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Extension of the relationship to larger clusters is 
obvious, demonstrating the expansion (41). 

I t is easily seen that any term in (A6) corresponding 
to a choice of integers {i\y} vanishes if the nonzero 
integers Pa can be divided into two sets with no indices 
in common. That is, all "unlinked diagrams" vanish. 
This follows from the fact that, in generating the term 
by operating with the D's we can first apply all the Du 
in one set. When we then apply a Dij from the second 
(nonoverlapping) set, the quantity immediately van
ishes. To see this we let ($) be one of the averages 
generated by the Du of the first set so that 4> involves 

1. INTRODUCTION 

IN a previous paper,1 hereafter referred to as I, a 
theoretical model was presented which relates the 

critical magnetic fields of thin superconducting films 
to the kernel of the current-vector-potential relationship 
for any theory of superconductivity. The model was 
worked out for the nonlocal theory of Pippard,2 but 
only thickness effects were discussed in detail and com
pared to experimental data. In this paper, mean free 
path effects, as well as thickness effects, will be discussed 
and compared to critical field data obtained for indium-
tin alloy films. The theoretical discussion will be limited 
to the nonlocal theory of Pippard with specular bound
ary conditions. Because of the similarity between the 
kernels of the Pippard and BCS3 theories, it is expected 
that the results are substantially the same that would 
be obtained from the BCS kernel. In addition, the ques-

1 A. M. Toxen, Phys. Rev. 127, 382 (1962). 
2 A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953). 
3 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 

108,1175(1957). 

only the 3Cki in this set. We can let all the yk% which 
join the two sets vanish, and p7 factors into p\pi where 
Pi involves the spins of the first set and p2 involves the 
spins of the second set. Then 

(<£) = tr<£pip2/trpip2= (tr<£pi) (trp2)/(trpi) (trp2) 

= txfopi)/trpi, (All) 

and this quantity is independent of the indices of the 
second set. Hence, if Di3 belongs in the second set, 
Dij{4>) = 0, proving that all such unlinked diagrams 
vanish. 

tion of whether size effects in thin films are equivalent 
to mean free path effects is discussed in detail. 

2. THEORETICAL 

For the case of the Pippard kernel with specular 
boundary conditions, an expression for the critical field 
is derived in I which is of the form 

hc/Hc=gtio\L2/a\!iM, (1) 

where hc is the critical field of the film, Hc is the bulk 
critical field, £ is the coherence distance, £o is the co
herence distance in pure material, XL is the London 
penetration depth, a is the half-thickness of the film, 
and g is a function which can be numerically evaluated. 
The evaluation is carried out most conveniently in two 
steps. First, the film susceptibility is calculated from 
the results of Schrieffer,4 

fl\ = i f; [kn^K{kn)-]-\ (2) 

4 J. R. Schrieffer, Phys. Rev. 106, 47 (1957). 
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In a previous paper, a theoretical model was presented from which the critical magnetic fields of thin 
superconducting films could be calculated. The model was worked out for the nonlocal model of Pippard, 
but only thickness effects were discussed in detail and compared to experimental data on pure indium films. 
In this paper, mean free path effects as well as thickness effects are discussed, and the results are found 
to be in good agreement with critical field measurements on thin alloy films of indium containing 0-4.6 at.% 
tin, if one assumes that £O\L2 is equal to 1.62X109 (A)3 at 0.9TC, £o is equal to 2600 A, and pi is approxi
mately 2.0X10"1112-cm2. For these values of £o and pi, the coherence length, £, has been calculated for each 
film from measurements of resistivity and thickness, and is found to vary from 2600 A at 0 at.% Sn to 1000 A 
at 4.6 at.% Sn. Also, the question of whether size effects in thin films are equivalent to mean free path 
effects is discussed in detail. It is concluded that size effects are not equivalent to mean free path effects, or 
more precisely, boundary scattering is not equivalent to scattering by randomly distributed defects. In fact, 
it is demonstrated that whereas the London or "local" limit obtains in the presence of high concentrations 
of randomly distributed defects, the Pippard or "nonlocal" limit obtains in very thin films, where boundary 
scattering predominates. 
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where kn~ (2n+l)ir/2ay and K(kn) is the kernel ob
tained from the relationship between the supercurrent 
density and the vector potential in wave vector space. 
The quantities K and KQ are, respectively, the film and 
bulk susceptibilities in a weak magnetic field. The 
kernel, K(k), is defined by the relationship 

