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Theory of Quadratic Response Functions 
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The general quantum theory of quadratic response functions, such as the optical-frequency quadratic 
polarizability of dielectrics, is developed on the lines of Kubo's density matrix—Green's function theory of 
linear response functions. Sum rule series are obtained, and applied to the quadratic polarizability. A 
suitable form of Kramers-Kronig relations for quadratic response functions is developed. 

IN experiments by Franken et al.,1 and others, they 
observed radiation from dielectrics due to polariza

tion proportional to the square of the amplitude of an 
incident optical Maxwell wave from a laser, or propor
tional to the product of the wave amplitudes of two 
laser beams, the radiation, therefore, being at the second-
harmonic frequency or at the sum and difference fre
quencies. The quantum theory of this quadratic polari
zation, as a generalization of the theory of the linear 
optical-frequency polarization of matter, has been in
vestigated by several people.2--4 The present paper con
cerns the general formulation of the theory in terms of 
the response of the density matrix to "impulse" per
turbations, on the lines of Kubo's treatment of linear 
response functions,5,6 and the derivation from this point 
of view of sum-rule formulas and dispersion relations. 

1. LINEAR THEORY 

This section outlines the general linear theory, as a 
preparation for the following sections. The density 
matrix, p(i), satisfies 

dP/dt=[H(t),p}. 

Now let the Hamiltonian, H(f), be given by 

H=H0+hS(t-h), 

where H0 and hi are independent of I, and let 

p=po(H0), 

P=po+pi(X)+-

t<h; 

t>h; 

(l) 

(2) 

(3) 
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where pi is to be proportional to hi. Then 

Pi=[Ai|/i—0>Po] (4) 

where, for any operator A, 

A\s)=exp (iHos/fi)A exp (•— iHos/fi). (5) 

We will use the notation 

<G>n^Tr(PwG). (6) 

Then from (4), (5), and the fact that po=po(Ho), it 
follows that 

<G>iHCG,Aii--*i);i>o, s^t-h. (7) 

If G is the physical variable (polarization, current) 
whose response to the perturbation hi we are calculat
ing, then 

G(*|A0sGi(*)s([G, hi\ s)-]\={[G\s), hj)0 (8) 

is the effective "Green's function" for the linear 
response.6 The relation 

A(s\B)=-B(-s\A), (9) 

which follows from (8), gives the Onsager relation corre
sponding to A and B as driving force and response.5 

The conventional susceptibility is the linear response 
to a harmonically varying disturbance, not to an 
impulse; so it is the Fourier transform of (8). Corre
sponding to si positive in (7), we must take 

G(«-|Ai)=r„-.G(*|*i), (10) 

T^f(s)= lim f e-«»+»*f(s)ds. (11) 

If the limit X —> 0 be written as a sum over poles, 

/ ( « ) » r . / ( 5 ) = X ; . — ^ (12) 
03 — 0)n 

then we have to make the substitution 

f(a>) -> / (« - )«(P / («)+«r £ « RJ(a>-con) (13) 

in order that integrals over a), or over a continuum in 
place of X) n, should give the right answer. One such 
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integral is in the Kramers-Kronig relations7: 

/($2-)<S2 
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TABLE I. Derivation of the terms of the sum-rule 
series for linear polarizability. 

7T*/(C0-) = ( P / 
7_oo CO — Q> 

(14) G<»> Ai<w> [G<"»W»>] 

The "sum rule" expansion, of the Fourier transform, 
introduced by Kubo5 is obtained as follows: Integration 
by parts gives 

7VGi(s) = ( i w - ^ C G i C O J + r ^ d G i W / * ) ] . (15) 

Therefore, 

T„JSi(s)= £ (^ - ) "^+ 1 )Gi^>(0) 

+ (^_)-(H-i) r < o_G1(P+D( J) ) ( i 6 ) 
where 

G!^(s)=dnGx(s)/dsn, G1«»(s)=G1(s). (17) 

Similarly defining 

Ai^sCrf-*!!*)/*").^, (18) 
we have 

Gi<»>(0) = <[G<»>, *i]>o= ( - M G , *!<»>]>„. (19) 

The usefulness of this expansion is that in practice the 
first few terms (say, n=0, •••^-—1) of (16) turn out 
to be identically zero (irrespective of the details of 
the system), and the high-frequency limit has the 
simple form 

Tjdis)« (&))-<^><[G^, Ai]>o. (20) 

