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A general method is presented for determining the wave functions of the conduction electrons in noble
metals containing point defect complexes consisting of interstitials, vacancies, and impurities. The wave
functions are determined by an integral equation derived from the Hartree-Fock equation. An approximation
scheme is developed for solving the integral equation taking into account the multiple scattering arising
from the interacting point defects and the scattering by the lattice distortion associated with the point
defects. The conduction electron density is derived in general form. The derived wave functions and the
electron density can be used for a calculation of the interaction energy of point defects and the electric field

resulting from the conduction electron redistribution.

I. INTRODUCTION

T is important in many studies of metals, in partic-

ular, nuclear magnetic resonance,' self-diffusion,?
and annealing?® to know the redistribution of the
conduction electrons due to impurities, interstitials,
vacancies, and the lattice distortion associated with
these point defects. The electron redistribution arises
from the scattering of the conduction electrons by the
point defects and the lattice distortion. The point
defects and the displaced lattice ions represent an
ensemble of scatterers which give rise to multiple
scattering. In particular, the multiple scattering due to
close lying point defects must be taken into account in
determining the redistribution of the conduction
electrons.

Knowing the redistribution of the conduction elec-
trons, the electronic contribution to the interaction
energy of point defects can be calculated. In the past
the electronic interaction energy of a vacancy-impurity
pair and two vacancies has been calculated.24~7 How-
ever, in these previous calculations no attempt has been
made to determine the conduction electron scattering
by using a treatment as good as the Hartree-Fock
approximation. All previous calculations used wave
functions neglecting the effect of multiple scattering
due to the interacting point defects and the scattering
due to the displaced lattice ions. Therefore, the obtained
results for the interaction energy of point defects, in
particular, if these lie close together, cannot be regarded
as being very accurate.

It is the aim of the present paper to develop, in
general form, a method for determining the conduction
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electron redistribution due to an ensemble of interacting
point defects in noble metals including multiple scatter-
ing by the point defects and the scattering by the
lattice distortion associated with the point defects. The
Hartree-Fock equation is used to determine the wave
functions of the conduction electrons in the imperfect
metal. Converting the Hartree-Fock equation into an
integral equation and approximating the total perturb-
ing potential by a superposition of perturbing potentials
due tosinglescatterers a system of coupled integral equa-
tions is derived for determining the scattered waves due
to the various single scatterers. A suitable approximation
procedure is proposed for solving this system of coupled
integral equations. The wave functions are determined
in detailed form in first order in this approximation
scheme. Thereby, the scattering potentials associated
with the single point defects are approximated by
spherically symmetric self-consistent potentials and in
the integrals of the coupled system of integral equations
the scattered waves are replaced by the scattered waves
arising from single electron scattering by the noninter-
acting point defects and displaced lattice ions. Multiple
electron scattering due to the displaced lattice ions is
neglected. The scattering potentials act on conduction
electron states which are approximated by normalized
plane waves.

The conduction electron density resulting from these
approximate wave functions is derived in general form
suitable for numerical calculations.

II. CONDUCTION ELECTRON WAVE FUNCTIONS

The system of conduction electrons in the metal con-
taining M point defects is described by the Hamiltonian
82
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where 7 and 7 are summed over all conduction electrons
and m is the electron mass. (/¥ describes the interaction
between the distorted lattice, including the M point
defects, and the conduction electrons. The last term
describes the Coulomb interaction among the electrons.
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The wave functions of the conduction electrons are
determined by the Hartree-Fock equation®

(HiM)E-F oM = g oM,

(2.2)
where
52

(BT = =P UMHCHF AN, (23)
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C™ is the Coulomb potential due to the conduction
electrons and is given by

1
_— kM 9 . 2.4
e <r>> (2.4)

CHM(r;)=e¢ Z<¢kM(1‘2)
k
The exchange operator A is defined by

(2.5)

(1) Y ().
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To obtain a local and eigenvalue-independent operator, 4, is replaced by

2

| [ P )/ | [ #(om)

with
PM(1,,0) =2k o™ (6) e (1)) (v, u=1,2). (2.7)

AM is obtained by averaging 4:™ over k£.° k and k&’ are
summed over all conduction electrons. (HM)H-F
obtained from (H;)%~F by replacing A:” by A¥,
is split into

(HM)B—F = [0 AM, (2.8)

H® is the Hartree-Fock operator for the perfect crystal
and

AHM = AUMAAUMHACH+-AAY (2.9

represents the perturbing potential arising from the
M point defects and the displaced lattice ions. AUM is
given by

M
AUM(r)= 2 ¢s(r—1,),

8=1

(2.10)

where ¢,(r—r,) describes the change in the lattice
potential due to the introduction of the point defect s
at r, in the perfect lattice neglecting the lattice distor-
tion and electron redistribution associated with this
point defect. The perturbing potential AU.M arises
from the lattice distortion associated with the M point
defects and is given by

AUM(1) =2 {0(r—1,)—V(r—1")}, (2.11)

where the potential ‘U describes the interaction between
the ion u and the conduction electrons. r,® and r”
denote the position of the ion u in the perfect lattice and
distorted lattice, respectively. The change in the
Coulomb potential AC* and the change in the exchange
potential AAM are defined by

ACHM(r)=CM— (0 (2.12)

and
AAM(r)=AM— A0, (2.13)

8F. Seitz, Modern Theory of Solids' (McGraw-Hill Book
Company, Inc., New York, 1940).
9 F. C. Slater, Phys. Rey. 81, 385 (1951).

