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This effect has been observed in bismuth by Mavroides 
et aL12 However, the theory given here is not applicable 
to semimetals in the present form. 

12 J. G. Mavroides, B. Lax, K. J. Button, and Y. Shapira, Phys. 
Rev. Letters 9, 451 (1962). 
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Expressions for spin wave energies in normal and inverse spinel have been obtained which are exact to 
all orders in the spin wave momentum. These dispersion curves have been compared with existing experi
mental data on magnetite and good agreement found if the principal exchange interaction is taken to be 
2.4X10 -3 eV. The surprisingly small range of validity of the usual k2 approximation is pointed out and 
possible effects of the deviation from k2 behavior on the magnetic part of the heat capacity are discussed. 
The small (like-like) exchange interactions have been included (also to all orders in the spin-wave momen
tum) with the most important result that agreement with the experimental dispersion curves is improved. 

INTRODUCTION 

MAGNETITE (Fe304) is the simplest of the so-called 
ferrites,1 compounds of the form X2+(F3+)204 

crystallizing in the spinel structure, (space-group 
Fd3tn-Oh7). This structure is basically cubic having in a 
unit cell sixteen octahedral (B) sites and eight tetrahe-
dral (A) sites. At normal temperatures magnetite has 
the inverse spinel structure in which the A sites are 
occupied by ferric ions and the remaining ferric and 
ferous ions are distributed over the B sites. As the 
temperature is lowered below 120°K many magnetic 
and thermal properties undergo a sudden change. There 
is also a sharp drop in the electrical conductivity. This 
transformation was ascribed by Vervey2 to an ordering 
of the ferric and ferrous ions on the B sites into alternate 
planes perpendicular to the C axis producing net ortho-
rhombic symmetry. This proposal has been confirmed 
by neutron diffraction measurements3 and recently by 
Mossbauer absorption measurements.4 A sketch of the 
unit cell below the transition temperature is shown in 
Fig. 1. 

There have been a number of calculations of the spin 
wave spectra in the normal and inverse spinel struc
ture.5-8 Most results indicate a quadratic acoustic 

1 J. Smith and H. P. J. Wijn, Ferrites (John Wiley & Sons, Inc., 
New York, 1959). 

2 E. J. W. Verney and E. L. Heilmann, J. Chem. Phys. 15, 174 
(1947). 

3 W. C. Hamilton, Phys. Rev. 110, 1050 (1958). 
4 R. Bauminger, S. G. Cohen, A. Marinn, and E. Segal, Phys. 

Rev. 122, 1447 (1961). 
* H. Kaplan, Phys. Rev. 86, 121 (1952). 
6 S. V. Vonsovski, Y. M. Seidov, Izv. Akad. Nauk. SSSR 18, 

319 (1954) (translation available through Columbia Technical 
translations). 

?T. A. Kaplan, Phys. Rev. 109, 782 (1958). 
8 L . Kowalewski, Acta. Phys. Polon. 20, 675 (1961). 

branch. A linear behavior was found by Vonsovskii and 
and Seidov, but this work has been criticized by Kaplan 
and Kowalewski. (The latter also points out an error in 
Kaplan's calculation.) Apparently the only calculation 
for the ordered inverse spinel structure has been made 
by Kouvel.9 

The ordered structure may be considered to consist of 
six interpenetrating face-centered cubic lattices, two 
consisting of A sites and four of B sites. Thus, the spin 
wave spectrum will have six branches. Kouvel assumed 
that the z axis was the single anisotropy direction and 
that at 0°K the A spins were down and the B spins up. 
Assuming only nearest-neighbor AA, BB, and AB ex
change integrals he set up the (sixth degree) secular 
equation for the frequencies and succeeded in finding the 

FIG. 1. One quarter of the unit cell for ordered inverse spinel. 
One cation site of each variety is labeled. The open circles repre
sent oxygen sites. 

9 J. S. Kouvel, Technical Report 210, Cruft Laboratory, 
Harvard, 1955 (unpublished). 
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infinite-wavelength (ferrimagnetic resonance) modes. 
By making a long-wavelength expansion, he obtained 
the quadratic behavior of the acoustic branch. 