(-tyc)}(k)=K{k)A(k), (3) 

where j and A are the current density and vector po
tential, respectively. For the Pippard theory, 

6TT£ 1 
K(k) = [ ( 1 + ? * 2 ) tan-^ifj-fft] (4) 

£oAc2 ekz 

where A=4:W\L2/C2. When the kernel of Eq. (4) is 
substituted into (2) the following result is obtained: 

- = 1 - 2 E \-(2n+iy 
W spec «=0L4 

1 
+ { [ l + a 2 ( 2 ^ + l ) 2 ] 

(3o?(2n+iy 

X a r c t a n a ( 2 w + i ) - a ( 2 w + l ) } , (5) 

where 
7T £ ir £ 0 A L 2 

In general, the susceptibility as defined by Eq. (5) 
must be evaluated numerically. However, in the impure 
or London limit, a simple expression for K/KQ can be 
derived. This limit is obtained when the coherence 
length is short enough so that any variation in vector 
potential occurs slowly over a coherence length, i.e., 
when i;k—»0. In this limit, the kernel of Eq. (4) 
becomes 

K(k)-*^/ZoAc\ (7) 

which gives a local relationship between the current and 
vector potential, because K is now a constant, inde
pendent of k. When Eq. (7) is substituted into (2), 
the series can be summed exactly to obtain 

OcAo)sPec= 1 - feAL2/^2)1/2 t a n n ^ a 2 / ^ 2 ) 1 ' 2 . (8) 

From Eq. (8), an interesting result can be obtained. The 
relationship between the weak-field susceptibility and 
the weak-field penetration depth, 5o, is given by Ginz-
burg and Landau5 to be 

K/KO= 1 - (d0/a) tanh(a/fi0). (9) 

Comparing Eqs. (8) and (9), it is clear that in the impure 
limit 

$O=(£O\L 2 / £ ) 1 / 2 , (10) 

which is the same result as that obtained by Pippard2 

for the bulk penetration depth in the impure limit. 
6 V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz. 

20, 1064 (1950). 
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FIG. 1. The theoretical dependence of critical field upon coher
ence length. The curves shown are plots of the ratio of film critical 
field to bulk critical field vs coherence length and are calculated 
for various values ofohalf-thickness a, holding %Q\L2 constant and 
equal to 1.62X109 (A)3, a value previously found appropriate at 
0.9 Tc for pure indium. The solid curves are the exact results of 
the model and are calculated from Eqs. (11) and (5). The dashed 
curves are approximate results valid in the impure limit and are 
calculated from Eqs. (11) and (8). 

Having calculated K/KQ from Eqs. (5) or (8), the film 
critical fields are calculated from K/KQ using the theoreti
cal relations derived by Ginzburg and Landau,5 which 
are of the form 

hc/Hc=G(K/K0), (11) 

where G is a function which can be numerically evalu
ated, and is plotted in Fig. 2 of I. Mean free path ef
fects upon the critical fields of thin films can be calcu
lated in this model through the Pippard relation for the 
coherence length, which is 

1 / * = 1 / { O + 1 M (12) 

where I is the intrinsic electronic mean free path in the 
normal state and 7 is a constant, about one in value. 
Because the BCS theory, as modified by Mattis and 
Bardeen6 to include mean free path effects, indicates 
that 7 should be equal to one, we will henceforth set 
7 = l i n E q . (12). 