(2.6)

where the potentials C°® and A° are referred to the
perfect crystal. Defining a Green’s function G by

{H'— ¢}G(r,t' k)= —8(r—1), (2.14)

and the condition that G as a function of r has the same
behavior for r — 0 and » — « as the scattered wave
due to the perturbing potential AHM Eq. (2.2) is
rewritten as

(1) = () + / d Ge,x WAHM (') M (r'). (2.15)

The electron states ¢ on which the perturbation
potential AHM acts are determined by

(H"——ek) (pk0=0. (216)

The integral in Eq. (2.15) describes the scattering of
the conduction electrons by the perturbing potential
AHM, Tt is required that the scattered wave

A¢kM=/d37'G(t,l",k)AHM(r')gokM(r') (2.17)

has the behavior

lin% AgM(r) finite (2.18)
and
eikr
lim Agp (1) ~—. (2.19)
700

4

To solve the integral equation (2.15) the perturbing
potential AHM is expanded as

AHM=AH M+ (AHM— AH M)+ - - -
+ (AH M — AH M)+ (AHM— AH,M),  (2.20)

where the potential AH, represents a close approxima-
tion of AHM and the potentials AHM, ---, AH,M are
constructed from the wave functions ¢ obtained from
Eq. (2.15) approximating AH™ by AHM, AH™, etc.
The corrections (AHM—AH M), etc., to AHM involve
only changes in the Coulomb and exchange potential.
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In order to get a rapid convergence of the expansion AC*® and A4* are the changes in the Coulomb potential
(2.20) AH,™ must closely approximate AHY, It is and exchange potential due to the point defect s.
assumed that AH™ is closely approximated by A(HM)+ is given by

M AHM)E=0(r—1,1)—0(x—1,0)
AHM(r)= glAH*(r~rs)+Z AEM(x—10)), (2.21) +ACH (r—1 P+ AUM -1 (2.23)

where AH® is the self-consistent perturbing potential due MCM)}.‘ and A(AY)* are the chz.l.nges in the Coulor.nb
to the single point defect s and A(HM)* is the self- potential and excfhangfa potentlal'of'the conductloll;
consistent perturbing potential due to the displaced electl;)rons dl.le to d1splac1ng the 1z.tt.t1ce fon u by Vu=Tu
lattice ion u. A(HM)# arises from the displacement of — 1 from its regulalj lattice posttion. IfMthe exp;nsxon
the ion u which results from the M point defects. AH*® (2.20) converges rapidly, the term (AH —AH, ).c.an
is given by Pe neglected foF n>no(M), where ng is a small positive
integer depending on M. Then using Eqs. (2.20) and
AH (r—1)=¢,(r—1,)+AC (t—1,)+AA%(r—r1,). (2.22) (2.21) the integral equation (2.15) can be rewritten as

oM ()= @ () + / o G(r,r',k){ é AH+S AGHY)e - -+<AHMM—AH,,0_1M)}¢kM(r'). (2.24)

Regarding AH™ as a good approximation for AHM the integral equation is approximately solved by substituting
for ¢« into the integral the wave function resulting from approximating AH¥ by AH,M. The wave function
resulting from Eq. (2.24) by neglecting all corrections to the potentials AH® and A(H)* can be written in the form

M (1) = o (£)+ {; Aoy +5 A, (2.25)
with
M
A(piMye= / I Gl AT (N E)+ T M)+ T AWM (5=1,7+-1), (2.26)
and
M
N f & Gl WA o0+ 2 Ao+ AWIY (=12, (2.27)

Equations (2.26) and (2.27) represent a system of coupled integral equations for the scattered waves A(gi)?, - -,
A(e®)M, A@)Y, etc., arising from the various potentials AH® and A(H™)*. The first term on the right in Egs.
(2.26) and (2.27) gives the contribution to the scattered wave A(¢x™)® and A(Y,M)* as resulting from the Born
approximation. The additional terms arise from the subsequent scattering of the scattered waves A(¢x)! and
A™)” by AH® and A(HM)x,

The system of coupled integral equations for the scattered waves is solved approximating A(¢:™)t and A(¥xM)? by

M
A(o™)t=Agi'+ (Z )A(A¢k")‘+2 A(AYH)H-- -, (2.28)
b (1! #t u
and
AWM = A+ (Z A(AY) +2 A(Aget )+ -+ (2.29)
u(usbo) t

The scattered waves Agy? and Ay, are defined by

Agit= / a G(r, W) AH () { @8 (1) + Aot ()}, (2.30)

and

A= / &' G, k) AWM (1)) { o (r)+ 4 ()} (2.31)
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A(A i) and A(A¢s*) arise from the subsequent scatter-
ing of Agi* and Ayy* by AH® and are determined by

A(Agok")‘=/dsr’ G(r,t' K)AH! (r") At (') (2.32)
and
A(Awk“)‘=/d3r’ G(r,r ) AH! (r") At (r)).  (2.33)

A(Agt)? and A(Ayy*)° arise from the subsequent
scattering of Ayt and Ay by A(H)? and are obtained
from Egs. (2.32) and (2.33), respectively, by replacing
AH! by A(HM)°. The higher terms in the expansions
(2.28) and (2.29) arise from higher multiple scattering
of the conduction electrons by the perturbing potentials.
The number of terms which have to be taken into
account in these expansions depends mainly on the
separations among the point defects and decrease with
increasing separations.

With the help of the expansions (2.28) and (2.29) the
system of coupled integral equations (2.26) and (2.27)
can be reduced to the set of uncoupled equations

M
Al =Apr+ X A(Aeet)®
t(t£s)

+Z A(A‘pk“)s_l—'”; (S=1, ”';M)) (2*34)
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and

AWM= Mt Y A(Ag)

o (o7%p)
M
+ Z A(Aﬂokt)”_*_ Tty (ﬂ=172)' ) ')' (235)
t=1

In order to get explicit expressions for the scattered
waves Agy®, A, etc., the Green’s function G defined
by Eq. (2.14) need be determined.

Approximating in H° the lattice potential by the
potential resulting from an uniform distribution of the
ion charges; e.g., neglecting in H° the structure of the
lattice potential, Eq. (2.14) is reduced to

2m
(V2+k2)G(r,r/,k)=;2—6 (r—1), (2.36)
and then solved by
m ez‘k{r~r’[
G(t,t' k)= ——— , (2.37)
2rh? | r—1'|

which yields the required behavior of the scattered
wave A for  — 0 and r — o,

In the following, explicit expressions are derived for
the scattered waves A¢r®, A(Agrt)?, and AYy*. Assuming
spherically symmetric potentials AH*® and approximat-
ing ¢ by a normalized plane wave, one obtains, as
shown in detail in Appendixes A and B,

dr o 21N
A(pks(Rs)= ek Ts Z ’Ll< ) Yw(l?‘k,R',O)le(k,Rs), (238)
yue 1=0 47
and
dr .
A(A <Pkt(Rs))8= Vl/Ze’bk.” Z Z ’Z’lahlmx Ylm* (ﬁk,r“, ﬁpk.rg,)Yhm(ﬂR,,r“, (PRa,r,,)thms (rmk,Rx). (2.39)
Lh m
V is the volume of the crystal. Yo, ¥im, and ¥V are spherical harmonics. d,r,, and ¢, are defined by
01"’“:"91{_1}"“) Pk,13™ Pk Cryy (2.40)
where the polar angles ¢ and #,,, and the azimuthal angles ¢, and ¢, are defined by
k= (kﬂyk,ﬁpk) and Iys= (rts,ﬂr"yﬁor,s)-
Correspondingly, the angles Jx r,, ¥r,.r,,, and ¢z, r, are given. R, and 7, are defined by
Ri=|r—1,|, ru=Ir—r,|. (2.41)