To investigate a proposal of Unruh and Milford,10 

that deviation from the quadratic dispersion law may 
seriously affect the temperature dependence of the low-
temperature specific heat and magnetization, we have 
attempted to simplify KouvePs11 calculation enough to 
obtain a more detailed description of the acoustic 
branch of the spin wave spectrum. In the case of 
vanishing exchange interactions between ions on the 
same type sites exact (to all orders in k2) expressions for 
the spin wave energies for all directions of the wave 
vector have been found for wave vectors in the kx, ky 

plane for ordered inverse spinel and for more general 
wave vectors in normal spinel. These results have been 
used to estimate the accuracy of KouvePs k2 approxi
mation, to construct constant energy surfaces in k space 
and for comparison with the neutron inelastic scattering 
data of Watanabe and Brockhouse.12 

FORMULATION OF THE SPIN WAVE PROBLEM 

The basic approach to this problem was worked out 
several years ago by Kouvel,13 but since his work has 
not been published we shall outline it briefly. The spin 
Hamiltonian may be written 

+2JAA E S^-S/+2/M E S<*-Sy* 
<#> <*y> 

- H - L ^ S ^ - H - E ^ M S / . (1) 

According to Neel14 the quantities JAB, JAA, J BB (the 
negatives of the corresponding exchange integrals) are 
positive. We assume only nearest-neighbor exchange 
interactions and ignore anisotropy. The magnetic field 
H will be taken along the z axis. 

The equations of motion for the spin vectors belong

ing to the Ith A site and mth B site are 

X{-2JAB £ SiB-2JAA E Sf+gjuM) 
(2) 

ftSmB=Sm
BX{-~2JAB E $iA-2JBB E Sj*+gBiM). 

i i 

The spinel structure consists of six interpenetrating 
face centered cubic lattices: two consisting of A sites 
and four of B sites.15 The twelve spin sums (over nearest 
neighbors) which are, therefore, necessary in (2) may 
easily be evaluated from the coordinates listed in the 
Appendix. For generality, we assume that there are 
three types of spins: A spins which occupy the A sites 
and Bi and B2 spins each of which occupy half of the 
B sites. To fix ideas we shall consider the ordered 
inverse spinel, (the structure of magnetite below 120°K) 
in which layers of B sites normal to the z axis are 
occupied alternately by B\ and B2 spins. 

We express the spin vectors in rectangular coordinates 
as 

SB'=sx
B<ax+sy

B%+s,B<a z . 
(3) 

In developing the equations of motion we make the 
spin wave approximation of considering the z compo
nents to be invariant in space and time and keeping only 
linear terms in the transverse components. Finally, we 
look for normal modes of the form: 

o-+ (r,/) = Sx+iSy = <r exp (ik • r—uat). (4) 

This leads, in the usual way, to the secular equation 

lh 
ax 
ai 

a3 

h* 
bx 

« i 

Ux 
# 4 

« 5 

h* 
b* 

d2 

a* 
u2 
# 6 

h* 
h 

a$ 
« 5 

0 6 

u2 h* 
h 

bx 
h 
h 
b4 
Us 
c 

bx* 
&2* 

h* 
h* 
c* 
Uz 

= 0. (5) 

The off-diagonal quantities are sums over nearest-
neighbor spins and are given by 

#5 = 

0 i= — 4JTM cos[(fl/4) (*»—*„)], a 4 = — 4 J M cos[(a/4) (£„+*«) ! 

a2= 

#3 = 

6 2 = 

- 4 / M cos[(a/4) (*,+*,)], 
-4JBB cosZ(a/4)(ky—kz)~], <z6= 

-2/^(C311]+C131]+[113]), h= 

-2/^([311]+[131]+[113]), b,= 

— \JBB cos£(a/4:)(kx—kz)'], 

-4:JBB cos[(a/4) (**+*„)], 

- 2 / ^ ( [ 3 1 1 ] + [ 1 3 1 ] + [ I l 3 ) ] , 
- 2 / ^ ( [ 3 1 1 ] + [ 1 3 l ] + [ H 3 ] ) , 

c=-2/^A([222]+[222]+[222]+[222]), 

10 H. Unruh, Jr., and F. J. Milford, Phys. Rev. 123,1619 (1961). 
» J. S. Kouvel, Phys. Rev. 102, 1489 (1956). 
12 H. Watanabe and B. N. Brockhouse, Phys. Letters 1, 189 (1962). 
13 J. S. Kouvel, Tech. Report 210, Cruft Laboratory, Harvard, 1955 (unpublished), 
14 L. Neel, Ann. Phys. 3, 137 (1948). 
M E. W. Gorter, Philips Research 9, 295 (1954). 