In Fig. 1 are shown plots of the variation of film 
critical field with coherence length, £, for various film 
thicknesses. The solid curves are calculated from Eqs. 
(11) and (5). The dashed curves are calculated from 
Eq. (11) and the limiting expression of (8). All of the 
curves were calculated for £ 0 X L 2 = 1 . 6 2 X 1 0 9 (A)3, a 
value found in I to be appropriate for indium at a re
duced temperature of t=0.9. Figure 1 indicates, as 
one might expect, that the critical field of a film in
creases for decreasing coherence length as well as 
decreasing thickness. In Fig. 2 are shown plots of hc/Hc 

vs £ for various values of £OAL2, but with a=1250A, 
i.e., with a thickness of 2500 A. The solid and dashed 
curves have the same significance as in Fig. 1. As Fig. 2 

6 D . C. Mattis and J. Bardeen, Phys. Rev. I l l , 412 (1958). 
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FIG. 2. The theoretical dependence of critical field upon coher
ence length. The curves shown are plots of the ratio of film critical 
field to bulk critical field vs coherence length and are calculated 
for various values of £O\L2, holding the half-thickness a fixed at 
1250 A. The solid and dashed curves have the same significance 
as in Fig. 1. 

indicates, hc/Hc increases for increasing £0XL2 (i.e., 
increasing temperature) and decreasing £. 

To compare the theoretical model of Eq. (1) to critical 
field data obtained for alloy films, one must know how 
£ varies with the composition of the films. This informa
tion is obtained from Eq. (12) which relates £ to the 
electronic mean free path in the normal state. Since the 
product of resistivity and mean free path is, for a given 
material, a constant, i.e., 

fA=A, (13) 

the quantity £ can be calculated from the resistivity of 
the alloy samples by means of the relation 

l/Z=l/Zo+P/A. (14) 

However, when Eq. (14) is applied to thin films, the 
appropriate value of A will, in general, not be the same 
as that deduced for bulk specimens. For the sake of dis
cussion, consider the simplest case, a metal having cubic 
symmetry. In a bulk specimen, the electrical conduc
tivity is a scalar, and the constant A is inversely pro
portional to the area of the Fermi surface, excluding 
those regions touching a zone boundary.7-8 In thin films, 
however, when surface scattering is important, elec
trons moving at different angles to the surface of the 
film contribute differently to the total current. For 
different orientations of the crystal axes relative to the 
surface, different groups of electrons become effective. 
Thus, the apparent dc conductivity (and hence the 
constant A) depends upon the orientation of the surface 
relative to the crystal axes.9 When the orientation is 
such that a large number of electrons are traveling at 
small angles to the surface of the film., i.e., when that 

7 R. G. Chambers, Proc. Roy. Soc. (London) A215, 481 (1952). 
8 J. M. Ziman, Electrons and Phonons (Oxford University 

Press, New York, 1960), Chapter VII. 
9 R. Englman and E. H. Sondheimer, Proc. Phys. Soc. (London) 

B69, 449 (1956). 

part of the Fermi surface corresponding to such angles 
has a large radius of curvature, the apparent dc con
ductivity will be high and A will be small; when the 
effective part of the Fermi surface has a small radius of 
curvature, the apparent conductivity will be low and A 
will be large. In noncubic metals (indium is tetragonal), 
the situation is analogous but more complicated be
cause the electrical condutivity, even in a bulk sample, 
is a second-order tensor. For films which are poly-
crystalline with randomly oriented crystallites, it is 
plausible that the nontensorial anisotropy effects due 
to surface scattering might average out to give the 
same value of A as in a polycrystalline bulk specimen. 
However, the indium films discussed in I and the indium 
alloy films to be discussed below, while not single crys
tals, do possess a very strong preferred orientation with 
the (101) planes of the body-centered tetragonal cell 
parallel to the substrate.10 Hence, only a limited zone 
of the Fermi surface is effective in determining the dc 
conductivity. 

Another effect which may be important in thin films 
has been suggested by Olsen.11 To explain deviations 
from Matthiessen's law in thin indium wires, Olsen 
suggested that small angle scattering of electrons by 
phonons may give rise to a size dependent (and tempera
ture dependent) resistivity. Theoretical calculations by 
Llithi and Wyder12 and Blatt and Satz13 support this 
hypothesis. Such a mechanism might also cause A, as 
measured in thin films, to be different from values meas
ured on bulk specimens because of differences in 
geometry. 

Another point of importance concerns the quantity 
£. This quantity, like the quantities £o and \L, is a "bulk" 
parameter in the model presented in this paper. Hence, 
when £ is calculated from Eq. (14), the appropriate 
value for p is not the measured film resistivity, for the 
latter includes boundary scattering. 