Of course, one has, exactly, 

rw_G!(s)= (ico-)-*rw_<[G(*\ h \ -*)]>0 

= [ - i ( co - ) ] - ^G(co - | Ai^>). (21) 

The foregoing results may be illustrated by the 
electric polarizability of an atom or molecule. We have 

G=qx, hi=—qX'E. (22) 

If the stationary states of the unperturbed system have 
energies fia)n, and coj—a>w=cozn, then 

[G\s), Ai]»„= (2q2/fi)J^i(xniXin)• E sin(cozws). (23) 

The polarizability is defined by 

E = E„e*', g(x)i= «(«) - E ^ * ' . (24) 

7 See, for example, Quantum Theory, edited by D. R. Bates 
(Academic Press Inc., New York, 1961), Vol. 1, 372, 373; J. R. 
Macdonald and M. K. Brachman, Rev. Mod. Phys. 28, 393 
(1956). Strictly speaking, the Kramers-Kronig relations will not 
hold if X2 is allowed to tend to zero as in the right-hand form of 
Eq. (13); due care must be had in summing over the levels of the 
system, for example at a sharp "absorption edge." These remarks 
apply also, of course, to the discussion following Eq. (62). Not 
letting X2 become zero means, physically, that we have perturba
tions of slowly increasing, rather than constant, amplitude. 

(l/m)pa 
•{l/m)dV/dxa 

0 xfi 0 
1 (l/m)pe (l/tn)6a,fi 
2 -(l/m)dV/dxp 0 
2 (l/m?)d2V/dxadx(i 
2 0 

Therefore, 

2q2 

o(w) = — L z L 
/ 0)ln \ 

w PnX-nlXln[ I 
\0)ln2 — U2/ 

where pn=po(^cow). By (13), 

Oi(o)— ) = 5ZJ 2Dw PnX-nlXln 
ft 

q2 I 
• - E (25) 

2(P-
<*ln 

+ 7 ^ 5 (co—o)in)+7rid (o+o)in) • (26) 

The "sum rule" series (16) is developed as follows: If 
the Hamiltonian of the system is 

ffo=(l/2m)^+F(x), (27) 

the variables to be substituted in the series (leaving out 
the constants multiplying them) are as given in Table I. 
The Green's function for a is — q2x(s\x), in the notation 
of Eq. (8), and so we obtain from (16) 

*(a>) = -q2\ 1 + <VVJOo+R4}, (28) 
I moo2 m2co4 J 

where 

R4(o>)=-
1 2 

rn^fi 

= 0(or6). 

-ElEnP.(VF)nl(VT0 
\0)2—-0)lr?J 

(29) 

The reason for calling (16) the "sum rule" series is 
illustrated by this case. Writing the summand on the 
right of (25) as 

r 1 co„2 a>„4 n 

f J -+—+ 
U 2 w4 co4(a>2-ayOJ 

and comparing the resulting three sums with the three 
terms of (28), one obtains the formulas 22"^= 1 (the 
familiar one), m ^vlvccv

2=(WV)o, 
The example represented by Eqs. (22) to (29) was 

for a single active particle with charge q. For many 
particles, one would replace the first term of (27), x, 
and V by sums over particles, and V(x) by the many-
particle potential. I t is an interesting fact that central 
forces between the particles make no contribution to the 
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quantity which then replaces (V2F)o (the trace of (VVF)o, 
which gives the sum rule for cubic symmetry). In fact, 
for an atom or molecule with fixed nuclei the many-
electron result has Tr(VvT)o —>4we2 J^iZititXi), where 
the sum is over the nuclei, at positions X,- with charges 
Zie, and where n(x) is the electron density. 

2. THE QUADRATIC THEORY 

We replace (2) by 

H(t) = Ho+h15(t-t1)+h25(t-t2), (30) 

and (3) by 

p00 = po(#o), t<h,h; 
~po+pi(t), h<t<h\ 
^Po+p2(t), t2<t<h; 

—P0+P1+P2+P21 (t), h<t2<t\ 

^po+Pi+P2+Pi2(0> h<h<t. (31) 

Then the quadratic effect linear in hi and in h2 is given 
by 

P2i(t) = £h\k-l), [Ai |*i-f l ,poH, (32) 

< G > » = < [ [ G , A I | - J * ) 1 A I | - * I ) ] > O , (33) 

where si=t—ti, s2^=t—t2. In analogy with (8), we may 
use the notation 

(G)2i=G2i(s2,Si)=G(s2, si\h2, hi). (34) 

One should remember that the right-hand symbols 
($1 and hi in this case) represent the earlier time 
(ti<t2, or si>s2). 

