Color Centers in Alkaline Earth Fluorides

I. R. O'CONNOR

Lincoln Laboratory,* Massachusetts Institute of Technology, Lexington, Massachusetts

AND

J. H. CHEN[†] Physics Department, Boston College, Chestnut Hill, Massachusetts (Received 3 December 1962)

Several experiments are presented dealing with color centers in alkaline earth fluorides. Evidence for simple color centers is not observed. Color centers previously reported in CaF2 are due to the contamination of fluorite with Y. The optical and electron paramagnetic resonance spectra of $Y^{2+}(4d^1)$ are discussed.

ASER action has been observed¹⁻³ in alkaline earth L fluorides containing either rare earth or actinide ions. A method has been reported⁴ whereby the valence of Sm³⁺ can be partially reduced by ionizing radiation in order to obtain a $CaF_2(Sm^{2+})$ laser. During that study, it was observed that irradiated $CaF_2(Sm^{3+})$ did not exhibit the four bands (see Fig. 1) which have been associated with color centers,⁵ i.e., electrons or holes trapped at lattice defects. This paper briefly reports additional experiments wherein we will conclude that contrary to the literature⁵ (1) subtractive color centers⁶ in CaF₂, SrF₂, and BaF₂ are not observed and (2) the usual coloration of CaF_2 , is due to a trace impurity, Y^{2+} .

Materials to be described in this paper are single crystals grown in a modified7 Bridgman furnace under a vacuum $< 10^{-6}$ mm Hg. The samples that have been irradiated were exposed at 20°C to 5×106 rad of 2.5 MeV electrons from a Van de Graaff generator.⁸ Optical spectra (200 m μ -10 μ) were measured⁹ at 20°C using several double-beam spectrometers. Measurements in the uv were made with a single-beam, vacuum instrument.

Several doped crystals were grown from Harshaw CaF₂. Mass and emission spectroscopy¹⁰ indicate that this material contains 5×10^{-4} % Y, 5×10^{-2} % Al and Fe, and trace quantities of several other impurities. Impurity levels are given in mole percent. In this work, crystals of CaF₂ containing 5×10-4% SmF₃, 0.2% SmF3, 0.2% UF4, 0.2% YF3 plus 0.2% SmF3, 0.2% AlF₃, and 0.2% FeF₃ have been grown. Since Scouler and Smakula¹¹ have shown that YF₃ enhances the coloration of CaF2, the dopants 0.2% Y, 0.2% YF3,

- ² H. A. Bostick and J. R. O'Connor, Proc. IRE 50, 219 (1962).
- ³ S. P. S. Porto and A. Yariv, Proc. IRE **50**, 1543 (1962). ⁴ J. R. O'Connor and H. A. Bostick, J. Appl. Phys. **33**, 1868
- (1962) ⁵ K. Przibram, Irradiation Colours and Luminescence (Pergamon
- Press, Inc., New York, 1956). Subtractive color centers are produced by ionizing radiation.

⁷ J. R. O'Connor and R. M. Hilton (to be published). ⁸ The authors gratefully acknowledge the help of Dr. K. A. Wright at MIT.

⁹ For infrared and vacuum uv measurements, the authors are indebted to Dr. D. F. Edwards and Dr. W. J. Scouler.

¹⁰ E. B. Owens (to be published).

¹¹ W. J. Scouler and A. Smakula, Phys. Rev. 120, 1154 (1960).

0.2% Y₂O₃, and 0.2% NaYF₄ were also studied. Our observations after irradiation are: (1) The addition of Y³⁺, independent of its charge compensator, enhances coloration, (2) small quantities of Sm^{3+} completely suppress coloration, and (3) impurities with stable valence (i.e., Al³⁺) have no effect on the coloration process. These data suggest that the coloration normally seen in CaF_2 is due to the reduction of Y³⁺ and that this reaction is suppressed by the presence of electron traps such as Sm³⁺.