3. EXPERIMENTAL 

The indium-tin films reported on in this paper were 
evaporated from a single source onto fused quartz sub
strates and varied in composition from 0.02 to 4.6 a t .% 
tin. Because of the relatively large difference in the 
evaporation rates of indium and tin, the tin content of 
films produced by this technique differed from that 
of the crucible melt. However, the compositions could 
be varied over the desired range of 0-5 a t .% Sn by 
adjusting the melt compositions and the evaporation 
temperatures and times. The melt consisted of high-
purity (99.999% pure Tadanac Brand) indium and tin 
inserted onto a previously degassed tantalum crucible. 
To avoid highly agglomerated films, the film substrates 
were maintained in contact with a reservoir held at liquid 
nitrogen temperature. Further details of the evaporation 

10 M. G. Miksic (to be published). 
11 J. L. Olsen, Helv. Phys. Acta 31, 713 (1958). 
12 B. Luthi and P. Wyder, Helv. Phys. Acta 33, 667 (1960). 
w F. J. Blatt and H. G. Satz, Helv. Phys. Acta 33, 1007 (1960). 
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FIG. 3. Comparison of the theoretical model to the experimental 
data. The points shown are the calculated ratios of theoretically 
predicted film critical field to experimentally observed critical 
field at 0.9 Tc, plotted as a function of film composition. The 
theoretical critical fields were calculated for each film from Eqs. 
(11) and (5) using the measured values of thickness; with 
£0AL2 = 1 .62X10 9 (A) 3 ; and with £ = £<, = 2600 A (i.e., mean free path 
effects are neglected). 

techniques and the film properties other than critical 
field will be discussed in a future publication. 

The compositions of the films were determined by 
Miksic10 using an x-ray fluorescence technique capable 
of determining the tin content of these films to ±0.05 
a t .% Sn. 

The methods for measuring the film thicknesses and 
critical magnetic fields have been discussed previously14 

and will not be repeated here. 

4. COMPARISON OF EXPERIMENTAL DATA 
TO THEORETICAL MODEL 

As Sec. 2 of this paper indicates, in order to calculate 
the critical field ratio hc/Hc for a superconducting film, 
one must know the film thickness and the nonlocal 
parameters f and £OAL2. The quantity £ has been calcu
lated for each film from Eq. (14) using the intrinsic 
resistivity, i.e., the resistivity which would have been 
obtained if boundary scattering were not present. The 
latter was calculated from the measured resistivity and 
thickness by means of Fuchs' relation.15 I t is felt that 
this procedure is justified in these dilute alloys since 
Fuchs' model has been shown to be in reasonably good 
agreement with resistivity measurements made upon 
evaporated indium films,14 thin indium foils,16 and fine 
indium wires.11 The values for the constant^ of Eqs. (13) 
and (14) obtained from these experiments are 2.0X 10~n 

ft-cm2, 1.6X10-11 ft-cm2, and 1.8X10-11 ft-cm2, respec
tively. I t is interesting to note that these values for A 
are in reasonable agreement with one another yet differ 
considerably from the "bulk" values of 0.89X10-11 

ft-cm2 obtained by Roberts,17 and 0.57X10~n 12-cm2 

14 A. M. Toxen, Phys. Rev. 123, 442 (1961). 
15 K. Fuchs, Proc. Cambridge Phil. Soc. 34, 100 (1938). 
16 A. Gaide and P. Wyder (to be published). 
17 D. C. Roberts (unpublished). SeeT. E. Faber, Proc. Roy. Soc. 

