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A cluster series is derived for the Heisenberg ferromagnet. The theory is evaluated in zero order, for 
two-spin clusters, and for three-spin renormalized clusters. The zero-order result is the Weiss molecular 
field approximation, and the two-spin cluster is identical to the constant coupling approximation. The three-
spin cluster result does not coincide with any existing phenomenological cluster approximation. The origin 
and nature of the inconsistencies in the phenomenological cluster methods (Oguchi, Bethe-Peierls-Weiss, 
etc.) is discussed. 

I. INTRODUCTION 

THE statistical mechanics of a simple Heisenberg 
ferromagnet has been rigorously analyzed by 

Dyson1 in terms of a series expansion in powers of T 
(the spin-wave solution), valid at low temperatures, 
and by Opechowski,2 and Brown and Luttinger,3,4 in 
terms of a series expansion in 1/T, valid at high tem
peratures. Each of these solutions is valid only far from 
the transition temperature and, therefore, various 
approximations have been proposed to study the be
havior at intermediate temperatures. Most of these are 
of the small cluster type. Our purpose here is to study 
the nature of the small cluster approximations and, as a 
standard of comparison, to derive a cluster series from 
a direct expansion of the partition function. The two-
spin and three-spin cluster results are explicitly evalu
ated, giving Curie temperatures for representative 
lattices with nearest neighbor exchange and spin §. 
These results differ from the common cluster results, 
such as those obtained by the Oguchi5 and Bethe-
Peierls-Weiss6,7 (BPW) methods, both of which con
tain internal inconsistencies. The nature of those in
consistencies will be discussed. 

The zero-order result of the theory is the Weiss 
molecular field approximation, and the two-spin cluster 
result is identical to the constant coupling approxima
tion of Kasteleijn and Van Kranendonk.8 The three-
spin cluster results make significant changes in the 
Curie temperatures (relative to the two-spin cluster 
results). 
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Expansion in spin-deviation operators implicitly re-
normalizes the clusters, summing into the clusters 
certain classes of diagrams actually lying outside the 
clusters. In particular the zero-order approximation im
plicitly sums all tree diagrams,9 corresponding to the 
high-density limit. Because of this renormalization the 
cluster expansion, which is nominally a low-density 
expansion, contains at least some elements of a high-
density approximation as well. 

We hasten to stress that our purpose is to analyze 
existing cluster approximations, deriving a rigorous 
cluster series in the process; we do not claim that the 
leading terms of this series are a satisfactory approxima
tion for dense ferromagnets. In fact, in dense ferro-
magnets the long loop diagrams almost certainly 
dominate the ladder diagrams of the cluster methods at 
temperatures below the Curie temperature.9 In suffi
ciently dilute ferromagnets, on the other hand, small 
clusters dominate at all temperatures. 

II. CONVENTIONAL CLUSTER APPROXIMATIONS 

To establish a basis of discussion we briefly summarize 
several representative cluster approximations, selecting, 
in particular, the Weiss molecular field approximation 
(a single-spin cluster), the Oguchi first approximation 
(a two-spin cluster), the Oguchi second approximation 
(a three-spin cluster), and the Bethe-Peierls-Weiss 
approximation (a cluster consisting of a spin and all 
of its nearest neighbors). 

The given problem is described by the Heisenberg 
Hamiltonian 

X— —gfxoH 2_,i SiZ—2 2L(i,j) Jij&i' &j, (i) 

where g is the Lande factor, /z0 the Bohr magneton, and 
H is the magnetic field, which is assumed to be in the 
negative z direction. The first summation is over all 
lattice sites i, and the second over all pairs of sites (i,j). 
The exchange integral J a is assumed to be a function 
of the distance between the sites i and j (not restricted 
to nearest neighbors), but of such a sign and magnitude 

9 G. Horwitz and H. B. Callen, Phys. Rev. 124, 1757 (1961). 
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that the ground state of the system is one in which the 
average value of Siz, (Siz), is equal to +S for all i, 
S is the magnitude of the spin on each site. 

In principle, the solution is provided by the density 
operator 

p=exp(-/33C)/tr exp(-/33C), (2) 

which determines the magnetization, or the average 
value of Sz, by 

(Sz)=tvSizP. (3) 

The conventional cluster methods generally proceed 
by selecting some small cluster of spins and by replacing 
the spin operators for all other spins in the Hamiltonian 
(1) by 

Sx=Sy=0, SiM=(S,). (4) 

The Hamiltonian, and thence p, thereby depends on 
(Sz) and Eq. (3) becomes an implicit or " self -consistent" 
equation for (Sz). 

The Weiss approximation10 selects a cluster consisting 
of a single spin, so that the cluster Hamiltonian becomes 

(5) 

(6) 

and where terms not involving the ith spin, being merely 
constants, are omitted. As the trace in Eq. (3) now 
involves only the summation over (25+1) states, 
evaluation is simple, yielding the familiar equation 

where 

(Sz)=SBs(pS(g»oH+2J0(Sz))), 

where Bs(x) is the Brillouin function 

1 r / 2 S + 1 
Bs(x)=—\ ( 2S+ l ) co th ( x 

2SL \ 2S )-C°th©. 

(V) 

(8) 

The Oguchi first approximation selects a cluster of 
two nearest neighbor spins. The cluster Hamiltonian 
then becomes 

3 C e i « > = - 2 / S r S , 

-gJ H+ (Sz) KSu+Su), (9) 

where / is the value of the exchange integral for nearest 
neighbor spins and / 0 is defined in Eq. (6). In the 
special, but commonly considered, case in which J a is 
zero except for i and j nearest neighbors, the quantity 
(Jo—J) becomes J(z— 1) where z is the number of 
nearest neighbors. Again the trace in Eq. (3) can be 
evaluated easily, giving for spin \ 

(Sz)=±(Slz+S2z) 

sinh(/3gAio#eff) 

2\e^J cosh(/3/)+cosh(PgnoHett) > 
(10) 

where #eff is the expression in large parentheses in 
Eq. (9). The Curie temperatures evaluated by solution 
of Eq. (10) are listed in Table I. 

An unfortunate aspect of this theory is the fact that 
it predicts a Curie temperature for all lattices (as does 
the molecular field theory), whereas one-dimensional 
lattices with nearest neighbor interactions, for instance, 
cannot be ferromagnetic. 