The functions ©,* and Hj;,* and the coefficients ayi. are given bvaqs. (A8) and (B6) and (B4). Assuming that
AH*(R,’) tends rapidly to zero with increasing R/, it follows from Eq. (A4) that for large R, the scattered waves

At and A(Aex?)® can be written in the form

eik'fl eikRa
Aget(R) = o 110 (k) 2 , (2.42)
and
eik e Rs etkRs
AGolR)) = tsf k,— . 43
(Aet(R.) Ryt V1/2f< Rs> R, o

WL. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1955).
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where the scattering amplitudes f1* and f** are given by

8rm » f2+41\12
few=—r% ( ) Viu,O ) (2.44)
h? =0 \ 4m
with
wz"(k)=/ dR, R/?j,(kR,)AH*(R/)F*(k,R,"), (2.45)
and ’
R, 8rm »
f“(k’;{—)= —;— zZ;:L 2 anin Y im®™ (P e e 10) Vim O Ry or 109 PR 00) B0 (BT 25, (2.46)
with ) ,
But (kyres) = / dRR. 1 (kR)AH* (R, )animt (7 b, RS). (2.47)
0

Fy® and apint are given by the Egs. (A6) and (B3).
As shown in detail in Appendix C, the scattered wave Ay,* arising from the displaced lattice ion u is given by

47!' 0
Ax&kﬂ(R“): Vl/2eik e Z Z Ytg (0R#"vl" <PR;4,V;¢) Y"""* (0kvV#"Pk-V#)Ktﬂﬂm“(vmk)R#)y (248)
t,n g, m

where the function K;.* is given by Eq. (C8). R, and the displacement v, are defined by
R,=r—r0 v,=rM—rl (2.49)

Assuming that with increasing R,/ A(H™ (R,"))* tends rapidly to zero Ayy* can be written for large R, in the form

eik.r,‘ R‘t eikR“
A‘I’/c“(Ru) Riw — f2“<v“,k,;{—) 2 , (2.50)
# “ #
where the scattering amplitude is given by
R, 8mm
fzy('l}”,k,;): —_%1,2_ Z Z Ytg* ('(9k,Vu, ‘Pk,Vu) Ynm(l?Ru,V,‘, gon,‘,v,‘)wgnm“(v,‘,k). (251)
" t,ng,m

Yignnmt 1s defined by
Yiegnm* (k) =2, it (4m) 2 (2p+-1) V20 (plt; (g——m)mg)/ dR) R?U p(g—my* (0, Ru)F 1nm* (Ryv,Ry") 7 (RR,). (2.52)
lLp 0

a(plt; (g—m)mg), U pg—my*, and Fy,,* are defined by Egs. (E3), (C5), and (C9), respectively.
The scattered waves A(Ay#)®, A(A(Agrt)?)?, etc., can in principle be determined using the same mathematical
treatment as for the evaluation of Agg®, A(Agxt)®, and Ayt
III. THE DENSITY OF THE CONDUCTION ELECTRONS
The density of the conduction electrons in the distorted metal containing M point defects is given by
(1) =2k oM o, 3.1)

where % is summed over all conduction electrons. Approximating ¢ by

M
M=o+ 2 Agit+ 2 A(Ae!)*+2 Ayt (3.2)
s=1 8,t(85t) n
oM can be rewritten as
pM(r)=p0+Aps's'+Apm's‘. (33)

o0 is the conduction electron density in the perfect metal. Ap**- arises from the single electron scattering by the
point defects and the displaced lattice ions. Ap™*- arises from the multiple electron scattering by the point defects.
Ap®*- is split into

Aps.s.= Apls‘s'+AP2S's"l‘AP35'5'+AP4S'S'+AP5S'S', (3.4)
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with
M
Apyss-= Z {¢k0*A¢k3+C.C.+A¢ks*A<Pks}; (35)
s=1 k
Apzs.s-—: Z Z {(pko*A\Pk""I‘C.C."}‘Alpkﬂ*A‘pk“}) (36)
vk
Apgs‘s'= Z Z Ag&k"*A‘Pkt, (37)
8,t(s#t) &k
Ap4s-s‘= Z Z A¢k“*A¢kv, (3.8)
w(utv) k
and
Ap5s.s.= Z Z {A¢k8*A¢k”+C-C~}- (3.9)
s,k

Ap:*s represents the sum of the density changes Ap® due to the point defects. Aps*S- represents the sum of the
density changes Ap* due to the displaced lattice ions u. Aps®*:, Apgss:, and Aps>s- arise from the interference of the
different scattered waves. Ap™* is split into

Apm.s.=Aplm.s.+Ap2m.s.+Ap3m.s.+Ap4m.s.’ (310)
with
Bome= T T (e8ABed e, (.10
8,t(s*%t) k
Ap2m_s_= Z Z {A(pksl*A (A‘Pkt)s—*-c'(:’}, (3.12)
8,8",t(t%s) k
Apsms= Y T (AW A(At)s+c.c.), (3.13)
u,8,t(t#%s) k
and
Apgms:= > Z AAa)"A(Ae)" . (3.14)

8,t,8’ 8/ (t£s,t'%s’) &k

The various terms into which p™ is split are now evaluated by replacing the summation over k by an integration.
Using Eqgs. (2.38), (2.39), (2.48), and (E8) the following results are obtained:

4 M o 241 Fr
Boro==% ¥ —— | dkR{ji(kR)Q (k,R))+c.c.t R (-, R,)20 (B,R.)}, (3.15)

Ts=11=0 47 J,

4 kP
ApgsS=— Z . Z ('_ 1)””("193 m(—'g) (m_g)){inY(I(m—ﬂ) <0RM.VM¢R1:V#)] dk ij”(kR“)Klg"'m“* (v""k’R")
T » Lonm,
q ir 0
+e.ctYomg) @ ruVio PR V) 22 dk B2 K190 o™ (R, Ri) K o " (0,8, R, }’ (3.16)