(6) 
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where, for example, 
[miif\=Gxp\j(a/S)(mkx---nky+lke)2 (7) 

and a is the lattice parameter. Also, 

U1SB^Wl^{_^-\2JABSA+^JBB{SBl-\-2SB2)-gBllH']y 

U2SB2=W2=UlO>-WABSA+±JBB(SB2+2SB1)-gB»Hl, (8) 

-U3SA=-Wz==[fia>+12JAB(SB1+SB2)-SJAASA-gAtiHj. 

The approximations that have been made in obtaining 
(5) are 

(1) The linear spin wave approximation in which 
second-order terms in Sx and Sy are neglected in the 
equations of motion. 

(2) Only nearest-neighbor interactions are included. 
(3) The approximations inherent in the Hamil-

tonian (1). 

I t is perhaps worth noting that an alternative approach 
is to transform the Hamiltonian to harmonic oscillator 
form and identify the products of coefficients of squares 
of canonically conjugate variables as eigenfrequencies. 
This procedure produces results which are identical with 
the equation of motion approach wherever they can be 

A similar set of solutions has been found by Kaplan7for 
normal spinel. The energies are easily evaluated for 
interesting values of the spins and arbitrary momenta. 
The important thing, of course, is that no restriction to 
small momenta is involved. 

One of the most interesting structures to which (10) 
can be applied is magnetite which is an ordered inverse 

compared. Using the transformed Hamiltonian to 
obtain equations of motion may, however, introduce 
spurious factors of S/QS^S+l)] 1 ' 2 due to the replace
ment of Sop2 by 5 ( 5 + 1 ) unless great care is exercised. 
This problem is well known and much discussed16-18 in 
connection with the ground-state energy. 

SPECIAL CASE JAA = JBB=0 

I t is generally felt that in magnetic materials with 
the spinel structure JAA and JBB are much smaller than 
JAB. Since quantitative experimental information on 
the relative sizes of the exchange constants is extremely 
difficult to obtain it is common to approximate this 
situation by JAA = JBB = 0. In this case all of the a /s 
and c are zero and the secular equation reduces to19 

spinel below 119°K and an inverse spinel with a 
random distribution of equal numbers of ferrous and 
ferric ions between the two kinds of B sites above this 

16 R. S. Smith and M. J. Klein, Phys. Rev. 80, 111 (1950). 
17 P. W. Anderson, Phys. Rev. 83, 1260 (1951). 
18 R. Kubo, Phys. Rev. 87, 568 (1952). 
19 F. J. Milford and M. L. Glasser, Phys. Letters 2, 248 (1962). 

W W - 2 P f 1 W 3 [ 5 i J 2 5 A ( & 3 % + & 4 * ^ 
+ SB1SBll(b1*h-b±*biy+(b1*h-h*biy+ (&2^4-^^2 ) 2 +(&2%-^3^2) 2 ] }=0 . (9) 

This equation may be solved readily with no further approximation to give 

f B l1/2! 
-6JAB(SBI+SB2SA)+ 36JAB2(SBl+SB2-SA)2+UUAB2SA(SB1+SB2)+~+i(B2-4:C)^ flC0i = 

ftCOo — 

fiuz= 

flO)i — 

B I 1 / 2 

-6JAB(SBI+SBS-SA)- \ S6JAB2(SB1+SB2-SA)2+l^JAB2SA(SBl+SB2)+--+^B"-ACy^ 

B l1 '2! (10) 
-6JAB(SB1+SB2-SA)+\S6JAB2(SBI+SB2-SA)2+I^JAB2SA(SB1+SB2)+ § ( £ * - 4 0 1 / 8 ' 

B i 1 / 2 

-6JAB(SB1+SB2-SA)-\S6JAB2(SBI+SB2-SA)2+1UJAB2SA(SB1+SB2)+ i(B2-^C)^ 

where 

C=-5A2{5B2
2(63%4-64*63)2+5 i5 l

2(61*&2-&2*61)2 (11) 

SBlSBl(,b1*bi-bi*hY+ (bi*bt- h*hy+ (h*h- h*hY+ (6,**,-&,*&,)»]). 