To substantiate this view we have tried to investigate Y-free CaF₂. An attempt to remove Y from CaF₂ by zone purification was not successful, because the distribution coefficient is unity.⁷ Crystals containing less Y than Harshaw fluorite were grown from Baker, reagent grade CaF₂ and CaF₂ synthesized from pure CaCO₃. These crystals as well as Harshaw CaF₂ were irradiated and are compared in Fig. 1. The absorptions become negligibly small as the Y contamination is reduced.

These studies were extended to SrF2 and BaF2, recrystalized from commercial single crystals.¹² Contrary to the literature,¹³ no coloration was observed in either SrF_2 or BaF_2 . When these materials, doped with

FIG. 1. Absorption of irradiated $(5 \times 10^{6} \text{ rad})$ materials: (1) Harshaw CaF₂ $(5 \times 10^{-4}\% Y)$; (2) a crystal grown from Baker, reagent grade CaF₂; (3) a crystal grown from CaF₂, synthesized from pure CaCO₃ by Dr. A. Wold, Lincoln Laboratory. The Y contamination of crystals (2) and (3) is less than 1 part per million.

¹² These materials were kindly supplied by W. Hargreaves, Optovac, Inc. ¹³ D. Messner and A. Smakula, Phys. Rev. **120**, 1162 (1960).

^{*} Operated with support from the U. S. Army, Navy, and Air Force.

¹ Supported in part by the National Science Foundation. ¹ P. P. Sorokin and M. J. Stevenson, Phys. Rev. Letters 5, 557

^{(1960).}

0.2% YF₃, are irradiated, a four-band spectra (Fig. 2) is observed. The coloration of $BaF_2(Y)$ is unstable. The rate of thermal bleaching of $SrF_2(Y)$ is greater than $CaF_2(Y)$ but much less than $BaF_2(Y)$. Photochemical bleaching is not observed.

Impurities such as $Y^{2+}(4d^1)$ and $Sm^{2+}(4f^6)$ behave as electron traps in CaF₂. During irradiation, electron-hole pairs are formed. Depending upon the electron capture cross section, the valence of the impurity may be reduced. Assuming a crude hydrogenic model, the binding energy ΔE of the trap is given by $\sim R/\epsilon^2$. For $BaF_2(Y^{2+})$ this energy is approximately equal to ~ 1 eV at 20°C. More stability is expected for CaF₂ and SrF₂ because ΔE increases rapidly as the dielectric constant ϵ is reduced. For Sm²⁺, ΔE is larger than kT due to the shielding of 4f electrons by 5s, 5p shells; and consequently, no thermal bleaching occurs at room temperature. This model also shows we can expect two saturation effects. For a given radiation level, a law of mass action exists between the concentrations of holes, electrons, and Y^{2+} . This leads to a saturation of Y^{2+} independent of the concentration of Y3+. At higher radiation levels the concentration of Y2+ will increase and then saturate because of lattice heating, thermal spikes, etc. These saturations have been observed.

The optical and electron paramagnetic resonance (EPR) spectra of Y^{2+} are of considerable interest. In an octahedral field the ground state Γ_5 is an orbital triplet. The excited state Γ_3 is an orbital doublet. Spin-orbit coupling, $\lambda \mathbf{L} \cdot \mathbf{S}$, splits the ground state into a lower quartet Γ_8 and a higher doublet Γ_7 . An axial field¹⁴ splits both the Γ_3 and Γ_8 so that the resultant level diagram consists of five Kramers doublets. In a strong crystal field the levels are separated so that four of the doublets remain in a group separated by a large energy Δ from a low-lying t orbital. Four optical transitions should be observed. The four-band spectra (Figs. 1 and 2) are interpreted as $4d^1$ transitions. Similar spectra have been observed by Jørgensen¹⁵ for $V^{4+}(4d^1)$ in an axial field. One electron resonance should be observed in the ground state, a spin doublet. The g value should be smaller than free-spin by a small orbital contribution of the order λ/Δ (i.e., g=1.988). Using a 23.4 kMc/sec spectrometer at 4.2°K, only one strong resonance was observed at $g=1.994\pm0.005$. For this simple model,¹⁶ the agreement is considered good. The EPR absorption