.9 Jo

o 1/2
Aogi= YT 16<~1>li’+l'+a( ) o (U; m(=m)O)Y 1* B e o2

8,t(s#%t) I,/ ,a,m ™

kF
XYy m (ﬁRMmi”Rmca)/ dk kzﬂls*(k:RS)Ql’t(k;Rt)ja(krts)y (3-17)
0

Apfs= 3 s 1685 (nBn’ ; ay (@+7))Dam™ (0 Vus9vi V) Y oy™* B, Vs Cron, )
uy(psv) 1,9,n,m, .9’ ,n ,a,8,7

k7
X Ylo* (ﬂRu.Vm soR“,v“) Yl'a’ (19Rv,Vw ¢Rv.Vv)/ dk kZKlanm"* (vmk:Ru)Kl'o'n’ (a+'y)”<?’wk;Rv)jﬁ (k”m): (3- 18)
0

and

Ap55‘8‘= Z ( Z 16(—1)11’l+ﬂa’(ﬂln: Yo (7+a))yﬂ7*(0n‘a.vm ﬂol‘ua.vu) Yla (0Ru.Vu7¢Ru.Vu)

a0 \lt,g,n,a,B,7

kF
XY 1a* @R, Vi PR, V) / dk k29z’*(k,Rs)Km<a+~,>“(vmk,R»)je(kmsHC-C->- (3.19)
0
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The terms arising from multiple scattering are given by

D1\
Apyms = 3 < > 16(——1)”*""11“”“(—————) Qnimo (nal ; mOm)o (hng ; m(—m)0)

8,t(s7#%t) \l,m,h,n,a,q 47

kF
XY 0, r4,0) ] dk B2H h1m® (745,k,R;) 10 (ERS) j.,(krts)—l—c.c.), (3.20)
0

Apems= 3 ( > 16 (—1)mtmreay o (nal s (m—B)BMYY ag* Fri rier Priar ris)
8,t,8" (85%t)

lL,mh,n,af

kr
X Yn(m—ﬁ)*(ﬂksf,rt”ﬂﬁll,' nl'ts) yhm(ﬁRa:”vnga-Ttn)/‘ dk szhlms(rts?k)Rs)Q"s'* (k)RS')jﬂ<kr¢S')+C'c')1 (3'21)
0

Apgms= > < > 161:f+ﬂahf('y+a)0'(6nf; ya (’Y+a))Dam"(GDVu.r:sﬂ?Vu.rmO)

u,8,t(s#) \1l,g,n,m,f h,a,B,v

X Yﬁv* (0rm.rm €9rm,rt.) Ylo* (0thvu) ¢Ru,Vu) I/h(~/+ot) <0Rs.1'tu ¢Ra,rts)

kF
X/ dk B*Hus ovvar* 16,8, Re) Kignm (04,8, R,) 56 (R ) +C'C')’ (3.22)
0

and finally

Apg™-s-= 16 ( - 1) WPy et 1 m""(ﬂlll 5 (a - 'm)”w)Dam’ v (‘Prz's' iaVtirsrs rtsyo)

a,t.S’.t’(s#t,s'#t')<l,rn,h,l’.M’,h’,a,ﬂ

X yﬂ (a——-m)* (&It’lvﬂs?goft’h”:) * Yhm* (ﬂRa.Tts) (pr»rts) Yh'm' (0}13',1'!’8’: PRy -fl’s’)

kP
X/ dk szhlms* (fts,k,Rs)H}uzfmr",(n's',k,Rsi)]‘g(k?’yt)-{-C.C.). (323)
0

To determine the interaction energy of point defects and the electric field resulting from the conduction electron
redistribution, it is necessary to rewrite in p™ all expressions involving two coordinate systems in a form referring
only to one coordinate system. This can be achieved with the help of the transformations (D2) and (E4). The
obtained expressions are given in Appendix F.

IV. THE CONDUCTION ELECTRON DENSITY AT LARGE DISTANCES FROM THE SCATTERERS

The integrations over k in the formulas of the previous section need, in general, to be performed by numerical
methods. However, at large distances from the scatterers, e.g., the point defects and the displaced lattice ions, all
integrals over k can be evaluated analytically as follows. It follows from Egs. (2.42), (2.43), and (2.50) that the
wave function ¢, which is given by Eq. (3.2) can be written at large distances from the scatters in the form

1 ' ¢ Ra
‘PkM(Ra)R—_:m m(ezk'n"FfM ? ), 4.1)

where the scattering amplitude f™ is given by

fM=Z Z i—n(4.n.)ll2(2n+1)1/2Yno(ﬂkmr”o)jn(krw)eik-ra,{flx+f25_l_ Z )eik-rtafta}. (42)

t(t7#s
Equation (4.1) yields the conduction electron density

1 exp[ — kR, (cosdx,r,—1)] M2
PM(R,) = p— / d3k{ o ©x +c.c.+|f . (4.3)
Ro—w 4 k<kp Ra sz

Now for large R, the first term in the integral contributes essentially only for cosdy,r,~1, e.g., k/k=~R,/R,. One
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gets, therefore,

PR = p°+2

Using the well-known optical theorem,

4
/dﬂ !fM|2=; Im (f™)x/k=ros Rey

one obtains

PM(R) = p°+2
] T

0

kF
) / dk k(M) g/k=r. r,2*Fo+c.cC.
0

K. H. BENNEMANN

1 kF 1 kr
/ dk k(fM)ijkmro r,€**Fo4-C.Com— / dk k I (f)x/k=ro/Rq
7 02 0 72R62 0

(4.4)

1
+ / a3k | M)
473R 2 Jrk<ip

(4.5)

(4.6)

Again, for large R,, €¥fe varies quite more rapidly than (f”)wr=r,z,. Therefore, the integral can be readily

evaluated. The result is

1
M p— 0__
PR = P

with
(4 (k=kr))x/k=Ro/ Re= —

32xim

#2

{ (M (k= kr))x/e=ro o> * Fo-c.C.},

4.7)

PIEDM , 1 (2n+1)12 (2Q+ Y2 (%94' > OOO)jn (ki""w)jq (k5750)Y gr0(@ro, rmO)
8 n,q,q

w f2141\1/?
><| >:(———4 ) k) VoromsOF T Vionn (0k) Vi O 0m0v.)
t

=0 T

X Ynm(ﬁRa-Vn ¢ana)+ Z Z

1GaT, M

i?(4m)"? 2p+1)Panmo (pp’ 5 (—m)0(—m))

t(t%s) L,h,m,p,p’

Xﬂh. (kF’r”)J.I’ (kF'rls) Yp' m* (19 Ro, 44y ¢R1yfts) Yhm('yRs-”n QoR,,r[,) } . (4‘8)

For R, >, this expression can be simplified by putting R,=R,.