The Oguchi second approximation selects a cluster 
of three spins. For simplicity we restrict the description 
to the case of nearest neighbor exchange only. The 
cluster is selected so that spins 1 and 3 are nearest 
neighbors of spin 2 but not of each other. Then the 
cluster Hamiltonian is 

3Col ( 8>=-2/(Si-S2+S2-S8) 
-2J(z-l)(Sz)(Slz+Szz)-2J(z-2)(Sz)S2z 

-gHoH(Su+Su+S*,). (11) 

The trace in Eq. (3) can be evaluated for spin | giving 

(Sz) = J t r ^ i a + S ^ + S a * ) 
Xexp(-/33Cci<

3>)/tr exp(-#*Cci (3)), (12) 
where 

tr(Slz+S2z+Ssz) exp(-#K!.cl<
3>) 

= 3^ J s inh [ /3 / (32 -4 ) (5 , ) ]+s inh [ /3 / ( s -2 ) (5 , ) ] 
+ r - W J p [ i - 2 ( ^ i ) < s . > ] c o s h Q / 3 / ( ^ ) 2 _ . 4 ^ ) + 9 ) i / 2 ] 

_e-~hmi+Hz-i)(sz)i c o s h [ ^ / ( ( ^ ) 2 + 4 ( ^ ) + 9 ) 1 / 2 ] , 

(13) 

TABLE I. Values of 2kTc/zJ for various lattices, hi is the hexagonal layer lattice (z = 6); sc, simple cubic; 
bcc, body-centered cubic; fee, face-centered cubic. 

Weiss molecular field 
Oguchi two-spin cluster 
Oguchi three-spin cluster 
Bethe-Peierls- Weiss 
Kramers-Opechowski 
Our 2-spin cluster (constant 
Our 3-spin cluster 

coupling) 

Linear 
chain 

1 
0.625 
0.518 
none 

none 
none 

Square 

1 
0.845 
0.865 
none 
0.55 
none 
0.572 

hi 

1 
0.933 
0.937 

0.58 
0.607 
0.532 

sc 

1 
0.933 
0.937 
0.617 
0.61 
0.607 
0.694 

bcc 

1 
0.930 
0.965 
0.725 
0.70 
0.721 
0.762 

fee 

1 
0.955 

0.822 
0.775 

J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford University Press, New York, 1932). 
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and 

tr exp(-/?3eei<
3>) 

= 2 e " cosh | j3/(33-4)(5,>]+2 cosh[/3/(z-2)(S*>] 
+2e-*^t1-2<2-1K^coshR)3/((1S'z)2-4<52)+9)1 /2] 
+2e-i^[1+2<2-1X^>]cosh[i(3J((5,)2+4(>S'2}+9)1/2]. 

(14) 

The Curie points evaluated by solving Eq. (12) are 
given in Table I. 

The cluster selected in the Bethe-Peierls-Weiss ap
proximation consists of a central spin So and all of its 
nearest neighbors. The cluster Hamiltonian is of the 
form 

3CoiBPW= - 2 / S o - E Si-gHoHSoz-gvoH! f Si„ (15) 
i=l i=l 

where Hi is the effective field acting on an ion in the 
first shell by virtue of its exchange interaction with 
ions outside this shell. For simplicity of exposition we 
have assumed, as we did implicitly in the Oguchi 
second approximation, that the lattice is such that 
triangular configurations of nearest neighbors do not 
exist. Rather than evaluating Hi by replacing the spin 
operator of external ions by (Se), as done in the cluster 
methods described above, the BPW method evaluates 
Hi by requiring that 

(Siz)=(S0z). (16) 

That is, the spin average of an ion in the first shell, 
(SiZ), is required to be equal to that of the central ion. 
The Curie temperatures found by this method are 
listed in Table I. 

The BPW theory has the catastrophic property11 

that the system ceases to be ferromagnetic below a 
certain temperature (the "anti-Curie" temperature), 
thereby violating the third law of thermodynamics. 

III. THE CONSISTENCY CRITERION OF KASTELEIJN 
AND VAN KRANENDONK 

Although cluster methods generally assume a value 
of (Sz) and evaluate it self-consistently, or apply a 
similar "self-consistency condition" such as Eq. (16), 
this is certainly no guarantee of the complete con
sistency of the resultant theory. In fact, the strange and 
impossible behavior predicted at low temperatures 
points to the fact that the theories are internally incon
sistent. The nature of this defect in the theories has 
been analyzed by Kasteleijn and van Kranendonk.8 

They point out that the thermodynamics of the system 
is completely determined by the two-particle density 
matrix pij, which is the projection of the full density 
matrix p on the two-particle subspace. If p# is written 
in the form 

Pa= e x p ( - / 3 ^ y ) / t r exp(-/3Je#), (17) 
11 P. W. Anderson, Phys. Rev. 80, 922 (1950). 

then Stij is related to the full Hamiltonian in a very 
complex fashion. I t is, of course, this operator 3C# 
which the cluster methods attempt to compute by re
placing some of the spin operators in the Hamiltonian 
by their average values. In the case of spin J, Kasteleijn 
and van Kranendonk observe that 3C# must be of the 
form 

&<,-= -2AiSr $j-2A2SizSjz-gnoAz(Siz+Sjz), (18) 

where Ai, A 2, and A% can be functions of the tempera
ture and of the externally applied field. Furthermore, 
the three functions are subject to a consistency condi
tion derived by requiring that (Sz) be the same when 
computed in either of two ways; first, by computing 
(Sz) = htr(Siz+Sje)pij; and second, by differentiating 
the free energy with respect to the field (the free energy 
being obtained from the average value of the energy, 
which, in turn, is obtained by averaging the Hamil
tonian over the two-particle distribution p#). In the 
"constant coupling approximation" Kasteleijn and van 
Kranendonk attempt to guess a consistent set of 
values of Ah A2, and A%\ for nearest neighbor inter
action they select Ai=J and ^ 2 = 0 and compute A3 
from the consistency condition, finding 

s - 1 /1+2<S.>\ 
zA*=H+ ln( J. (19) 

g/xtf \ 1 - 2 < S , ) / 

However, we are not concerned with the constant 
coupling approximation at this point, but rather with 
the implications for the cluster methods of Kasteleijn 
and van Kranendonk's relation among A±, A 2, and A 3. 
The Weiss approximation corresponds to 