(London) A241, 531 (1957). 

by Dheer.18 Values for the quantity A can be obtained, 
not only from dc resistivity measurements on thin 
specimens and high-frequency anomalous skin effect 
measurements on bulk samples, but also from critical 
field measurements on thin films. I t is shown in I that 
A, on the basis of a simple free-electron model, is related 
to £OAL2, which in turn can be obtained from critical 
field measurements. On the basis of the specular reflec
tion model, one obtains .4=0.98XIO"1 1 O-cm2. For the 
diffuse scattering model, one obtains ^4=0.74X10 - 1 1 

12-cm2. Whether these two values are "thin film" or 
"bulk" values is, perhaps, debatable. However, it is 
felt that, because £o and \L are bulk, parameters, these 
values for A are bulk quantities, i.e., they are charac
teristic of the entire Fermi surface, not just a limited 
area of the Fermi surface which might be important in 
determining the conductivity of thin films. At any rate, 
it is clear that the experimental values for A fall into 
two groups: 0.6-0.98XH)-11 12-cm2 for the "bulk" 
values, and 1.6-2.0X10-11 O-cm2 for the "thin film" 
values. 

In Figs. 3, 4, and 5 are shown plots of the ratio of the 
theoretically predicted hc to the experimentally ob
served hc at 0.9 Tc. What is actually calculated from the 
theoretical model of Sec. 2 is the ratio of the film critical 
field to the bulk critical field. To calculate the film 
critical field, one must know the bulk critical field as a 
function of temperature and composition. This informa
tion was obtained from as yet unpublished data of D. J. 
Quinn on specimens of indium containing up to 6 a t .% 
tin. In Fig. 3 we have taken £= £0 for all of the films, 
i.e., we have neglected mean free path effects in calcu
lating the theoretical film critical field, (hc)theo- In 
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FIG. 4. Comparison of the theoretical model to the experimental 
data. The points shown are the calculated ratios of theoretically 
predicted film critical field to experimentally observed critical 
field at 0.9 Tc, plotted as a function of film composition. The theo
retical critical fields were calculated for each film from Eqs. (11) 
and (5) using the measured values of thickness; with %Q\L2 

= 1.62X10° (A)8; and with £ calculated from Eq. (12) for £0 = 2600 
A, 7 = 1, and I determined from the measured thicknesses and re
sistivities by means of Fuchs' model for p/ = 0.98X10~n fi-cm2. 

1 P. N. Dheer, Proc. Roy. Soc. (London) A260, 333 (1961). 
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Fig. 4 we have calculated £ for each film on the assump
tion that ^ = 0 . 9 8 XlO~ n 12-cm2, and in Fig. 5 we have 
taken A — 2.0X 10~n S2-cm2. In each of the plots we have 
taken £ 0 A L 2 = 1 . 6 2 X 1 0 9 (A)3 and £0=2600 A, the values 
found in I to be appropriate for indium at 0.9 Tc. We 
have also assumed that £oAz,2, £o, and A are independent 
of composition over the composition range shown, 
0-4.6 a t .% Sn. 

In Fig. 3, where we have neglected mean free path 
effects, we see that the theoretical values of hc are too 
small, the ratio (h c)theo/(he) e*v> varying systematically 
from about one at 0 a t .% Sn to 0.78 at 4.6 a t .% Sn. In 
Fig. 4, where we have taken A =0 .98X10- n O-cm2, the 
values of (hc)theo are too large, the ratio (hc)theo/(hc)e^ 
becoming about 1.22 at 4.6 a t .% Sn. Had we taken 
^4=0.57X10 - 1 1 12-cm2, the disagreement would have 
been even worse. In Fig. 5, where we have taken 
A = 2.0X10~n ft-cm2, the agreement between (hc)theo 
and (Ac)eXp is reasonably good. For most of the films, 
(hc)theo and (7zc)exp agree within ± 6 % . If we assume that 
A varies slightly with composition, decreasing from 
2.0X10"11 O-cm2 at 0 a t .% Sn to 1.6X10-11 O-cm2 at 
3 a t .% Sn, then increasing to 1.8X 10~n 12-cm2 at 5 a t .% 
Sn, we can get exact agreement within the scatter of 
the data, between (hc)theo and (^c)exp- However, the 
data may not be accurate enough to justify such detailed 
examination. 