1786 M . L . G L A S S E R A N D F . J . M I L F O R D 

FIG. 2. Dispersion 
curves for ordered 
inverse spinel with 
JAA = JBB = 0> Cir
cles are the Wata-
nabe and Brockhouse 
experimental data 
reduced assuming 
JAB = 2.4X10-3 eV. 
Broken curve is 
Kouvel's k2 approxi
mation. 

FIG. 4. Constant 
energy contours in 
kx, ky plane. Energies 
are labeled in units 
of 12JAB- Broken 
curve is for normal 
spine] and energy 
fua/12JAB = 2.2S and 
illustrates fourfold 
symmetry in that 
case. 

temperature. For the ordered configuration, (10) and 
(11) apply with SA^SBl=2.5, S# 2 =2. Using these 
values of the spins one obtains the dispersion curves 
shown in Fig. 2 for the spin wave momentum k in the 
z direction. The lowest mode for several other directions 
all of which are in the ky—ky plane are shown in Fig. 3. 

I t may be noted again12'19 that the dispersion curve in 
the z direction agrees quite well with the neutron scatter
ing work of Watanabe and Brockhouse as may be seen 
from the experimental points which are plotted assum
ing JAB — 2.4X 10~~3 eV. As Kaplan20-21 has shown and as 
is further discussed later in this work, including the 
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FIG. 3. Dispersion 
curves for three di
rections in the kx, ky 
plane. 

20 T. A. Kaplan, Lincoln Laboratory, Solid State Research 
Report, 1962 (unpublished). 

2 1B. N. Brockhouse and H. Watanabe, Atomic Energy of 
Canada Report AECL 1575, and IAEA Symposium on Inelastic 
Scattering of Neutrons (to be published). 

JBB interaction improves the agreement. Even without 
this refinement, however, the agreement is sufficiently 
good to encourage further study of the model. 

The dispersion curves for momenta perpendicular to 
the z direction also provide interesting information. 
Kouvel13 has shown that to order k2 the constant energy 
surfaces are ellipsoids with principal axes in the [001], 
[110] and [110] directions in k space but has not esti
mated the range of k for which the approximation is 
valid. The range of validity of the k2 approximation is 
surprisingly small and may be conveniently estimated 
by taking k in the x direction. In this case to order k2 

11 /AJB*S ,A(^I+<5 ,
JB2) 

fio)z = k2a2. 
16 SBl+S. 

(12) 
>B2~ 

This is a special case of Kouvel's more general k2 ap
proximation and is also easily obtained by approximat
ing (10) to order k2. If ka/2ir—0A the k2 approximation 
gives ficcz/12JAB== 0.127 while the exact value is 0.119, 
an error of 6%. The error increases rapidly with increas
ing k and is about 25% at ka/2w=0.2. The k2 approxi
mation is shown as a broken line in Fig. 2. The deviation 
of the exact result from the k2 approximation is such 
that the constant energy surfaces do not have ellipsoidal 
shapes for &a/27r>0.1. The point is made clear for 
rather large values of &<z/27r by Fig. 4 which shows 
actual cross sections of constant energy surfaces. I t 
should be noted that the total deviation from sphericity 
is not great for W27r=0.8 . In fact, the 3 % spread in k 
reported by Brockhouse and Watanabe21 for five direc
tions with fico=0.0493 eV is essentially sufficient to 



S P I N W A V E S P E C T R A OF M A G N E T I T E 1787 

FIG. 5. Nearest 
neighbors of an A 
ion. Solid circles are 
A ions, squares Bi 
ions, and triangles 
B2 ions. Numbers 
next to symbols are 
z coordinates in units 
of the lattice param
eter. Scale in projec
tion plane is indi
cated also in units of 
the lattice param
eter. 