Ai=A2=0, Az=H+2Jz{Sz)/gfjio, (20) 

as is easily seen by comparison of Eqs. (18) and (5); 
these values do, indeed, satisfy the Kasteleijn and van 
Kranendonk condition. The Oguchi first approximation 
corresponds to the same values of A1 and A 2 as chosen 
by Kasteleijn and van Kranendonk in their constant 
coupling approximation, but A 3 is given by the incon
sistent value 

Az=H+l2J{z-l)/g^-](Sz\ (21) 

rather than by Eq. (19). Similarly, the Oguchi second 
approximation and the Bethe-Peierls-Weiss approxima
tion give density operators which are inconsistent in 
the sense of Kasteleijn and van Kranendonk's condi
tion. Only the Weiss single spin cluster provides an 
acceptable approximation to the density operator. I t is, 
therefore, of some interest to derive a cluster series 
which gives a self-consistent density operator for every 
order of cluster, and which follows in a logical and 
direct way from basic principles, without ad hoc 
assumptions. 
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IV. HAMILTONIAN 

We divide the Hamiltonian (1) into an unperturbed 
part and a perturbation term by introducing an ex
pansion parameter 

er^S-S* . (22) 

S is a parameter whose best value will be determined by 
minimizing the free energy F. In contrast to a previous 
theory9 involving a similar parameter, S will not turn 
out to be equal to (Sz) so that <Ti is not simply the 
deviation of the spin from its average value; we shall, 
of course, return to this question of interpretation subse
quently. We note, however, that choosing S to minimize 
the free energy will allow it to somehow embody the 
behavior of ions outside of the cluster, and we shall 
find that S plays the role of an internal field acting on 
the spins of the cluster. 

The Hamiltonian becomes 

2 2_, (i,j) JiJlP'iO'j'r &i 'Oj O izujzjy (23) 
where 

E0= -gvoHNS-NJoS, (24) 

L=gfxoH+2JQS, (25) 

and N is the total number of lattice sites. We choose 
as the unperturbed Hamiltonian those terms which are 
linear in the spin deviations, defining 

3C = 3C0+F, (26) 
where 

3Co=£o+LX>*-, (27) 
and 

V = — 2 Yl (ij) Jij\JT%crj-{- Si - Sj— SiZSjZ~], (28) 

This choice of the perturbation is reasonable, as the spin 
deviations are presumably small, whereas S»- Sj—SiZSjz 

= SixSjX+SiySjy and the transverse components of the 
spin fluctuate around zero. 

We now define the unperturbed free energy Fo, 

-f3Fo = In tr exp(-/33C0), (29) 

and the correction term 

- / 3 F ' = - / 3 F + / 3 F 0 

= ln tr exp(—j83C) — ln tr exp(-/33C0). (30) 

The unperturbed portion of the free energy is easily 
evaluated and gives 

-(3Fo= -$NJoS2+N ln$, (31) 
where 

$=trePL8i». (32) 

Since Ho and V commute, we get 

tr exp(-/33Co) exp(-/37)~| 

trexp(-pHo) J 

= mtrpo<r^=ln<6f-^>. (33) 

Here 
po=exp(-/?5C0)/tr exp(-/35C0) (34) 

and the average is defined with respect to this unper
turbed density matrix, i.e., 

(A) = tvpoA. (35) 

V. ZERO-ORDER APPROXIMATION: 
THE MOLECULAR FIELD 

Before expanding the perturbation F' in a cluster 
series, we evaluate the zero-order or unperturbed free 
energy Fo, as given in Eq. (31). The proper value of S 
is found by minimizing Fo, which yields directly 

d 
S= ln$=SB a(pS(gwJB+2Jjg)), (36) 

where Bs is the Brillouin function defined in Eq. (8). 
To evaluate Mo, the magnetization, we use the relation 

M=-dF/dH, (37) 
which gives 

d 
M0= Ngpo ln$=NgfxoB, (38) 

d(PL) 

the second equality following from Eq. (36). Thus, S is 
identified as the average value of Sz, or (Sz). This rela
tion, together with Eq. (36), identifies the zero-order 
approximation of the theory as identical to the Weiss 
molecular field approximation. In reference 9 it has 
been shown that the Weiss result corresponds to the 
summation of all Cayley trees (all diagrams having no 
closed loops) and that this summation is carried out 
implicitly by the evaluation of S. 

VI. CLUSTER EXPANSION OF Fr 

Having identified the zero-order free energy in terms 
of the Weiss theory, we proceed to expand — pFf in a 
cluster series. This is done by expanding it first in 
clusters of linkages (or spin pairs), after which it is 
quite easy to regroup the terms of this series so that 
they refer to clusters of spins. 

From Eq. (33) we note that — PF' can be written in 
the form 

-^'=ln<exp(Ea<2«)>, (39) 

where the index a numbers the pairs (ij) or "links" in 
the crystal. Thus, a takes N(N—l)/2 values, where N 
is the number of ions. The expansion of —fiFf as a sum 
of contributions from each distinct cluster or set of 
linkages {a} in the crystal can be written 

- / 3 F ' = E [ - /3F ( a } ] , (40) 
{«} 

where the contribution from the cluster {a} is given by 

- 0 F { „ , = E ( - l )M-[» ' l l n<ex P ( I> Qa.)). (41) 
(«'} 
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The sets of links {«'} over which the summation is to 
be carried constitute all subsets of the set {a}. The 
symbol [a~] denotes the number of links in the set {a}, 
and similarly for [a!~]. Finally, the summation over a! 
in the exponential clearly goes over all links in the 
set {a!}. 

The cluster expansion of Eqs. (40) and (41) has been 
given by Horwitz and Callen12 and by Kubo.13 The 
proof of Horwitz and Callen is based on a direct dia
grammatic expansion of —/3F\ and a resummation into 
the cluster series; this proof is indicated in Appendix I. 
An alternative simple proof is given below. 