In Fig. 6 are shown the values of coherence length 
calculated for each film with 4̂ = 2.0X10"U O-cm2 and 
£o=2600 A, and plotted as a function of film composi
tion. Although there is a fair amount of scatter, one 
can see that the data lie on a smooth curve. To see how 
one might expect the critical fields of thin alloy films 
to vary with composition at constant thickness, we 
have plotted, in Fig. 7, the quantity hc/Hc versus film 
composition. We have taken the dependence of £ upon 
composition to be given by the solid curve of Fig. 6, and 
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FIG. 5. Comparison of the theoretical model to the experimental 
data. The points shown are the calculated ratios of theoretically 
predicted film critical field to experimentally observed critical 
field at 0.9 Tc. The theoretical critical fields were calculated for 
each film in the same manner as in Fig. 4, except that pi was as
sumed to be 2.0X10"11 Q-cm2. 

FILM COMPOSITION (At.%TIN) 

FIG. 6. Variation of coherence length with composition. The 
values of coherence length shown were calculated for each film 
from Eq. (12) with £0 = 2600 A, 7 = 1, and / determined from the 
measured thicknesses and resistivities by means of Fuchs' model, 
under the assumption that p/ = 2.0X10-11 fi-cm2 (the value that 
gives the best agreement between theory and experiment). 

have calculated hc/Hc from Eqs. (5) and (11) with 
£oAL

2=1.62X109 (A)3. (See also Fig. 1.) 
There are several significant points to be made. First, 

there is the fact that the observed variation of critical 
field with composition and thickness is in good agree
ment with the theoretical model. Second, it is important 
that the value for A, which must be used to get this good 
agreement, is the "thin film" value 1.6-2.0X10-11 

fi-cm2 obtained from resistivity measurements on thin 
specimens rather than the bulk value of 0.6-0.98 X 10~n 

ft-cm2 obtained from high frequency or critical field 
measurements. Third, one can obtain a detailed fit of 
the theoretical model to the experimental data over the 
entire range of composition 0-5 a t .% Sn by postulating 
a variation in A of no more than 20%. In view of the 
fact that indium has a complex Fermi surface which 
extends into the third Brillouin zone,19 this would not 
be an unreasonable assumption. Fourth, the values of 
£0AL2 and £0 obtained previously from measurements 
on pure indium films seem to fit the data of the dilute 
alloy films. 

There are three main sources of experimental error. 
First, there is the uncertainty in the composition which 
is estimated to be ±0.05 a t .% Sn. A second source of 
error is related to the fact that the background pressure 
in the vacuum system durirg an evaporation would oc
casionally rise suddenly, perhaps due to insufficient 
preoutgassing of the melt, crucible, etc. This would 
result in films of lower purity which would have critical 
fields higher than one would expect from their tin con
tent. The third source of error is in the film thicknesses, 
which are calculated from measurements of film resist
ance. In addition to random errors in measurement, 
there may occur occasional systematic errors resulting 
from agglomeration in the films. When the thermal 
contact between substrate and liquid nitrogen reservoir 
is poor, as sometimes happens, the substrate will be too 

19 J. A. Rayne, Phys. Rev. 129, 652 (1963). 
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FIG. 7. The theoretical dependence of critical field upon composi
tion. The curves shown are plots of the ratio of film critical field to 
bulk critical field vs film composition and are calculated from Eqs. 
(11) and (5) for various values of half-thickness a, holding £0AL2 

constant and equal to 1.62X109 (A)3. The variation of £ with 
composition was taken to be that of the smooth curve of Fig. 6. 

warm and agglomeration will occur. This will result in a 
film having a resistance higher than that of a comparable 
unagglomerated film. Thus, the thickness calculated 
for this film will be too small or, looked at another way, 
the measured critical field will be lower than that ex
pected from the thickness measurement. Hence, the 
measured critical fields can be either too large or too 
small. All of these sources of error are likely to be more 
serious for the most dilute films and Figs. 3-6 bear out 
this conclusion. 

5. ARE SIZE EFFECTS EQUIVALENT TO MEAN 
FREE PATH EFFECTS? 

It was suggested by Abrikosov and Gor'kov20 that 
expressions derived for the penetration depth and com
plex impedance of superconducting alloys were also 
applicable to films of a pure substance thinner than a 
penetration depth. Their reasoning was that, in a poly-
crystalline thin film, scattering at crystallite boundaries 
will limit the electronic mean free path and, hence, the 
coherence length to less than the penetration depth. 
Under these conditions, a local relationship between the 
current density and vector potential known as the 
London limit will be applicable. Calculations of the type 
suggested by Abrikosov and Gor'kov have been carried 
out by Douglass21 starting from an extension of the 
Ginzburg-Landau theory by Gor'kov22 which takes into 
account mean free path effects. 