V. CONCLUDING REMARKS

The scattering of the conduction electrons due to
point defect complexes in noble metals has been
treated in general form by using the Hartree-Fock
approximation. The scattering potentials act on electron
states approximated by plane waves. The electron
scattering due to the lattice distortion associated with
the point defects is taken into account in determining
the wave functions of the conduction electrons. The
multiple electron scattering due to the point defects is
determined in first order. However, using the same
mathematical treatment multiple electron scattering
can be determined in higher order. To what extent
multiple scattering need be taken into account in
determining the electron wave functions depends on
the strength of the scattering potentials and on the
separations between the interacting scatterers. If the
scattering potentials overlap or lie very close together,
multiple scattering will play an important role. Also,
for example, multiple scattering has to be taken into
account in determining the conduction electron redis-
tribution resulting from a split interstitial when re-
garded as an extended defect consisting of a vacancy
and two interstitials lying symmetrically with respect
to the vacancy.

In the past it was thought that only the lattice
distortion associated with interstitials must be taken
into account in determining the electron redistribution
due to point defects. However, there exists now some
experimental evidence'® that the relaxation of the lattice
around vacancies is much stronger than expected
and, therefore, will have some effect on the electron
redistribution.

The perturbing potentials due to the point defects
have been assumed to be spherically symmetric. This
is no main limitation of the outlined method. It has
been shown in the case of scattering due to the lattice
distortion how the scattering by arbitrarily shaped
potentials can be treated.

The essential limitation of the expressions derived in
this paper arises from the neglection of correlation
among the conduction electrons and from the neglection
of the lattice potential in H° e.g., from using plane

1P, M. Morse and H. Feshbach, Methods of Theoretical Physics
(I\/fic%raw-Hill Book Company, Inc., New York, 1953), Parts I
and II.

2 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1957).

18 Suggested by Professor D. Lazarus by means of recent
experimental results obtained by his collaborators at the Univer-
sity of Illinois.
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waves instead of Bloch waves for the unperturbed
electron wave functions.

It is possible to include in ¢ or p™, respectively, the
effect of electron correlation by using many body
techniques. Also, it seems that the proposed treatment
of the electron scattering can be extended to Bloch
electrons. The scattering of plane waves can be regarded
as a good approximation if the scattering potentials
cover essentially lattice regions where the Bloch waves
can be fairly well approximated by plane waves.

NDUCTION ELECTRONS 1771
The wave functions and electron density which have
been derived in this paper will be used in a continuing
paper to calculate the interaction energy of point
defects.
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APPENDIX A: DERIVATION OF Ay

The scattered wave Ag;® arising from the single scattering of the conduction electrons by the potential AH®

is given by

Agit(R)= / @R, G(R, R, K)AH(R,) o (R,)

with

o' = od A,

(A1)

(A2)

Equation (A1) is derived in the same way as Eq. (2.17). The Green’s function G is determined by Eq. (2.14). It
is now assumed that AH® is spherically symmetric. To perform the angular integrations in Eq. (A1) G, as given by

Eq. (2.37), and ¢3® are expanded as

o f2n+1\12
G(RS’RS,’k)—: Z ( ) Y"O(0R:-Ra’)0)G‘ﬂ(R8)RSI>k)’ (A3)
n=0 41|'
with
2imk  (§,(ER)h,V (kR,’), R,<R,
Gn(Ry, R/ k)= ———X { (A4)
h? Jn(BR Y (RR,), R.>R/
and
ekt w2112
e’ (Ry)=4nx Zil( ) Y10k, re,O)F 12 (R,R;). (AS)
Viz i=o 4T

The functions j, and 4, are the nth spherical Bessel function and the nth spherical Hankel function of the first
kind, respectively. r, gives the lattice position of the point defect 5. V is the volume of the crystal. The function

Fy is determined by

Fy(k,Ry) = ji(ER)+ / dR, R,*Gy(R, R, F)AH*(R,)F (kR
0

(A6)

which results from Eq. (A2) by using Egs. (A1) and (AS) and expanding ¢, approximated by a normalized
plane wave, into spherical harmonics. It follows from Eq. (A1) using the expansions (A3) and (A5) and Eq. (A6)

o ek o 2141\ 12
A(pks (Rs) = 47[’ Z 1«1( > YZO (0k,Ra,0)le (k,Rs) (A7)
VY2 1= 4
with
Qi (k,R)=Fp (k,R))— ju(kRy). (A8)
To determine F;°, the Coulomb potential
- (RS)—p (RS
Y P LT w
| Rs“ Rs’l
and the exchange potential
e ‘PG(RS,RS,) | 2 [0°(R,R,) |2
AA:(R,)= -——{/dsRs’—————/ps(Rs,Rs)-—/d3Rs’w/p°(R3,Rs)} (A10)
2 1RS—R3,| IRS—RS/l

need be evaluated by using Eq. (A5). The density matrix p°(R,,R/) is given by Eq. (27) replacing ¢ by ¢’
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p°(RY) is given by p*(R/,R,). Using
1 »
p,(R81R8,)=_-2' Z (21+I)Pl(COS‘?Rnyka’)Pl(Rs;Rs,); (All)
me 1=0
with

kF
oi(R,R) = f d B (RR.) o (kR + 1 (BR )% (B,R)+u* (,R) ju(BR)+00 (BRI (B.R))),  (A12)
0
and expanding | R,—R,’|~! in Legendre polynomials, one obtains