The Fourier transform is 

G(o)i—, a>2— \hi, h2) 

= T^(si)Tl0^(s2)(Gi2(si<S2)+G2i(s2<Si)). (35) 

[On the left-hand side of (35), the order of factors 
merely signifies that coi goes with hi and a>2 with ^2; 
both coi>co2 and co2>^i are permissible, of course.] The 
transformed function (G12+G21) has discontinuous 
derivatives at Si=S2. One may, however, remove this 
feature by writing 

G(coi— ,W2— \hh h2) 

= Tiuv^^{s){Tni^)G{s9 s+s') |A2, hi) 

+ T^(s')G(s,s+s'\hhh2)}. (36) 

Equations (35) and (36) give the Fourier component, 
(G)«i+«2> resulting from a "perturbed part of the Hamil-
tonian" hi exp(icoi2)+fe exp(ia)2t), the addition of the 
other terms from h-p and h£ being understood. Since 

G(s, s+s'\hh A2MIIGI*) , AJ, fe| -*')]>o, (37) 

we have 

Gioii— ,a>2— \hhh2) 
= r(a)1+£02)_(5){rC01_(5/)([[G|5), * 2 ] , Ai| ~ / ) ] )o 

+ 7V(/)<[[GU), Ail A2I ~/ ) ] )o}. (38) 

Results equivalent to the foregoing have been given 
by Kubo,5 by Kogan4 and by Kelley4 (see also Butcher 
and McLean, reference 2). 

The sum rule expansion has to be derived from (36) 
rather than (35), because of the discontinuity in the 
integrand of (35). The general formula corresponding 
to (16) looks complicated, because one may expand the 
integral over one variable to an arbitrary number of 
terms, with their remainder, and then expand each 
term, as an integral over the other variable, to an 
arbitrary number of terms. Formulas like (21) rather 
than (20) may be obtained if required, for example, 
Eq. (43) below. The infinite series is8 

G(o>i, o>2|Ai, A2) 

- £ Z 
i(n-l) 

Z~0 n=0 (OJ!+C02)Z+1 

X | G2l<''°'»>+ Gi2<''°'»4, (39) 

where 
G2i(*'«'n)s<[[G<I>, *»<*>], Ai^>])0 (40) 

and G ( 0 , etc., are given by (18). 

3. APPLICATION OF THE SUM-RULE EXPANSION 

The nonlinear polarizability first observed was in 
quartz, a crystal lacking inversion symmetry. One can 
think of this polarization as proportional to the local 
value of EiE2. A model for the effect3 is a localized 
electron with Hamiltonian (27) and perturbation 
— qX'E(t). If the potential V(x) lacks a center of sym
metry, a polarization proportional to E2 results. With 
G = x , Ai=x, A2=x, one finds that G(Z-°'w) = 0 for 
l-{-n<4. The two nonzero ones with l-\-n=\ are 

1 
G12(*.o.D = VVVF, 

G12(4,o>o) = + _ w v F . 
mz 

(41) 

Combining the resulting terms as in (39) gives 

(x)MI+a2«—_(VVVF)o:EM1E„/ ) , (42) 
\ (COI+CO2)COIOJ2/ 

where Ew is a Fourier component of E(/). Equation (42) 
agrees with the result for the "anharmonic oscillator," 
with potential ax2-\-bxz) but it is, of course, more 

8 Such series are evidently asymptotic; they need not be con
vergent, in applications, 
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general. The result derived from (16) is 

J- C01+W2VV j ( *• « 1 V ^ / •*- C02\^ ) i 

( W3 (CO1+CO2)3 I \ COi 0?2 

X(CC{(VVF)-p}U))X],p|-/)]>„ 

'rwl(*')+r„2<y)\ 
+1 1 

\ W1+W2 / 
<[[(«(WF)-(VF) 

W1+W2 

- { { ( V V V F ) - p } - p } ) | 5 ) ) X ] , x | - 5 ' ) ] ) o } , (43) 

the scalar products (EiE2 :) being taken in the order 
Till , -E 2 ] , -E i ] and T*[£, -E i ] , -E 2 ] . The next 
integrations by parts give the leading term (42). 