We carry out the proof in two steps. We first show 
that — fiF' is given by the series claimed, without re
gard to the significance of the terms —/3F{a}. We then 
show that —pF[a} does represent the contribution of 
the cluster {a}. To carry out the first step we substitute 
Eq. (41) in the right-hand member of Eq. (40) 

E [ - W a ] ] = E S ( - l ) [ f l H ° ' 1 ln(exp(E &,')>. (42) 
{a} {a} {a'} a ' 

We now group together all those sets {a} for which the 
number of links has some particular value I. We indi
cate the number of links of a set {a} by the subscript /: 
{a} i. Then the sum over sets {a} can be done in two 
stages, first summing over all sets {a} i of a given / and 
then summing over all I [from I— 1 to L=N(N—l)/2]. 
Thus, 

E [ - / ^ « } > i ; ( - i y E E ( - i ) * 
{a} 1=0 {a} i m=0 

X £ ln(exp(E Q*)). (43) 

L I L L 

The double sum E E ( ) is equivalent to 52 E ( )> 

and replacing the summation index / b y V = L—l this, 
L L—m 

in turn, becomes equal to 1] E ( )• Correspondingly, 
m=0 1=0 

w 

L L—m 

= E (-I)"1 E ln(exp(£ &)> £ £(-!) ' • (44) 
m=0 {a)m a 1=0 {a'}i 

The summation E is the number of ways of 
W)i /L\ 

choosing I objects out of L, or f J. The summa-

^~m fL\. 
tion E (~~ l ) z( " /is the binomial expansion of (l — x)^~m, 

1=0 \ 11 
with x— 1; that is, it is equal to zero except for m=L, 

12 G. Horwitz and H. B. Callen, Bull. Am. Phys. Soc. 7, 218 
(1962). 

13 R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962). 

in which case it is unity. Thus 

E l-PF{a]-]=t Z ln(exp(E Qa))SmL 
{a} m=0 {a}m a 

= ln<eXp(£e*)>. (45) 
a 

As the right-hand member is — /3F' we have demon
strated the validity of Eq. (40). 

We now demonstrate that —f$F{a) has the signifi
cance of the "pure" contribution of the cluster {a}. 
That is, it not only contains all terms from the set {a}, 
but it contains no terms which arise solely from some 
smaller cluster embedded in {a}. In fact, the role of the 
subtracted terms in Eq. (41) is just to remove all these 
contributions of smaller clusters {a'} from — /3F{a}, 
leaving only the pure {a} contribution. To show that 
—/3F{a} contains no contribution from any subset 
{a!} smaller than {a} we merely demonstrate that if 
any single bond Q7 in {a} vanishes then the entire con
tribution —fiF{a) vanishes with it. Dividing —/3F{a} 
into two parts, one of which has all terms containing 
Q7 and the other of which has all terms not containing 
Qy, gives 

-m«)= E ( - ) [ a ] - M l n < e x p ( e 7 + E « ' , 0 ^ ) ) 

+ E ( - ) w - M l n ( e x p ( E a / ^ ) ) , (46) 

where the prime on the summation in the exponent in
dicates that 7 is not included in the summation. Letting 
Qy —> 0 we see that the two summations are the same 
except for an additional minus sign in the first, since 
\jx'2 in the first summation exceeds \W~\ in the second 
summation by unity. Consequently, —j3F{a} is the con
tribution of the pure cluster {a}; from the diagrammatic 
viewpoint it contains no diagram in which any link in 
{a} is unoccupied. 

Whereas the cluster series (40) has not been made to 
depend on the specific form of the average in Eq. (39), 
we now demonstrate that under certain specific forms 
of averaging the series (40) is restricted to linked or 
connected clusters only. In particular, if the density 
operator defining the average is factorizable into operators 
for individual links, or for individual vertices {spins), 
only linked clusters appear. This is obvious, for any un
connected cluster gives two additive and independent 
contributions to —f3F{a}. But since the total contribu
tion must vanish if any one bond in the cluster Qy 

vanishes, each contribution separately must vanish. 
Having now established the linked cluster series for 

clusters of links we can easily rearrange this into a 
cluster series for clusters of spins. For consider a cluster 
of spins {8}. Let {a}8 designate a set of links which 
can be drawn among the spins of {5}, in such a way 
that there exists some path from each spin to every 
other spin in {6}. Thus, if {5} is a set of three spins, 
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there are four sets of links {a} $. One set consists of three 
links, in triangular configuration. The other three sets 
each contain two links with a common vertex. Then the 
cluster series for sets of spins is clearly 

" ^ = E { * } CE{«j.(-^{«},)]=E(« L-m*}l- (47) 

VII. FIRST APPROXIMATION: CONSTANT COUPLING 

Successive approximations are made by taking pro
gressively larger linked clusters. The first approximation 
consists of a pair of spins. We show that the result of 
this approximation is identical to Kasteleijn and von 
Kranendonk's constant coupling approximation. The 
contribution to the free energy from all pairs is 

~ / M V = Z a j ) In(exp(2/3/^)>, (48) 
where 

&,= Sr Sj-S(Siz+Sjz)+S*. (49) 

For defmiteness we consider the case of nearest 
neighbor exchange only. There are then %Nz pairs, and 

= \Nz In tr exp(2/3/Q) exp(-~/33C0) 
- !Nzlntrexp(-£3eo) 

= i ^ s l n [ £ ; e x p ( - / ^ ) ] 
+Nz(3JS2-Nz\n$, (50) 

where it will be recalled that $ is defined in Eq. (32) 
and where the v% are the eigenvalues of 

3C (2)= = — 2J&i' OJ 
-ZgfjioH+2J(z-l)Sl(Siz+Sjz). (51) 

For the case of spin J these eigenvalues Vi are listed in 
Table IV where the subscripts (1,2,3) refer to the triplet 
state, while (4) refers to the singlet state of the two 
spins in the cluster. 

The two-spin cluster approximation to the free 
energy is thus 

- 0 F ( 2 ) = - 0 ( F o + / V ) 
= N(l~z) l n $ + | ^ l n [ E ^ - ^ ] - (52) 

Minimizing F&) with respect to S we find that S is 
determined by the solution of the equation 

txSize~~PLcri 

=tr£(Si.+S*)pw , (53) 
Xxe-PL<ri 

where 
P(2) = exp(-j33C(2))/tr exp(-/33e(2)). (54) 

When written out explicitly this condition is 

tanhB/3(g/x0F+2/Z>S)] 

ePJ $mh{l3[_g!xoH+2J(z-l)S1} 
=0. (55) 

cosbfiJ+ePJ cosh{/3[^0#+2/(z-l),S]} 
In the form of Eq. (53) the condition is subject to a 
physical interpretation; S is determined in such a way 

that the average value of Sz is the same when computed 
from either the one-particle density operator or from 
the two-particle density operator. Or, stated equiva-
lently, the choice of S is such as to insure that the pro
jection of the two-particle density operator onto the 
space of one particle is equivalent to the one-particle 
density operator; the equivalence referred to is that 
each of the resultant one-particle density operators 
must yield the same average value of Sz. 

