r)! 

X(h-~h+m1+r)l(h-h-m2+r)Q~\ (E5) 
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where the integral index r assumes only those values for which the factorial arguments are not negative. The 
matrix Dm>m

l(afifi) is given by12 

Dm> J (afifl) = *-**"&« J 05), (E6) 
with 

(-l)KZco$(jP/2)Jl+™-™'-2KZ-sm(p/2)l™'-™+*K 

dm>J(0) = L(l+m)l(l-m)l{l+mOl(l-mOnmZ , (E7) 
K (i-m^K)\(l+m-K)\(K+m'--m)\Kl 

where the sum is over the values of the integer K for which the factorial arguments are greater or equal to zero. 
Now the integral / is easily evaluated. One gets 

J=<r(hhh; mm(M3+M2))D(m^mz)mi
h*(<pt2trv&t2jTzy0). (E8) 

In performing the angular integrations in ApM with the help of Eq. (E8), the relationship 

/ 4TT V 2 

ZWM,0)== Ylm*(j3,a) (E9) 
\2l+\J 

is used. 
APPENDIX F: FURTHER EVALUATION OF SOME TERMS IN AQM 

To determine the interaction energy of point defects and the electric field resulting from the electron redistribu
tion all terms in ApM need be expressed with respect to one coordinate system. In principle, this can be easily 
performed by using the transformation formulas (D2) and (E4). The following results are obtained: 

AP3
s-s-= E E ^H'«mAaF9(2«)*(#R.,r(.,¥>R.,r,.)/ dk WW* {k,Rs)ahi>•»'(*., W . / . ( * r . . ) , (Fl) 

8,t(s?£t) l,lf ,<x,m,h,q J o 

with 
/2a+l\^2 

AlVa
mh^\6{-l)l+mil+l,+aahVJ J a(0'a; m(-m)0)a(hlq; mm(2m)); (F2) 

Ap4s-S'= E E £ Bignmvgfn^y/h"f^Yq(g^f)(^,v^cpR,ttJ 
V-iViv^v) l,g,n,m,l',g',nf a,P,y,f,h,g",q 

rkF 

g' n' (a+y) 
Jo 

with 

X ^ ^ / / ( ^ , r , A , r W 0 ) ^ ; * ( ^ I r , A , r w O ) , (F4) 
and 

2h+l (h-g")\ rr*»+R» 2/M-l \n—g")\ rw* 
bKg"l>g'n'(a+y)V{Vv?vll,k,Ry) = ~ — / dRvRvKi> g>n> (a+y)

v (V v,h,Rv) 
2rvuRu (h+tr'Y.J\r,u-R»i 

X2V"( JiV"( ); (F5) 

Ap5S'8-= E ( £ Cltgn*P*h«'YqiM)(^tMVR9ttJ 
8,n \l,t,g,n,a,(i,y,g' ,h,q,ct' 

/

hF x 

Rs)Mkr»s)+c.c. , (F6) 
with 
Citgnaeyg,h«*'= 16( - l)»«iW<r(0ln; ya(y+a))ahtg^(hlq; g'a'(g'+af))Dg>g<(wl>.TM^.rM0) 

(
rkF 

£ Dimhn^
h'"Yq^R„u.,<pRs,It,) dk¥HMm'(ru,k,Rs) 

l,m,h,n,a,'(l,hf ,q JQ 

Xah>n{n^$)a'*(rtsfoRs)ja{krt8')+c.c. J, (F8) 
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with 

Dimhnaf,h'q= 16( - l)n+m-^l+n+aaihmah>n(m~^(nal; (f»-/3)/3f») 

Xvikh'q; m{m-fi)(2m-(i))Y«f>*(&u,,u,,<Pu.-,u.) 5 (F9) 

AP3
ms-= £ ( £ £i . . .W*' '*v '«I%<rw«'0 (*«..«,.,«>*.» J 

/i,8,<(85^0 \l,Q,n,m,f,h,a,(},y,g',h',g",q 

d* k2Hfh(v+a)
8(rt8,k,R8)bh>g^gnm**(v»,r»s&^ J, (F10) 

with 

X Z V ( - a ) ' ( ^ , w H M , r ^ , 0 ^ (F11) 

Ap4
m-s-= E ( E iP«mW'«'fc'^m"A"flFfl(m--1fl)(^R-irto,^Rt,rJ 

8,t,8r,t,(.S9±t,8'j£t',8f9^s) \l,m,h,lf ,m',hr,a,/3,m",h",q 

AF \ 
8'(rt>s>,rs>s,k,R8)j{}(krt>t)+c.c. J, (F12) 

with 

), (F13) 

and 

2h"+\ ( * " - « " ) ! /•'•"•-*. /R^+r^-R,^ 2A"+1 (h"-m")\ [**"+«' r n(R.*+r,..*-R.>\ 
dh"m"h'i'm'°'(r!,ls,rt>S',k!Rs)=- / Hh'i'm'''(rt'.>,k,R,')Ph'm"[ ) 

XPh»
m"[ )RS'dRs,. (F14) 

\ 2r,..R, J 