462 P kP 0
AC*(R)=— 3" (214+1) dk k2/ dR, R,/%vo(Ro,R){71(RR, ) (kR )+c.c.4+Q* (B, R, )0 (k,R,)}, (A13)
w 1=0 0 0
and
2

A4 (R)=—— X (2l’+1)6“’(l’l"l;000){ / dR,'Ry*yv+ (Rs, RS )pr* (Re, R )pr (R, Ry') / 2 Qt+1)p:(R.,R,)
t=0

T Ly

- / dRy'Rs vy (Re,Rs")pi"™ (Ro, RS )pi* (R, R') / 2 (2t41)p0(Ro,R) } (A14)
0 t=0
The function vy is given by

1 R, "
71"(R3,Rs,)=—(_—> ) Rs<Ra',
RS\R/

1 /RN
=E<;) , R>R,. (A15)

ks is the Fermi wave number. The ¢(I'1”’l; 000) are Clebsch-Gordan coefficients.”? p(R,,R,") is obtained from
Eq. (A12) putting 2;°=0.
Fy® can now be determined self-consistently by expanding AC® and A4 as

AC*=ACy*+ (AC*—ACy*)+- - -, (A16)
and

AAds=AA+ (AAQ"—AAl")“}“ LI (A17)

ACy®* and AA.* are determined from Egs. (A13) and (A14) by using a wave function approximating ¢°® closely.
ACy* and A4 y? are determined from Eqgs. (A13) and (A14), using for ¢* the wave function resulting from approxi-
mating AC® and AA4°® by AC,* and AA4,% By continuing this process the higher terms in Eqs. (A16) and (A17)
are determined.

APPENDIX B: DERIVATION OF A (A¢:t)*
The scattered wave A(Agy!)® is defined by Eq. (2.32) as

A(Agit) = /d3R,’ G(R,R/ K)AH (R, )A gt (B1)

To perform the integration the scattered wave Ag;* need be expressed in terms of R,. Using the addition
theorem for spherical harmonics and the transformation formula (D2) Agy! is expressed in the coordinate system
(RslaﬁR,’y (pRs’) by

eik Tt
Ago],;‘=47l' V1/2 % z ilahlmylm* (0k.rm¢k,r¢,) Yhm(l’R..rm‘PR..r“)ahlmt(rts,k,Rs), (Bz)
with '
2h+1 (k""m) ! rtstEs Rsz_rts2—Rt2 R32+rts2'—Rt2
ahlm‘(rts,k;Rs) = Ql‘(k,Rt)le(_————_‘) m( )R‘th, (B3>
4 27 R, (h+m) ! |rta—Ra| 2r4R, 2r4:R,
an

_ N 12
=((Zl—i—l)(l m)!(h+m).> . @4

(2h+1) (b+m) | (h—m) !
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Using for the Green’s function G the expansion (A.3), the angular integrations in Eq. (B1) can be performed.
The result is

eik Tt
A(Agt)t= 4#% > anmYim® Prri Crorn) VamOR,,re O ris) Haim® 725,k Rs), (B5)
Lh,m
with
Hund (res,k,Rs) = [ dR, R,2 G4(Rs, R, ,R)AH* (R, )ahim! (7es,k,R,"). (B6)
0

APPENDIX C: DERIVATION OF A~

The scattered wave Ayy* arising from the perturbing potential A(HM)* associated with the displaced lattice ion
p is given by

2 (R)= [ R G RDAERAPIAR,), ()
with
Y= o0+ AYH. (C2)
To perform in Eq. (C1) the angular integration G, A(HM)#, and ¢;* are expanded into spherical harmonics as
G(R,R/ k)= % V@R, v, 0r,.v) Vio* @ry v, 0, v, )Ge(R, R B), (C3)
AEM (R =2 ¥V pa@ry v, R, V) U (R), (C4)
with " '
U (R)= [ d0 AP RAVT om0 00,3, (cs)
and .
Yt (R))=4r i 15‘,’” Y 1m(OR,, v, OR, V) V™ Ok, v, 05,7, ) From® 0k, Ry'). (Ce)

Substituting these expressions into Eq. (C1) and performing the angular integrations one obtains

etk Ty
Ay#(R)=4m Vuz 2 Yy (0R,..V,,; (PR‘.,V,.) Vam* (011)"“; ‘Pk.V“)Ktanm" (v,%,Ro), (C7)
t,g,n,m
with
Kegnw*(Vik,R) =2 ilo (plt; (g—m)mg)/ dR) R, Gi(Ru\, R/, B)U p(g—m* (R F 1w (v, R, R,). (C8)
Lp [}

It follows from Egs. (C2), (C1), and (C6) that Fi..* is determined by
Furnmt (vi,k,Ri) = ju(kR)+ 22 o(plt; (s_m)ms)/ dR) R,* Gu(Ru R B)U pio—m)* (R )F1am (0, k,RS).  (C9)
t.s,p 0

To determine U (s—my* the potential A(H)# which is given by
AHY=V(—1,M)—0V(r—r)+AC*(r—r,0)+AA*(r—1.0), (C10)

is evaluated as follows. Expanding U(r—r,) in a Taylor series around r,? and assuming that U(r—r,9) is spher-
ically symmetric, one gets

® d*V(R,)
AENp= T (0 costO, v, ——+ACHA4x (c11)
a=1 a
Using g
COS"‘l?R”,V“= Zp dp(“) Ygo(l)nn,vp,()), (C].Z)
with

dg(® = / dQ cos*xVgo(,0), 19



1774 K. H. BENNEMANN

Eq. (C11) can be rewritten as
o d=
A(Mp= 3 5 (09)edg

a=1 B8

R.)
Y500 R,v,,0)+ACHHAAR, (C14)

“a
AC* and AA* are now evaluated by using Eq. (C7). AC* is derived in the same way as AC*® in Appendix A. The
result is

ACH(R,)=16¢> 2.