A 2 -A 8 

• f • * 

A * 

A * A i 
• * 

If A * 

KH 
accommodate the differences among the dispersion curves 
of Fig. 3. Experiments for larger energy momentum 
transfers should show deviations from sphericity at 
least at temperatures below the ordering temperature. 

In view of the unusual shapes of the constant energy 
surfaces it is perhaps worth commenting on the sym
metry of magnetite. The symmetry of ordinary spinel is 
that of the space-group Oh

7(Fd3m). Inverse spinel may 
be reasonably expected to have the same symmetry in 
some average sense as long as it is not ordered. Ordering, 
however, seems to reduce the symmetry, perhaps to Td, 
but no detailed crystallographic investigation of this 
point is known to us. (Lyons et al.22 have discussed the 
question in a certain framework but this may not be 
adequate for determining the symmetry of the energy 
surfaces.) No serious conflicts arise except possibly as to 
whether the kz axis is one of twofold or fourfold sym
metry. I t is clearly twofold for ordered inverse spinel, 
fourfold for normal and probably effectively fourfold for 
disordered inverse spinel as may be seen from Fig. 5. In 
this figure the 16 nearest neighbors of a tetrahedral site 
are shown. The fact that a rotation through T/2 does 
not produce the same structure is evident as is the fact 
that the z axis is not a fourfold screw axis. If the distinc
tion between Bi and B2 spins disappears the z axis 
becomes a fourfold screw axis and this in turn leads to 

i — i — i — I — i — i — i — r 

FIG. 6. Acoustic spin wave dispersion curve for JBB— — OAJAB 
together with Watanabe and Brockhouse experimental points and 
acoustic mode from Fig. 2. SBI=SB2 — '2^5. 

fourfold symmetry in the constant energy surfaces. 
One section of a surface with fourfold symmetry and 
ftw/12/AB=2.25 and SA=2.5, SBI=SB2=2.25 is shown 
in Fig. 4. 

I t should also be noted that the difference between 
the results for SB1

:=SB2—2.25 and those for SB^ 2.5, 
Ss 2 =2.0 is quite small in the principle crystallographic 
directions. This is particularly evident from a com
parison of Figs. 2 and 6. 

EXACT SOLUTION FOR JAB, JBB^O 

Another approach to the solution of the secular 
equation is required if the exchange interactions be
tween like spins are not negligible. For k2=0 the secular 
equation may be factored into two cubics. To do this we 
note that by adding successive rows and columns in 
pairs the secular equation may be put in the form 

2( t f i+a i ) 
a 

|8l2 
2(tfH-ai) 
2(a 3 +a 6 ) 
2(h+h) 

2(Ut+<h) 

2 (ad-as) 
2(£/2+a6) 
2(h+h) 

Pl2 

2U3+c+c* 
2(b2+h*) 
2(h+h*) 
2Us+2c 

tfi+ai 
04+05 
b2+h* 

2UX 

2a6 

2fo 

03+^5 
Uz+ae 
h+h* 

2a6 

2U% 

2b4 

h*+h* 
h*+h* 
Uz+c* 

262* 
2b? 
2UZ 

An 
A21 

A12 
A22 

(13) 

where pij=bi+bj+b*+bj*, a = #2+03+04+05, and the 
A's are 3 X 3 matrices. 

When kz=0, #2=05, 03=04, 63=64*, 61=62*, and 
c = c*. In this case (13) clearly has the form 

(14) 

and consequently factors into |An | • |A22'|. Thus, the 
22 D. H. Lyons, T. A. Kaplan, K. Dwight, and N. Menyuk, 

Phys. Rev. 126, 540 (1962). 

roots in this case are given by the solutions of the two 
cubic equations 

lAn 
An 

A12 

A22 

= An 
0 

A12 

A2 2 ' and 

U1+a1 

02+03 
6x+62 

Ui—ai 
a2—a% 
62—61 

02+03 
U2+a6 

63+64 

02—03 
U2—a§ 

64—63 

61+62 
63+64 
Uz+c 

61—62 
63—64 
Uz-c 

= 0 

= 0. 