If the system has inversion symmetry, there remains 
an effect ~10~ 3 smaller which can be represented as 
the sum of "Faraday" and "quadrupole" contributions. 
These have been calculated by Adler3 (for a model of 
the dielectric in which it is divided into a periodic 
lattice of separate localized systems) by taking into 
account the "plane wave" dependence, on position, of 
the perturbing fields and the component of polarization 
which is calculated. One obtains contributions to the 
polarization, additional to the "anharmonic" part to 
which (42) and (43) apply, which are not zero when the 
system has inversion symmetry. The sum rule series 
may be applied to these. However, it will be applied 
below to a somewhat different formulation of nonlinear 
polarization. 

An appropriate Hamiltonian for an electron in the 
dielectric is9 

H=-
1 

2m c 
+ V(x). (44) 

In this gauge, in which its scalar potential is zero, the 
laser electric field is9a 

E(x,0 = - ( l /c)dA/d*= • ( I A O X ^ C O ^ - K , 

Xexp(ico,i~-iK„-x). (45) 

(It is convenient to label components by wave vector 
K rather than angular frequency co, so long as one 
remembers to pair these correctly in sums.) The 
component of the current density with wave vector 
—K is the expectation of 

(„-!*) (46) 

9 We are leaving out the spin term here, and the corresponding 
term (Ref. 3) in Eq. (46). I t is shown by Adler, (Ref. 3) for his 
model and neglecting spin-orbit coupling, that if the system has zero 
spin polarization in its unperturbed state then the contribution 
from spin terms to the quadratic polarizability is negligible. 

9a The superscript and subscript K, X, fx occurring throughout the 
rest of this section should be read as vectors. 

TABLE II. The contributions to the "sum frequency" quadratic-
polarization current, due to the field given by Eq. (45), in the 
notation of Eqs. (8) and (33). K = K I + K 2 . 

Term B 

(q/c)A-K expp(K—K„) • x] G (v = 1 or 2) 
— (q/mc)p~K^-A-KV hi or h\ h\ and hi 
(<f/mc2)k-n • A_K2 exp (—K • x) h 

where, for any quantum operator U, 

J7"={^,exp(iK-x)}. (47) 

The linear polarization is usually calculated, from (44) 
and (46), letting K —-> 0. One may, of course, expand the 
linear polarization in ascending powers of K. However, 
the second term (proportional to K) vanishes if the 
system has inversion symmetry. Otherwise, its order 
of magnitude relative to the first term is (lattice 
constant)/(optical wavelength), so it should not become 
important until x-ray frequencies are reached. For the 
quadratic polarization, we may make the same expan
sion in the wave vectors KI, K2; but the parity situation 
is now reversed. The first term (independent of the K'S) 
vanishes if the system has inversion symmetry, but the 
term proportional to the K'S doesn't. [Again, its 
estimated order of magnitude is smaller than that of 
the (nonvanishing) first term by the factor (lattice 
constant)/(optical wavelength).] As with the linear 
case, the polarization proportional to the K'S is out of 
phase with the polarization independent of the K'S by 
7r/2. I t has recently been detected, in a crystal with 
inversion symmetry.10 

Table I I indicates the different contributions to the 
quadratic polarization as calculated in terms of (44) 
and (46). The contributions A and B are given by the 
theory of Sec. 1; contribution C is to be calculated as 
in Sec. 2. The component of current represented in 
Table I I is that at angular frequency coi+^02. In the 
Bloch scheme, contribution A is proportional to K (plus 
higher powers, of course) because it is given by inter-
band matrix elements of exp(—tK-x) and, hence, of 
K - P + 0 ( K 2 ) . Similarly, the contributions B are propor
tional to KI or to K2. (More generally, it is obvious that 
the contributions A and B are zero in the limit K'S —> 0.) 
The contribution from C consists of sums over triples 
of matrix elements (n|p*|w}(w|pxlZ)(/|pM |^), with 
K + ^ , + | i = 0 . On expanding in the wave vectors, one has 
a part independent of the K'S (vanishing if the system has 
inversion symmetry) and a part proportional to the K'S. 
An expression for the former (the part of the polariza
tion independent of the K'S) will be found in the forth
coming paper by Kelley.4 From all the foregoing contri
butions, in the Bloch scheme one has a sum over the 
Brillouin zone of functions of interband matrix elements 
of p. I t should be noted that the triples of matrix 

10 R. W. Terhune, P. D. Maker, and C. M. Savage, Phys. Rev. 
Letters 8, 404 (1962). 
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elements include matrix elements between occupied 
one-electron states as well as between unoccupied 
one-electron states. 