Whether size effects can be described by a mean free 
path characterizing boundary scattering will depend, 
first of all, on what type of boundary conditions are 

20 A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. 
Fiz. 35, 1558 (1958) [translation: Soviet Phys.—JETP 8, 1090 
(1959)]. 

21 D. H. Douglass, Jr., Phys. Rev. 124, 735 (1961). 
22 L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 37, 1407 (1959) 

[translation: Soviet Phys.—JETP 10, 998 (I960)]. 
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appropriate. If the electrons undergo specular reflection 
at the film surface, there will not be any size dependence 
of mean free path. Since the size of an electron "pair" 
in the superconducting state is of the order of the coher
ence length, which is typically several thousand ang
stroms, it is not inconceivable that an appreciable 
fraction of the pairs could undergo specular reflection at 
film surfaces. On the other hand, if the electrons undergo 
diffuse scattering at film boundaries, one might be able 
to describe size effects in terms of the mean free path 
for boundary scattering. 

In films which are thin compared to the coherence 
length, £, however, the magnetic field is limited to a 
region small compared to £, and so it is the Pippard 
limit, rather than the London limit, which applies.23 

One can see this immediately by examining the Pippard 
kernel given in Eq. (4). The London limit is obtained 
when the coherence length is short enough so that any 
variation in field occurs slowly over a coherence length, 
i.e., when £fe—»0. In this limit, we obtained Eq. (7). 
In the thin film, however, the important Fourier com
ponents of the vector potential will be those for which 
k is of the order of 1/a. The quantity §, which is a bulk 
parameter, is independent of thickness. Hence, for 
a—» 0, the correct limit of K(k) is that for %k —» oo. In 
this limit, which is just the opposite of the London limit, 
we obtain from Eq. (4) 

K(k)->3Tr*/£<Ac% (15) 

a result quite different from Eq. (7). Since K(k) as 
given by Eq. (15) is now a function of k, it will lead to a 
nonlocal relationship between the current and vector 
potential. 

It is quite interesting, though, that one can get a 
result quite similar to the "correct" limiting expression 
for the critical fields of very thin films by a dubious, if 
not incorrect, derivation. In this paper thus far, in I, 
and in Schrieffer's paper,4 it has been assumed that a 
film is a thin slab of "bulk" material having the coher
ence length and London penetration depth of a similar 
bulk sample, i.e., in the calculations of current distribu
tion, the finite thickness enters purely through the 
boundary conditions. It is conceivable that one might 
take an alternative point of view, that the film is an 
infinite specimen with a distribution of scattering 
centers so situated as to give the proper boundary scat
tering. In the latter case, the film "thickness" is re
flected in the distribution of scattering centers and hence 
has a direct influence on the coherence length through 
the mean free path. This approach has an immediate 
difficulty; it is explicitly assumed by Mattis and 
Bardeen6 in their derivation of the kernel in the presence 
of scatterers, that the scatterers are randomly dis
tributed with resultant phase cancellations. This as
sumption was also made by Gor'kov22 and it seems to be 

23 J. Bardeen and J. R. Schrieffer, in Progress in Low Tempera
ture Physics, edited by C. J. Gorter (Interscience Publishers, Inc., 
New York, 1960), Vol. I l l , p. 233. 
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implicit in the Pippard model. However, to obtain 
boundary scattering, the distribution of scatterers is 
quite "nonrandom." Let us ignore this difficulty and 
proceed. Assume that the formulas derived for the 
London or impure limit are applicable to thin films. If 
we substitute the expression for the penetration depth 
given by Eq. (10) into (5) of I, which gives the critical 
field of a thin film to be 

kc/Hc=6^50/a, (16) 

we get 

kc/He= ( 6 £ 0 X L 2 / V ) 1 / 2 . (17) 