(15) 

(16) 
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These equations may be solved analytically without 
making any further approximations to yield the dis
persion curves in the central plane of the Brillouin zone. 
For example, when k = 0: 

fll=#2=#3==#4=:#5==#6:= —^J BB, 

h=b2=h=b4= —6JAB, (17) 

c = c * = — SJAA, Pij=2bh gBfJ.H=ZB, gBfJ>H=ZA. 

where y= (l — coska/4:), (3=2 cos(ka/8)+cos(3ka/8) 
and for simplicity SBl=SB2

==SB>SA/2. The numerical 
results for 5^ = 2.50, SB=2.25 in the two cases noted 
above are shown in Fig. 6. These results agree exactly 
with those obtained by Kaplan20,21 and for JBB/JAB<0 
clearly tend to improve the agreement with the Wata-
nabe and Brockhouse12,21 measurements. It should be 
noted that if SBl=SBi the factorization of the sixth-
order secular equation into two cubics can also be 
accomplished for k in the z direction. Furthermore, the 
roots are the same as those found for k in x direction 
as indeed must be the case from symmetry considera
tions. Thus, the comparison with the Watanabe and 
Brockhouse experimental data is appropriate. A small 
JAA does not affect the dispersion curves appreciably 
because of the sign alternation between the two places 
where it appears in (21). 

DISCUSSION 

As a result of this careful study of the dispersion 
curves in spinel structures a number of interesting points 
have emerged. In accord with the original motivation 
for this work major deviations of the acoustic mode dis
persion curve from a k2 behavior are found. The actual 
curves are in good agreement with the experimental 
results of Watanabe and Brockhouse12,21 and may bear 

Making these substitutions in (16) we find (Ui+4:JBB) 
X(U2+4JBB)(U,+8JAA) = 0J SO that 

Ao>2= \UJAB(SBI+SBJ-16JAASA-ZA\, (18) 

tta>i=tia)o= | 12JABSA~8JBB(SBI+SB2)+ZB\. 

If the second two rows of (15) are added to the first row 
and the first column subtracted from the second column 
(15) takes on the form 

importantly on the heat capacity question. The original 
difficulty was that heat capacity measurements on 
magnetite11 when interpreted on the basis of spin wave 
theory gave exchange constants which were smaller by 
a factor of about four than those obtained from the 
Curie temperature on the basis of molecular field theory. 
Similar discrepancies in other ferrites including the 
system Nii_xFe2+a;04 were observed by Pollack and 
Atkins.23 The latter results together with those of 
Kouvel11 for magnetite lie on a smooth curve when 
plotted versus composition but this is not a stringent 
test of Kouvel's measurements. The situation is now 
somewhat worse since spin wave theory has been shown 
to account in detail for the directly observed dispersion 
curves using an exchange interaction much larger than 
that required by the heat capacity data. This situation 
is summarized in Table I. It has been suggested that 

TABLE I. Values of the exchange constant. 

Source Exchange constant (eV) 

Curie temperature 1.6 X10~3 

Heat capacity 0.44X 10~3 

Dispersion curve 2.4 X10~3 

23 S. R. Pollack and K. R. Atkins, Phys. Rev. 125, 1248 (1962). 

na)—ZB 0 
2(nSB2 %a>+2b1SA-'ZB+2a1(SBl+SB2) 
-2biSA 0 

fio)—ZA 
2biSB2 

ftco-2b1(SBl+SB2)-ZA 

= 0. (19) 

This is immediately solved to give 

fia)&= | 12JABSA—8JBB(SBI-\-SB2)~\-ZB\ , 

fo4=£|ZA+ZiH-2MS*i+S*^ (20) 
fio>z=h\ZA+ZB+2bl{SBl+SB2-SA)-{lZA-ZB+2bl{SBl+S 

(These values are in disagreement with those of Kouvel13 which may easily be seen to be in error by taking all of the 
exchange constants equal to zero.) If the Zeeman terms are disregarded coz vanishes, and therefore, represents the 
acoustic mode. In the case that SBl+SBz is less than 2SA, (15) will give the lowest three branches of the dispersion 
relation (if in addition JAA, JJBB are much smaller than JAB, which is usually the case). 