lg,m,m,q

_.10

) . vl
s (o) (m—g))lm(m-.n(on,.,v,, orav,) / ik B / dR,/R,*j,(kR,)
0 0

X Kgnm" 0k, Ry VY o (R R ) .04 Y g (mg) (O Ry, Vi OR, VL)

kp 0
X 2 dk kg/ AR, R/*Kygvg** ('Umk,Rn,)Knml'a'“(vmkyRul)'Yq(RuyRMl)l" (C15)
0

l/ 'a/
Using
4
p“(R,,, Rﬂ,) =- Z YW* (0Runvw ¢Ru-vu) Yﬂm("yRu')Vm PRy’ ,V,;)Ptgnmu (RMR#,)) (C16)
™ t,(] n,m
with

kp
pronn(RuR) = f d G (kR,) ju(kR Yom, b (— 1)K i o, R ) (kR
0
+i"thnm“* (”u:k»Ru)jn (kRu') + Z Ky u’“* ('UmkaRn)Knmt’o’" (vﬂ;k)Rﬂ/) } ) (C17)

t, 9"

and expanding [0*(R,,R,) ]! in a Taylor series in terms of Ap*(R,)/0°(R,,R,), one obtains for A4*

lg,n,ml ,g" \n",m’ B,p,q

AA"(RM)= —é Z > Wanmg’n'ml@pqu(am’—a’-m) (ﬁRu.Vw 99me)/ dR,/ Ru/z'Yﬂ(RmRu')
) 0

Ap(R,)

X Planm"* (RmRul)Pl’o’n’M’“(R“’R"l)(l—————
! P (Ru;Ru)

+ o >—p10"m0*(Rn;Rﬂ’)Pl'g'n’m’O(RmRu,)

. . X["(Ry,R)T, (C18)
where the coefficients 7ynmg ™ #P¢ are given by
, 32 (—1)gtm—m!
Mo 9P~ B (=YY (85 ¢ () (g/+m— )

T 28+1
Xa(ipg; g(m'—m—g') (g+m'—m—g’)). (C19)
From Egs. (C.14), (C.15), and (C.18) it follows that
Uypd (Ru) = (qu”(Rn))l'i' (qu"(Ru))2+ Uy (Rn))3: (C20)
with S(R)
ot RDi=d0 5 ()01 dRFa" (C21)

(=1 e
2 +1"(an; (q+g)(-—g)q)[zn/ o kz/ ARy’ R,jn(kR,) K ign(a+0r* (vuk,R))
0 0

(U (Ry))?=16¢ lgn

kr 0 .
Xvp(Ry Ry )Fe.c+ 2 dk kz/ dR,/R,*K 151 ¢** (vu, %, Ry")
9" Jo 0

XKﬂ(q+a)l’a’“("”mkyRM’)'Yp(RmRﬂ'> }; (C22)
and

0

(qu”(Ru))Ii: —é? Z Z Wgnmu'"'m’§e0/ d‘Rﬂl R#’2'Yﬂ (RA;R#I) [planmu* (RmRn,)PI’n’n'fn’“ (RH)RII,)
0

lg,n,m,l’ g’ \n',m' B,ed

X(ap.eaq.a+m’—a’~m )/d qu (7}Ru Vs PRy, v,,)[Ap“(R“) +-- ])
n

P"(RuR

- Plynmo’k (R;A;Ru’)Pl’ g’'n w® (Ru;Rﬂl)ap.eaq. g+m'—g'—m } [po (RIHR/:)]—l- (C23)
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The terms (U pg*)1, (U pd*)e, and (Upe*)s result from Ay, AC* and AA*, respectively.
To solve now Eq. (C9) self-consistently, (U,e*)2 and (U,*); are expanded as
(Upd)e= (qu“)2l+ { (qu")22"' (qu")Zl}'*' T (C24)

(qu“)3= (qu”)31+{(qu“)32_ (qu")31}+ Tt (C25)

(Upg*)2* and (U pg#)st are first approximations for (Upe*)s and (Upg®)s. (Upe*)#?, (Upe*)s? are determined from Eqs.
(C22) and (C23) by using Fi.n* which results from approximating (U ,¢*)s by (Upe*)e! and (U,¢*)s by (Upg)st.
The higher terms in Eqgs. (C24) and (C25) are determined in the same way.

and

APPENDIX D: THE TRANSFORMATION H(R,O,¢.) =H' (R, s, ¢s)
Using (see Fig. 1)

Fi1c. 1. Illustration to transformation (D1).

0= @5, RE=R3r2—2r, R, cost,, costs= (R, cosdi+7:)/Rs, cosdy= (R, cosds—745)/ Ry, (D1)
the transformation H (R,8:,¢:) = H' (R.,¥s,¢s) is evaluated by expanding H and H’ in spherical harmonics. One gets

Ki(R0)Py™(cos8e) =21 @nim(7es,Rs) Po™(costd,) (D2)
with the coefficient functions auni. given by
2h+1 (h_m)! ristRs RSZ_rtSZ_RtZ Rs2+7’ts2—Rt2
Aim(res,Rs) = / Kz(Re)RzPl"‘< )th< )th. (D3)
274 R, (h—}—m)' | 7ts—Rs| 27y Ry 2r,R,
APPENDIX E: THE ANGULAR INTEGRATIONS IN ApgX.
To perform the angular integrations in Ap™, the integral
J‘———/dﬂ Yhml*(iyn,rz,ﬁon,rz) lemz(ﬂn.ra;‘Prl.ra) YlaMa(ﬂrlyfsyﬂprl-ra) (El)
has to be evaluated. This is done by using the expansion?
Yllml (07 ﬂo) Ylgm2 (0, ﬂo) = Zl U(lllzl; M1M2(M1+m2))Yl(ml+m2) (0; ﬁo)j (EZ)
with
(20+1) 2LA1)\ "2
o (lilal; mume(my+ms)) = (————-—) c(llal; mams (mi+-me))e (Lol ; 000), (E3)
4r (214+1)
where the ¢’s are Clebsch-Gordan coefficients, and the formula!?
Ylm("}: (P) = Z D ‘ml (a76:0) Ylm' (01) ¢I)7 (E4)

which describes the transformation of spherical harmonics under the rotation of the axis of the polar coordinate
system. o is the azimuthal angle and 3 the polar angle of the new polar axis, to which ¢’ refers with respect to the
original polar axis. The Clebsch-Gordan coefficients are determined from?

(ht-la—1y)!
¢ (Ladaly ; mymams) = ama,mm[ 215+ Dm (T 1) (st T B2) | Tyt ) | (B 1) (U ms) !
1/2 (_ l)r
><(lz—m;)'(l3+m3)'(lg-m3)':I Z | [(11+12—13—r)!(ll—m1—r)!(l2+m2—r)!
T 7.