(cm1) COEFF BSORPTION WAVELENGTH λ (mu)

FIG. 2. Absorption of irradiated $(5 \times 10^6 \text{ rad})$: (1) Harshaw CaF₂ (5×10⁻⁴%Y); (2) single crystal SrF₂ (0.2%Y); (3) single crystal BaF₂ (0.2%Y); (3) single crystal BaF₂ (0.2%Y). These materials color as follows: CaF₂(Y)-blue; SrF₂(Y)-green; and BaF₂(Y)-red.

shows complex, hyperfine structure which is interpreted as interaction between the $4d^1$ electron and several fluorine nuclei. The number of fluorine nuclei has not as yet been resolved.17

The model of Y^{2+} in CaF₂ resolves several problems that have been associated with the coloration process.⁵ We briefly comment on the following: (1) The red, polarized luminescence reported by Feofilov¹⁸ is due to radiative transitions between Kramers doublets in a strong axial field; (2) Thermal bleaching is due to nonradiative, electron-hole recombination from shallow acceptor levels; (3) Slight additive coloration^{18,19} is due to the reduction of Y^{3+} by the diffusion of positive charges into the lattice; and (4) Photo-, thermo-, and radio-luminescence involve rare earth contaminants as well as radiative charge transfer processes associated with Y²⁺.

Additive or subtractive coloration produce the same F center in alkali halide crystals. A large variety of absorption bands has been reported¹⁹⁻²¹ when alkaline earth fluorides are additively colored. It is possible that none of these bands should be associated with color centers. However, if an additive color center exists, it must be closely associated with the excess positive charge that has entered the lattice. Perhaps subtractive coloration does not exist, because these centers are unstable in the absence of excess positive charge. In either case, it is clear that simple color centers, analogous to the well-defined F center in the alkali halides, were not observed in alkaline earth fluorides.

In addition to the assistance acknowledged thus far, the authors are indebted to Dr. H. A. Bostick and Dr. R. H. Kingston for helpful comments and suggestions.

 $^{^{14}}$ Irrespective of the method by which Y is introduced into CaF2, strong axial fields are observed. This field is caused by local charge compensation and associated lattice distortion.

¹⁵ C. K. Jørgensen, Acta. Chem. Scand. **11**, 73 (1957). Absorptions at and below 200 m μ are also present in these materials. These bands have been associated by Bontinck [Physica 24, 639 (1958)] to oxygen. Oxygen enters the lattice during irradiation.

¹⁶ A larger than expected g value for $Mo^{+5}(4d^1)$ has been re- $\sim \Lambda$ larger man expected g value for Mo^{**}(4d^{*}) has been reported by Griffiths [Proc. Roy. Soc. (London) A219, 526 (1953)]. The EPR that is observed cannot be associated with an F center because of the F⁻¹ (I=1/2), hyperfine structure. More complex centers (e.g., V, M, etc.) would have a g value >2.02. The resonance can only be explained on the basis of a 4d^{*} electron at a cation site. The fact that the g value is somewhat large indicates cation site. The fact that the g value is somewhat large indicates the crystal field model is not sufficient to give a complete description of magnetic properties.

 ¹⁷ W. H. From (to be published).
¹⁸ P. P. Feofilov, Dokl. Akad. Nauk S.S.S.R. 92, 545 (1953).
¹⁹ F. Lüty, Z. Physik 134, 596 (1953).

²⁰ E. Mollow, Nachr. Ges. Wiss. Göttingen 79, 714 (1934).

²¹ P. Görlick and H. Karras, in Proceedings of the International Conference on Semiconductor Physics (Academic Press Inc., New York, 1960).