One of the most useful applications of this procedure is the investigation of the influence of finite exchange 
interactions between like spins on the acoustic branch of the dispersion curve. To illustrate the effect we have 
calculated the acoustic branch for k in the x direction and JBB = 0 and JBB= —JAB/10. For this direction of k and 
H = 0 the acoustic mode energies are given by 

fad) 

\2JAB 

SA—2SB 1 (JBB \.(JBB JAA \ (rSA+2SB 1/JBB JAA \ I2 2 
- ( — - ^ - - — ^ 7 + SB+ SA)y SASBP2 

S\JAB JAB J IL 2 3\JAB JAB / J 9 

1/2 

(21) 

file:///2Jab
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improvements in the interpretation of Tc might give 
better agreement23 with the heat capacity result but 
this would leave a serious discrepancy when compared 
with the dispersion curve result. I t seems more likely 
that the heat capacity result is in error. This could be 
due to errors in the measurement but this seems unlikely 
especially in light of the work of Pollack and Atkins. 
A second possibility is that the ordering which takes 
place in magnetite below 119°K makes the comparison 
of heat capacity results with those obtained from Curie 
temperature measurements and neutron inelastic scat
tering inappropriate. Such a difference can only be due 
to a major change in the exchange interaction caused by 
the crystallographic distortion below 119°K since it has 
been shown in this work that the ordering has little 
effect on functional form of the dispersion curves which 
play the central role in the heat capacity calculation. 
This point could be decided by means of low tempera
ture neutron inelastic scattering experiments. Another 
possibility which we believe has considerable promise is 
that the laborious calculations of the heat capacity from 
the dispersion curves have not been done sufficiently 
accurately. This point has been discussed in an earlier 
paper10 but for simpler cubic lattices. I t is now being 
investigated for the spinel structure on the basis of the 
dispersion curves presented here. 

The lack of fourfold symmetry in the constant spin 
wave energy surfaces in ordered magnitite has also been 
noted. I t would be interesting, although perhaps very 
difficult, to verify the twofold symmetry experimentally 
by means of inelastic scattering experiments at tempera
tures below 119°K. Such low-temperature experiments 
would also, as noted earlier, establish an exchange con
stant of unequivocable appropriatness for comparison 
with the low-temperature heat capacity result. 

Finally, the effect of small exchange interactions 
between like ions has been computed and shown to 
improve the agreement with the inelastic scattering 
data. The inclusion of JBB= — 0.1 JAB seems to be all 
that is required. This is not expected to modify the heat 
capacity results in a significant way. Values of JAA 
smaller than 0.1 JAB do not produce significant changes 
in the dispersion curves. 
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APPENDIX 

Lists of nearest neighbors for computing spin sums. 
The coordinates are given in units of a/&; the bar de
notes a negative value. Where only one set is listed, the 
second consists of the negatives of the first set. 

Nearest neighbors to an A site at {0,0,0) 

Bx (1,3,1) (1,3,1) 
(3.1.1) (1,1,3) 
(3,1,D (1,1,3) 

A sites (2,2,2) (2,2,2) 
(2.2.2) (2,2,2) 

B% sites (1,1,3) (1,3,1) 
(1.1.3) (1,3,1) 
(3,1,1) (3,1,1) 

Nearest neighbors to a Bi site at (0,0,0) 

A sites Set I (3,1,1) (1,1,3) (1,3,1) 
(1,3,1) (3,1,1) (1,1,3) 

Set I I (3,1,1) (1,1,3) (1,3,1) 
(1,3,1) (3,1,1) (1,1,3) 

Bi sites (2,2,0) 
(2,2,0) 

B2 sites Set I (2,0,2) (0,2,2) 
(2,0,2) (0,2,2) 

Set I I (2,0,2) (0,2,2) 
(2,0,2) (0,2,2) 

Nearest neighbors to a B% site at (0,0,0) 

A sites Set I (3,1,1) (1,1,3) (1,3,1) 
(1,3,1) (3,1,1) (1,1,3) 

Set I I (3,1,1) (1,1,3) (1,3,1) 
(1,3,1) (3,1,1) (1,1,3) 

B sites Set I (2,0,2) (0,2,2) 
(2,0,2) (0,2,2) 

Set I I (2,0,2) (0,2,2) 
(2,0,2) (0,2,2) 

B2 sites (2,2,0) 
(2,2,0) 