X (lg—lz+ml+7)!(l3— ll—?’n2+1’) !:l_l, (ES)



1776 K. H. BENNEMANN

where the integral index » assumes only those values for which the factorial arguments are not negative. The
matrix D m(e,3,0) is given by

Dm' ml (ayﬁjo) = e——im’adm, ml (ﬁ); (E6)
wieh (— 1)X[cos (8/2) 2L —sin(8/2) ]~
—_— cos m—m'—2K —sin m/'—m+2K
,o 1 i l —_ | ’ | ! | 1/2
e O)= LM =M G =) P B T e ()

where the sum is over the values of the integer K for which the factorial arguments are greater or equal to zero.
Now the integral J is easily evaluated. One gets

J= U(l3l2ll; m3m2(m3+m2))D(mz+ma)MIll*(gofst)ﬂfst;O)- (ES)
In performing the angular integrations in Ap* with the help of Eq. (E8), the relationship

4 \1?
Dmo’(a,ﬂ,0)=<———) V1 (50) (E9)
2141

is used.
APPENDIX F: FURTHER EVALUATION OF SOME TERMS IN Ap¥

To determine the interaction energy of point defects and the electric field resulting from the electron redistribu-
tion all terms in Ap™ need be expressed with respect to one coordinate system. In principle, this can be easily
performed by using the transformation formulas (D2) and (E4). The following results are obtained:

kF
Apg®s-= Z Z Au'a"‘"qu(m)*(i’R..n., ¢R.,r¢s)/ dk ' (k;Rs)dhl’mz("ts:k:RS)ja(krt-?)’ (Fl)
0

8,t(s7%t) L,/ ,a,m,h,q

with
2041\ 12
Ara™re=16(—1)Hmit+ag,, ,,,(——4—7—) oWa; m(—m)0)o(hgq; mm(2m)); (F2)
AP'!s‘s': Z Z Z Blaﬂml’ﬂ’ n,aﬁ‘y/hv"qu(a,,_f) (0Ru.vm¢3u,rw)
pv () Lgn,m 9,0’ a,8,7.f,h9"" v
kP
X/ dk k2K1Mm“* ('I)”,k,R,‘)bha"l'a’n' (a+~/)"(1),,ry,,,k,R“)]'g (krvu): (F3)
0
with

Bignmv grw®740" 1=160#(— 1) o (B’ ; ey (a+v))o (hg; g (— 1) (8" — fethigr Dam™ (094, v,,8v,,v,,0)

d xDO"ﬂ' v (§0Vv.rrp)ﬂvr,rrﬂ70)Dfﬂl' (‘PV,,!;}I)"’VV,!‘IMO)) (F4)
an

bha"l'n’n’ (at+7)” (vV;rY#;k;RM) = dR”R'Kl’v' 7’ (at7) v(VV;k:R”)

2541 (h—g")! /wrﬂu
2rwRy (h+g")

rou—Ru|
(RA—1 =R\ (RI+r,2—R}?
X Py?" | ———— )Ps7" ——); (F5)
vapRv zrme
Aps® = z ( Z Cltanaﬁwlhqalyq(a'+a’) (011..:‘«.; ﬁoR-.l‘m)
s \Lit,g,n,0,8,7,0" kg,

X / N dk k20 (k,R )iy tonarn (Uusus,®,Rs) 75 (kfus)+c.c-), (Fo6)
with ’
Ciignag"? "1 =16 (— 1) b0 (Bln; ya(y+a))anyo (hlg; g'e’ (§'+e"))Dy o (i, 1PV, 10e0)
X Dot - (0Ve, 1000V, 100s0) Y o™ G ey, Vioy 1, vi) 5 (FT)

kF
Apzm's'= Dlmhnaﬂh,qua(ﬂna,",, §0R3,r1,)/ dk szhlms(rtsyk:Rs)
0

s.s’,t(a#t.a#s’)(l.m.h.n.a,ﬁ.h’.11

Xllh'n(m_ﬂ)a'* (fza,k,Rs)ja(krts')"'C-C-), (FS)



REDISTRIBUTION OF CONDUCTION ELECTRONS 1777
with
Dympn® 2=16(— 1) 7= mroqy, nap n(m—pyo (ned ; (m—B)Bm)
Xo(hh'q; m(m—pB) 2m—B))Yag* @ ruyrier Prusres) 5 (F9)
Apgme= 3 ( 2 Etgnmina® 9" Y gyrater) ORe,ree PRa1e0)
1,8, 0850 \L,g,n,mf o Boy, 0" W 077 10
kP
X[ @b Bl b R )bt Gutaeh R slBr) i) (FIO
with ’
Etgnmina®?' V0" 1=16 (— 1)+ Pasniysaranigo Bnf; ya(y+a))o(W'hy; g (v+a) (8" +v+@))Dan™ (994,10 Vi,re0,0)
XDy ) (@Y 1ue3Vi, 1000 Do 0 (e, v 06D 50,:06:0) Y oy * B e rigs Prawras) 5 (F11)

Ap4m.s.= aﬁm”h"qy

Fimhvmw g(m’'—m) (0R..rm ﬁonrta)

a.t.e’,t’(c#t,s’#t’,s'#s}(l,m,h,l'.m’,h',a.B,m”,h”.q
kP
X/ dk szhlms* (rtsyk,Ra)dh"m" i m/"’ (r,,s,,rs»,,k,R,,)jp (kfgl ¢)+C.C.), (FIZ)
0
with
F iy mo @™ W 0= 16 (— 1) i 0By o p ot o e 0 QU 5 (@—m)me)o (b kg ; m' m(m’'+m))
XDam'l’*(Gf’rm',rmor:'.'.rmO)Dm"m'h’(‘Prc'n',rmﬂrc'.'rmo)Yﬂ(a—m)*(ﬂrz'z,rm‘Pn';,m): (F13)
and
2hli+1 (hll__m/l) !

rerstRg
dh"m"h'l’m’al (rals’rtlsl’k’Rs)———- / thllmls'(rtlsl,k,Rsl)Phlm,l(
er'sRs (h“+m”)!

Rs2+rs’s2_ Rs’2>
278'3R.?'
Rsz_ 73’32 - Rs’2

zrs'sRs

|77 s—Rg|

X p,,,,m"( )Rs,dRs;. (F14)