The sum rule series is obtained by the procedure of 
Sec. 2, applied to the G's and A's of Table I I , using 
the formulas 

[/(x),P«]=(V/)*, (48) 

\J>*;P?1=* (*/#«*** - M^ K + X ) • (49) 
I t is useful to express the results in terms of P (polariza
tion density) and the E's, rather than J and the A's. 
We find that the series begins 

p = p(4,l)_}-P(6,0)_j_p(6,l)_|_ . . (50) 

where P<w»w> means the terms of order ormnn (i.e., a 
sum of terms of this order in the co's and K'S). There is 
no (w=4 , n=0) term, and no term with m < 4 . The 
first term of (50) comes from the A and B contributions 
in Table I I ; the second term comes from the C contribu
tion; the third term comes from A, B, and C. The 
expressions for these are 

P c n W 4 , 1 ^ ^ " 
K I + K 2 

2 Ei*E2 
m2 CO1CO2 (0)1+0)2) I o) i+o)2 

1 1 
+ - K I - E I E 2 + - K 2 - E 2 E I [ , 

0)1 0)2 

(51) 

•* co i+o>2 ' Q%~ 

1 

mz [o)io)2(o)i+o)2)]
2 

/r2 A 

(VVVF)0:EiE2, (52) 

-t a>i-fa)2 ' Q^" 

where 

S 

Wft 0)10)2(0)1+0)2) 

X(S:(VVF)o+T-<VVF)o), (53) 

K2 \ E1E2 

C 0 l 2 / C 0 l + O ) 2 

En^Ei+EjKiE! 

T= 
1 / K l K2 \ 
—{ — E i E , + — E , E , ) 

2NO)2 0)1 / 

(o)i+o)2)
3 

1 

(53') 

0)iO)2 \0 )2 

/0)i+2o)2 
X •K2* E1E2-

(0)l+0)2)2 

0)2+2o)i 
- K l • E2Ei 

0)2* « 1 * 

Ei* E2 
( K I + K 2 ) . (S3") 

2(o)i+o)2)
3 

Here ^ is the electron density, and Ei, E2 stand for 
E_K1 (i.e., «EW1) and E_K2. The quadratic polarization of 
free carriers is given by (51) alone. (In this case, K I * E I 
and K2 • E2 will of course be zero; we then require only 
the first term in the brace.) The coefficient of on on 
the right of (52) is identical with the right-hand side of 

(42), although the calculations were in quite different 
terms, as it should be. 

The term given by (53) introduces the crystal field 
and symmetry into the part of P proportional to the K'S. 
I t is evident from this term that the relation between 
the direction of P and the directions of the E's and K'S 
is not simple, even for a cubic crystal. For o)i=o)2=o), 
and a cubic crystal, we have 

P2w
(6 '1) = ^ ^ —<V*TOo{KrE*Bi+ic rEiE, 

mz (2o))3o)3 

+ ! ( K 1 + K 2 ) E 1 . E 2 } . (54) 

The replacement of (VvT)0 and (VVvT)oby their many-
body equivalents is on the same lines as explained at 
the end of Sec. 1. 

4. DISPERSION RELATIONS 

The Kramers-Kronig relations apply in a normal way 
to (35). That is, 

wiG(a)i—, o)2— \hi, h^) 

J — oo ' o)i—12 
(55) 

and similarly for o)2. However, the usefulness of (14), 
for the linear response function Cr(o)—), depends on 
the facts that it may be rewritten as two integral 
relations connecting the parts of G which are even and 
odd in o), with the integrals going from 0 to oo, and 
that these parts are separately of physical interest. 
With the quadratic response function, the parts of 
physical interest will be even or odd in o)i and o)2 

together, but not separately; and so the separation of 
(55) into integrals over even and odd parts does not 
have the same usefulness as for the linear case. 