The magnetization is computed by differentiating 
JF(2) with respect to H. Invoking Eq. (55) we, thereby, 
find 

M1/Ngfio=(Sz)=i tanh[J/3(g/*oH+2/»3)]. (56) 

This result is precisely of the same form as that found 
for a single-spin cluster (the Weiss result) for spin ^, 
except that S replaces (Sz) in the right-hand member. 
Thus, S determines an effective internal field acting 
on the spins of the cluster. 

At this point we observe that we have, in fact, 
derived the constant coupling approximation. For the 
cluster Hamiltonian 3C(2) [Eq. (51)] which determines 
the two-particle density operator [Eq. (54)] is of the 
form of Eq. (18) with 

2 / ( * - l ) 
At=J, A2=0, and A3=H+ S, (57) 

which, incidentally, again demonstrates the role of S as 
determining an effective internal field. Solving Eq. (56) 
for S we find 

_ gn,H 1 /l+2<5.>\ 
S= + In — ) . (58) 

2Jz 2pJz \1-2(SZ)J 
Substitution of this value into Eq. (57) for S, and 
comparison with Eq. (19), then demonstrates that the 
two-particle density operator is identical to that of the 
constant coupling approximation. 

In contrast, we recall that the values of A1, A 2, and 
A 3 which are predicted by the Oguchi two-spin cluster 
approximation [Eq. (20)] are similar to those of Eq. 
(57), except that 8 is replaced by (Sz). 

The Curie temperature is easily found8 to be 

*rc=2/Ki)r (59) 

and values are tabulated in Table I. It is to be noted 
that the condition that a lattice be ferromagnetic is 
that the number of nearest neighbors must exceed four— 
an improvement on the Oguchi two-spin cluster pre
diction that all lattices are ferromagnetic. 

VIII. THREE-SPIN CLUSTERS 

The next approximation represents clusters consisting 
of three spins. The two types of pure diagram, or clusters 
of links, which are associated with clusters of three 
spins, are triangles and a joined pair of links. 
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TABLE II. The contributions of various site configurations-to a r e nearest neighbors. Adding all three-vertex dia-
the free energy for the case of nearest neighbor interactions. Sites 
(i,j,k) connected by links are nearest neighbors; those uncon
nected are not nearest neighbors. z\ is the number of common 
nearest neighbors that two sites have when they themselves are 
nearest neighbors. 

grams gives 

Nzzi 

3! 
• ln(e5 .2/SJ(Ql2+Q23+Q3l) 

Type of diagram 
Number of 
diagrams 

Contribution to 
free energy 

(1) i, j , k, each a n.n. of Nzzi/3! 
one another 

]n(g2,9/(Q12+(223+Q3l)) 

-31n<cW^> 

(2) *, k n.n. of j but not (Nz/2) (s-zi-1) ln(c»^Wi>+«»)> 
of each other - 2 l n ( ^ ^ > 

(3) i, j n.n. of each other 0 
but k not a n.n. of 
either 

(4) i, j , k not n.n. 0 

From Eqs. (40) and (41) the contribution of the pure 
triangles to —/3F' is 

J2 r\n(e^(JiiQi3'+j3'kQik+JkiQki))—\n(e2P(JiiQii+Jj'kQik)) 

+! i \ f e ( s -2 i - - l ) In(e2^i2+Q23)) 

+±Nz(z1-2z+2) \n(e^JQ). (63) 

Adding this to the zero-order and two-vertex free 
energy, —(3Fo+(Nz/2) \n(e^JQ), gives our three-vertex 
approximation for the free energy 

-pFw = -0NJzB*+Nh&+iNz(z1-2z+3)]n(#ej(>) 

+iNz(z-Zi-l) ]n(#WQi**-Q**)) 

Nzzi 

3! 
• ln(tf2i >$J (Qu+Qn+Qzi) > (64) 

--Nco lr&+Nza InCD e~""] 

+Nsc» InZZi e-^q+Nzc3 l n E * « r" 'w] . (65) 

. , , „„r „ s . , , „or ^ v , , / .» , « 4-, / , N The coefficients a are listed in Table I I I . with their 
+ I n < ^ ^ ^ (60) y a l u e s f o r v a r i Q U S l a t t k e s > T h e Vi a r e t h e ' e i g e n v a l u e s 

where the summation is over all lattice triplets. The o f H™ CEq. (51)]. The „,- are the eigenvalues of 

contribution of the pure F-linked diagrams to -$Ff is 3e (8) (1)= —2/(Si- S 2 +S 2 - S 3 +S 3 - Si) 

-LgHoH+2J(z-2)S'](Slz+S2Z+Szz), (66) 

and the X» are eigenvalues of 

3C ( 3)< 2 >=-2/(SrS2+S 2 .S 3 ) 
-ZglxoH+2J(z-l)8l(Slz+Stz) 

-\jnon+2J(z-2)Sr\S2,. (67) 

T) nn(^2^(Ji?e^'+/^<??'fc))+ln(e2'8(J'^Q^+,7';i;i'QA;t*)) 
(ijk) 

-\-\n(e2P(JkiQki+Ji3'Qij)}—2 \n(e2PJiiQii) 

-2 \n(e2^k^k)-2 \n(e^Jk^J (61) 

The total contribution of all pure three-vertex diagrams 
is, therefore, 

- 0 F ( 3 / = E (ijk) [ l n ( e 2 ^ ^ ^ + ^ t o + ^ t o ) ) 
The fa arise from the first type of triplet (triangles of 
nearest neighbors); the X» from the second type (V's 

—ln<62^-,'^"<2<'>—ln^jr'*G'*>—ln<^Jr*^**>]. (62) of nearest neighbors). The eigenstates of 5C(3)
(1) for 

. . spin J are well known14; four states (1 to 4) of Stot=§ 
Assuming nearest neighbor interactions only we find a n d f o u r s t a t e s ( 5 t 0 g ) o f ^ ^ Fom eigenstates of 

that four types of triplets exist m the lattice. These are ^ (2) for s p i n i c a n e a s i l y b e g u e s s e d ? 

listed m Table I I along with the frequency of occurrence 
of each type and the contribution to the free energy of | l )=a i a 2 a 3 ; 14)= 2~ll2(aia$z—/3ia2a3); 
a single diagram of this type. The last two typesgive |8> = ftftfc; \S)=2^2(a^z-^2az).

 ( 6 8 ) 

no contribution to the free energy so that their weights 
are not listed. Z\ is the number of common nearest Their eigenvalues are easily found; the four others can 
neighbors that two sites have when they themselves be found by diagonalizing the two-by-two matrices 

TABLE III . The coefficients a [of Eq. (65)] for various lattices. 

Co 

C\ 

C2 

c% 

i O - 1 ) 0 - 2 ) 
J ( Z l - 2 2 + 3 ) 
J ( * - * i - l ) 
2l/6 

Linear 
chain 

0 
i 
2 
1 
2 

0 

Square 

3 
- 5 / 2 

3/2 
0 

hi 

10 
- 7 / 2 

3/2 
1/3 

sc 

10 
- 9 / 2 

5/2 
0 

bcc 

21 
- 1 3 / 2 

7/2 
0 

fee 

55 
- 1 7 / 2 

7/2 
2/3 

14 F. Mandl, Quantum Mechanics (Butterworths Scientific Publications Ltd., London, 1957). 
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TABLE IV. Eigenvalues of effective cluster Hamiltonians. The vi are eigenvalues of 3C(2) [Eq. (51)]; 
M are eigenvalues of 3C(3>(1) [Eq. (66)]; X; are eigenvalues of 3C(3>(2) [Eq. (67)]. 

M2=-feMo#-f/-/S(3-2) 
/z3 = kMo^- | /+/5(2-2) 

Az4=fgMoi3r-f/+3//§(2-2) 
/X5,M7= -igHQH+§J-j8(z-2) 
»Ws = ig»oH+iJ+JS(z-2) 

Xi= -ig»oH-J-JS(3z-4) 
\2=-hg»oH+iJ-JS(z~l)-iJTo» 
\z=-igHoH+iJ-JS(z-l)+%JTo 
^=-igfiQH-JS(z~2) 
\t> = hu>oH+JS(z-2) 
X6 = kMoi?+i/+//§(2-l)+i/r1b 
X7 = ig»QH+iJ+JS(z-1) - iJTi 
X8 = fgMoH-/+/S(3z-4) 

V2~iJ 
vz = g»oH-iJ+2JS(z-l) 
V4 = f / 

a To =[452 - 4 S +9]1/2. 
bri=C452+45+9]V2. 

formed by taking 3C(3>(2) between pairs of the basis 
states 

|2)=2-1/2(a1aA+/31«2a3), 

|3>=a1/Jaa8, 
|6>=j8iatf8,

 l 

|7)=2-1/2(a1/?A+^2a3). 

The eigenvalues /x* and X; thus found are listed in 
Table IV._ 

Again S is determined by setting dF(z)/dS=0. This 
gives the following expression for S as a function of 
temperature and field: 

d 
J Co tznh$l3gnoH+l3JzS)-ci— In £ e~^vi 

dS * 

—C2—In S e_/3Xi-
dS i 

•C8—lnE^"*=0, (70) 
AS * 

where 

£< *-**=2^/» cosh[/%M0#+2/3/5(2-1)] 
+2e-^/ 2 cosh/37, (71) 

£ . e~^=2e?J coshCij9g/*off+i8/S(3«-4)] 
+ 2 coshQtoo^+/5/>S(s-2)] 
+2 expB^off -WS(»-1)] 
Xcosh[Ji5/(4>S2-4S+9)1/2] 
+ 2 e x p [ - i / ? g M o f f - W - ^ S ( s - 1 ) ] 

Xcosh[^/(4>S2+4>S+9)1/2], (72) 

£< e-en^ I$W<L cosh[%(3gfxoH+WS(z- 2)] 
+2((?fiJi2+2e-wJf2) 

Xcosh[ii8gMoH+j8/S(a-2)]. (73) 

The magnetization is found by differentiation of F&) 
with respect to H, whence, 

M=±NgnQc0 tznh(iPgfioH+pJzB) 

d 
•Nzci—lnDer^-

dH i 

d 
•Nzc2—ln^er^ 

dH i 

dH i 
(74) 

The Curie temperature is defined as the temperature 
at which, for zero applied field, the susceptibility 
diverges 

X 

The susceptibility x is given by 

1 dM IrdM dM dS-l 

N dH NLdH dS dHA 

(75) 

(76) 

Now we note that for zero external field S=0 is a solu
tion of Eq. (70), and correspondingly M=0. Thus, in 
evaluating the right-hand member of (76) at Tc we put 
8=0. Examination of the derivatives (SM/dH)H=s=o 
and (dM/dB)H=s=o shows that they are always 
bounded. Hence, the divergence of x must result from 
the divergence of the derivative (6S/dH)H = s=o. In 
order to investigate this derivative we note that Eq. 
(70) which determines B is of the form 

g(j3,H,S) = 0. (77) 

Taking the total derivative with respect to H we get 

dg __ dg dg dS ^ 

dH dH dSSH 
(78) 
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TABLE V. The coefficients afi) [0f Eq. (88)] for various lattices. 

do 

ai 

a2
(0) 

Oa® 

a2
(3) 

a2
(4) 

a3 

\z(z-l){z-2) 
2(z-iy(zl-2z+3) 
l(*-J)»(*-*i-l) 
l(z-2y(z-Zl-i) 
l(z-t)*(z-*i-l) 
(4/27) (*-«! -1) 
(l/12)21(a-2)« 

Linear 
chain 

0 
- 2 

4/9 
0 

10/9 
4/27 
0 

Square 

6 
- 9 0 

25/3 
3 

160/3 
4/9 
0 

hi 

30 
- 3 5 0 

64/3 
12 

490/3 
4/9 
8/3 

sc 

30 
- 4 5 0 

320/9 
20 

2450/9 
20/27 

0 

bcc 

84 
-1274 

847/9 
63 

7000/9 
28/27 

0 

fee 

330 
-4114 

2026/9 
175 

17920/9 
28/27 

100/3 

Solving for dS/dH we find that the pole of the sus
ceptibility occurs at the root of dg/dS. Therefore, the 
equation for the Curie temperature is 

(dg/dS)p=ee.H = 3=o=0. (79) 

Performing the indicated operations and setting y=e$cJ 

gives the following equation for the Curie temperature: 

Li+3yJ 

x a2
(o)+02<

2y+tf2
(3y+a2(4)' 

( J 3 - 1 ) -

ln^ . 