However, if we treat G as a function of 

0 ) + ^ 0 ) i + 0 > 2 , O) = 0 ) 1 — 0)2, (56) 

then the relation (14) will apply to the variable o>+, 
with o)~ held fixed. Furthermore, we may define functions 
which are even, or odd, in o)+ as follows: Let C(o)i,o)2) 
be a quadratic response function or part of one, and 
let Su be the operator which interchanges o)i and o)2. 
Then 

2Cs(o)+,o)-)= (l+5i2)C(o)i,o)2), 

2Ca (o)+,o)-) = (I—Su)C (0)1,0)2). 

If Ri is the operator changing o)i to — o)i, and similarly 
for F.2, and if R+ changes o)+ to — o)+ (but leaving or 
unchanged), and similarly i£~ changes or to —of", 
we have 

and 
R+C^R&C*, R+C^-R&C*, (58) 

R-C»=C», j R - C a = - C a . (59) 
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On account of (59), the relation (14) for co+ as variable, 
with or fixed, holds for Cs and O separately. We then 
have four relations of the usual form, with integrals 
over co+ from 0 to <*> : two connecting the even and odd 
(in w+) parts of Cs and two connecting the even and 
odd parts of Ca. By (58), these even and odd parts are 
given by the operations on the right of (57) applied to 
the two parts of C satisfying 

R&C^aC, cr=dbl. (60) 

(o-= + l gives the even part of Cs and the odd part 
of Ca.) When (as in the next paragraph) RiR2C—C*, 
we have 

iriCs(o)+, of) 

/*°° dU 
= 2(P / (co+ Re+itt Im)Cs(12,ar) , 

Jo (co+)*-a2 

(61) 
7riCa(o>+, co ) 

= 2(P / (ti Re+sco+ Im)C a (0,or) . 
Jo (o>+)2-Q2 

[To avoid confusion the minus signs attached to the 
co's in (55), etc., which indicate the "time sense" in 
(11) and correspond to the sign of the denominator in 
(14) and (55), are omitted in (61).] 

For an illustration,11 let C be the constant in the 
relation P^+^^C^yE^E^, for the "anharmonic" 
part of the polarization independent of the K'S. Of course, 

SnCapy=Cayp; (62) 

so C8 and Ca are the symmetric and antisymmetric 
parts of the tensor whose /?, y component is Capy. Now, 
C (0)1,0)2) may be expanded like Eq. (12), in a (double) 
series of poles, the terms having denominators of form 

(cOi—Ww) (C02— 0)n), (o>l—C0m) (cOi+C02 — 0)n), 

a n d (co2—com)(coi+co2~-cow). 

11A more complete discussion, than is contained in these two 
final paragraphs, of the division of a response function into real 
and imaginary parts and into parts satisfying (60), on the basis 
of parity rules will be found in P. J. Price, in Proceedings of the 
Ohio State University Symposium on Lasers and Applications 
(Ohio State University Press, to be published). 

When we make the substitution (13) for each pole, the 
products of principal values [(P(coi~com)~16>(co2—cow)_1, 
etc.]], and the products of delta functions, will together 
give the real part of C, with <r= + 1, in the present case 
(in the absence of a static magnetic field), while the 
products of principal values and delta functions 
[(P(coi~-con)_15(w2—con), etc.] will together give the 
imaginary part, with a— — 1. These two parts of C 
may appropriately be called the "reversible" and 
"irreversible" parts, respectively. Writing 

C ( c O i ~ , C02—) = C r ev(wi,W2) + tCirrev(cOl,C02), ( 63 ) 

a representa t ive dispersion relat ion is 

r00 d£l 
7rCS

rev(0>+, 0)~) = 2(P / Q C S
i r r e v (&, C0~) . ( 6 4 ) 

Jo (co+)2-122 

The relations, such as (64), for C8 are the analogs of 
those for the linear electric susceptibility. The relations 
for Ca have the roles of reversible and irreversible parts 
interchanged. 

For the part of the quadratic polarizibility linear in 
the K'S, dispersion relations similar to (64), etc., will 
hold with KI and K2 held constant and, hence, will 
hold for the coefficients of KI and K2 separately or in 
any linear combination. (In this case the reversible 
part is imaginary and the irreversible part real, in the 
absence of a static magnetic field.) The relations with 
KI taken as proportional to coi, K2 to C02, should also be 
valid, since (50) indicates that the response function 
will still fall off fast enough as |coi|, |co2| —> °°. One 
may conjecture that the dispersion relations (55), etc., 
hold also for the complete quadratic polarizability, with 
the K'S on which it depends governed by the actual 
CO(K) functions. 
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