+a3 =0, (80) 
L l+ys J 

where the coefficients di(j) are given in Table V for six 
representative lattices: linear chain, square layer, hex
agonal layer, simple cubic, body-centered cubic, and 
face-centered cubic. Equation (80) has been solved 
numerically for the Curie point, and the values of Tc 

are listed in Table I. Only one critical temperature is 
found for each lattice so that there are no anti-Curie 
temperatures such as those found in the Bethe-Peierls-
Weiss approximation. 

For the face-centered cubic lattice the Curie tempera
ture predicted by successive approximations (zero-
order, two-spin, and three-spin clusters) decreases 
monotonically, but the predicted Curie temperatures 
for both the simple cubic and body-centered cubic 
lattices oscillate. As indicated in the introduction, suc
cessive cluster approximations should not be expected 
to converge rapidly for the dense ferromagnet, and in 
fact they do not appear to do so. 

The high-temperature susceptibility can be expressed 
in the form 

X=lP(g»o)2ZAn(i3J)\ (81) 

The coefficients Asn are listed in Table VI, up to w=4, 
for sc, bcc, and fee lattices. The exact values, and the 
values predicted by other approximation methods, are 
also given. Our results for three-spin clusters are exact 

to order /34, whereas the constant coupling results are 
exact only to order /33. However, the two-spin cluster 
results are correct for /54 for those lattices which have 
no triangular configurations of nearest neighbors. I t is 
also of interest to note that for the fee lattice the three-
spin cluster results are an improvement over the two-
spin cluster results for the coefficient of /35, but that 
the accuracy becomes slightly worse for sc and bcc 
lattices. 

Finally, the zero-temperature behavior of the mag
netization is of interest. As in the constant coupling 
approximation, the magnetization curve undergoes a 
small but definite increase as the temperature de
creases through the region kTo^g^H. Consequently, 
the limiting T= 0 value depends upon the relative order 
in which T and H approach zero. If T goes to zero more 
rapidly than H, then 

MT=Q = hNgfxo(co+ 2zci+Szc2+ Szcz). (82) 

As can be corroborated by reference to Table I I I , the 
bracketed quantity is identically equal to unity for all 
lattices, so that the magnetization reaches its absolute 
saturation value at T— 0. If H goes to zero more rapidly 
than T, however, the limiting magnetization is slightly 
less than the absolute saturation value. 

TABLE VI. Coefficients in the high-temperature expansion of the 
susceptibility x = i/3 (&uo)2 2 A »(pj)n. 

A 

sc: MF a 1 
exact J 
2-spin J 
3-spin ] 

bcc:MF J 
exact ] 
2-spin ] 
3-spin 

fcc:MF J 
exact 
2-spin 
3-spin 

0 A! 

i 3 
i 3 
i 3 
L 3 

L 4 
[ 4 
L 4 
L 4 

I 6 
L 6 
[ 6 
I 6 

A2 

9 
6 
6 
6 

16 
12 
12 
12 

36 
30 
30 
30 

Az 

27 
11 
11 
11 

64 
34.67 
34.67 
34.67 

216 
138 
148 
138 

A, 

81 
20.63 
20 
23.13 

256 
95.83 

100 
105.83 

1296 
608.25 
730 
63S.75 

1 Molecular field. 
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APPENDIX sultant series in (A2) gives 

In this Appendix we briefly indicate the direct dia- 1 
- j 8 F ' = l i m E I I ( - / 3 A ; ) p " l n t r p 7 , (A6) 

{7)-0 {Pij} W) Pyl 
grammatic derivation of the cluster expansion [~Eq. 
(41)], as given by Horwitz and Callen.12 

The perturbative free energy —(3F' is (~Eq. (33)1 , , . 
where the summation is now over all sets of non-

- / 3 F , = l n ( e x p ( - / 3 E ( ^ ) ^ y ) ) negative integers P # ; the restriction on the sum of the 
= m trpoexp(—/?£(#) 3C#). (Al) P # implicit in (A5) has disappeared in (A6) by virtue 

of summing over n. 
The expansion (A6) can be represented diagram-

(A2) matically. To do so for a particular term we simply 
draw Pij bonds between vertices i and j for each integer 

I t is convenient to rewrite this in the form 

-j8F'= lim e x p ( - 0 £ . D * O l n t r p T , 
{7}-»0 (ij) 

where 

and 
p7=po exp(— X ( « ) yijWij), 

Dij=d/dyij. 

(A3) 

(A4) 

The identity (A2) is evident when we recall that e~PDi> 
is the operator which replaces y# by 0. Expansion of the 
operator exp(—/?£(#) Dy) in a power series leads to 
powers of GCctf) J9#), which can be expanded in turn 
by the multinomial expansion 

( p « N ! E I I - V 8 , (A5) 
%J %3 xi' The sum of all diagrams on three-spin clusters con-

where the summation is over all sets of non-negative taining at least one bond on each link (i.e., pure tri-
integers Pij satisfying Y^w) P%j=n. Inserting the re- angles) is 

Pij in the set {Pij} corresponding to that term. 
The diagrams can be arranged to pertain to clusters. 

Thus, the sum of all two-spin cluster diagrams clearly is 

—/3F (2/= Hm X £ l n t r p r 

{7}-»o (.a) pt-/=o Pi5\ 

= lim{7}_»0 Z(ti) exp(—$Di3) In trp7 

= E(*i) In trp0 exp(—j83C#) 

= E(u) ln(exp(—|85C<y)>. (A7) 

Hm E E 
(-PD«)P« {-pDjk)

p* (-UDu)p" 
• In trp7 

= lim E [ 23 
{7)-»0 (.ijh)LPii.Pik,PkV< 

Piil Pjh\ Pki\ 

(-pDij)F« {-m*)Pik (-/3Z>«)PM 

- E 
P,k,Pki=0 

0 i V 

(-j3DA)p '» ( - / 5 2 ? K ) P « 

Py*! P K ! 

- {.-fiDtiY*' (-pDik)
p* 

In trp7— E In trp7 
Pii,P,k=0 Pijl Pjk\ 

Piu\ Pki\ 

. (-0D>dPHX-pDij)p« . i-PD«)Pit 

In trp7— 53 m t r p 7 + 23 In trp r 
P*i,P«=0 Pjy! Pij\ Pij-0 Py ! 

» (-|8D,*)P '» . (-0Dki)
Pk 

+ E lntrpT+ 23 -
P*=O P,*! PK-O P, 

5 « ) p " 1 
In trpy (A8) 

= E Dn(exp[-^(3C iy+3C^+3Cw)]}-ln(expC-/3(3C i i+3C^)]}-ln(exp[-/3(3CJ- fc+3Cw)3) 

-ln{expC-/3(3Cw+3Cy)])+ln{exp(-^3C i;))+ln(exp(-^3C^))+ln(exp(-/33C*1))]. (A9) 

This is the result given in the text for pure triangles and has the form of a basic term plus others which subtract 
off "imbedded" clusters. 

By adding and subtracting appropriate terms to reduce summations of P ; / s from 1 to «> to 0 to oo, as done in 
Eq. (A8), pure diagrams are written as sums and differences of impure diagrams, as in Eq. (A9). 

The 7-linked diagrams on three spins are easily written in the appropriate form 

=o (-pDi3)
p» (-pDik)

p* 
El" 23 ' _ "."' lntrp7+ E 

L.Pii.Pik-1 

co (-0Djk)
p* (-(3Dki)

p*< 

am Pal Pjk\ Pik,Pki=l Pjk\ Pki\ 
In trp7 

- (-PD*)*" (-pDa)** "I 
+ E In trp7 

Pm.Pir-i Phil Pi,l J 

: E [ln(expC-/3(3Ci3-+3Cyfc)])+ln<exp[-/3(XyJ;+3C^)]) 
am 

+ln(exp[ -^ (3C w +3C s V ) ] ) -2 in<exp(-/33C»y)>-2 ln(exp(-/33C^))-2 ln(exp(-|83CK))]. (A10) 
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Extension of the relationship to larger clusters is 
obvious, demonstrating the expansion (41). 

I t is easily seen that any term in (A6) corresponding 
to a choice of integers {i\y} vanishes if the nonzero 
integers Pa can be divided into two sets with no indices 
in common. That is, all "unlinked diagrams" vanish. 
This follows from the fact that, in generating the term 
by operating with the D's we can first apply all the Du 
in one set. When we then apply a Dij from the second 
(nonoverlapping) set, the quantity immediately van
ishes. To see this we let ($) be one of the averages 
generated by the Du of the first set so that 4> involves 

1. INTRODUCTION 

IN a previous paper,1 hereafter referred to as I, a 
theoretical model was presented which relates the 

critical magnetic fields of thin superconducting films 
to the kernel of the current-vector-potential relationship 
for any theory of superconductivity. The model was 
worked out for the nonlocal theory of Pippard,2 but 
only thickness effects were discussed in detail and com
pared to experimental data. In this paper, mean free 
path effects, as well as thickness effects, will be discussed 
and compared to critical field data obtained for indium-
tin alloy films. The theoretical discussion will be limited 
to the nonlocal theory of Pippard with specular bound
ary conditions. Because of the similarity between the 
kernels of the Pippard and BCS3 theories, it is expected 
that the results are substantially the same that would 
be obtained from the BCS kernel. In addition, the ques-

1 A. M. Toxen, Phys. Rev. 127, 382 (1962). 
2 A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953). 
3 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 

108,1175(1957). 

only the 3Cki in this set. We can let all the yk% which 
join the two sets vanish, and p7 factors into p\pi where 
Pi involves the spins of the first set and p2 involves the 
spins of the second set. Then 

(<£) = tr<£pip2/trpip2= (tr<£pi) (trp2)/(trpi) (trp2) 

= txfopi)/trpi, (All) 

and this quantity is independent of the indices of the 
second set. Hence, if Di3 belongs in the second set, 
Dij{4>) = 0, proving that all such unlinked diagrams 
vanish. 

tion of whether size effects in thin films are equivalent 
to mean free path effects is discussed in detail. 

2. THEORETICAL 

For the case of the Pippard kernel with specular 
boundary conditions, an expression for the critical field 
is derived in I which is of the form 

hc/Hc=gtio\L2/a\!iM, (1) 

where hc is the critical field of the film, Hc is the bulk 
critical field, £ is the coherence distance, £o is the co
herence distance in pure material, XL is the London 
penetration depth, a is the half-thickness of the film, 
and g is a function which can be numerically evaluated. 
The evaluation is carried out most conveniently in two 
steps. First, the film susceptibility is calculated from 
the results of Schrieffer,4 

fl\ = i f; [kn^K{kn)-]-\ (2) 

4 J. R. Schrieffer, Phys. Rev. 106, 47 (1957). 
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Critical Fields of Thin Superconducting Films. II. Mean Free Path 
Effects in Indium-Tin Alloy Films 
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In a previous paper, a theoretical model was presented from which the critical magnetic fields of thin 
superconducting films could be calculated. The model was worked out for the nonlocal model of Pippard, 
but only thickness effects were discussed in detail and compared to experimental data on pure indium films. 
In this paper, mean free path effects as well as thickness effects are discussed, and the results are found 
to be in good agreement with critical field measurements on thin alloy films of indium containing 0-4.6 at.% 
tin, if one assumes that £O\L2 is equal to 1.62X109 (A)3 at 0.9TC, £o is equal to 2600 A, and pi is approxi
mately 2.0X10"1112-cm2. For these values of £o and pi, the coherence length, £, has been calculated for each 
film from measurements of resistivity and thickness, and is found to vary from 2600 A at 0 at.% Sn to 1000 A 
at 4.6 at.% Sn. Also, the question of whether size effects in thin films are equivalent to mean free path 
effects is discussed in detail. It is concluded that size effects are not equivalent to mean free path effects, or 
more precisely, boundary scattering is not equivalent to scattering by randomly distributed defects. In fact, 
it is demonstrated that whereas the London or "local" limit obtains in the presence of high concentrations 
of randomly distributed defects, the Pippard or "nonlocal" limit obtains in very thin films, where boundary 
scattering predominates. 