If we now set the coherence length equal to the film 
thickness, 2a, we get 

hc/Hc=TJ3($o\L2/a?yv, (18) 

a result differing from Eq. (15) of I by only a numerical 
constant, v2? instead of 2.01. Although this derivation 
yields the correct dependence of critical field upon thick
ness, it involves the arbitrary assumptions that the 
London limit is applicable to thin films and that £=2a. 
But if £—2a, then %k is of order one and the London 
limit is not applicable. Indeed, considering the thin film 
to be a bulk superconductor with short mean free path, 
it would seem more natural to set the coherence length 
equal to the mean free path. The theoretical model by 
Fuchs gives the relation between the mean free path / 
and thickness 2a to be 

Z~1.5aln(O.76/o/0) (19) 

in the thin-film limit, where U is the intrinsic mean free 
path. If Eq. (19) is substituted for £ into (17), the result 
is 

ke/He= 2 [ £ 0 X L 2 A 3 ln(O.7«0/fl)]1/2, (20) 

which differs from Eq. (15) of I by the logarithmic 
term. The origin of the logarithmic term was the as
sumption that £k—»0, which is the condition under 
which Eq. (17) is valid. I t is clear that if the coherence 
length is given by Eq. (19), and if k is of order 1/a, then 
%k —> oo for a —> 0, and it is not legitimate to use (17). 

One can derive in a different manner an expression 
similar to Eq. (20), which shows clearly that the 
logarithmic term results from neglecting the variation 
in the vector potential in a thin film. The Pippard 
relation between the current and vector potential is 

j ( r ) = / e-^dr', (21) 
4TCA£Q J R* 

where R=r—x f and div A = 0 . Consider a slab of thick
ness 2a bounded by two infinite planes. If we assume 
that we can neglect the variation in the vector potential 
over a coherence length and hence replace A(r') by 

A(r), then A(r) can be removed from under the integral 
sign and the integration can be carried out to give the 
result24 

3a f / a \ r l a2"] 2 
j ( r ) = — Ei( — + _ ( 1 _ ^ / 2 ) 

Ac£ol \ 2/L2 48 J 3a 

-uV-i)K<22) 

where a—2a/% and Ei(X) is the exponential integral.25 

In the impure limit, a —> <*>, Eq. (22) gives 

j(r) = A(r). (23) 
£oAs 

By comparing Eq. (23) to (3), we obtain the kernel, 
K(k), to be the same as that given by (7), as it should 
be. In the thin-film limit, a —> 0, Eq. (22) becomes 

3a £ 
j ( r ) = ln-A(r), (24) 

2Ac%o a 

giving for the kernel 

6ira £ 
K(k)= In-, (25) 

Ac2£0 a 

a result quite different from the correct relation of Eq. 
(15). From Eqs. (21), (19), and (16), we find the critical 
field calculated from (25) to be 

he/He= 2 [ £ 0 \ L 2 / V M$/a)J?\ (26) 

a result virtually identical to Eq. (20), differing only in 
the replacement of O.76/0 by £. I t is important to note 
that in deriving Eq. (26) it was not necessary to use 
any theoretical model for the thickness dependence of 
boundary scattering, e.g., Fuchs' model. The logarithmic 
term in Eq. (26) was a direct consequence of the assump
tion that A(r') was slowly varying over a coherence 
length and could be replaced by A(r). 

Thus, we conclude that size effects are not equivalent 
to mean free path effects, or put another way, boundary 
scattering is not equivalent to scattering by defects 
distributed randomly throughout the volume of the 
superconductor. As we have shown, in the limit of a 
high concentration of randomly distributed defects, the 
London or local limit obtains; in the thin limit, where 
boundary scattering predominates, the Pippard or 
nonlocal limit obtains. Hence, to describe the supercon
ducting properties of films, we must "sort out" the 
effects of randomly distributed scatterers from thickness 

24 R. R. Haering (private communication). 
25 E. Jahnke and F. Emde, Tables of Functions (Dover Publica

tions, New York, 1945), p. 1. 



C R I T I C A L F I E L D S O F T H I N S U P E R C O N D U C T I N G F I L M S 1815 

~ 2200 | 1 

25 2000 U + . ! 
ui +-INDIUM FILMS 
| , 8 0 0 ! •-INDIUM-TIN ALLOY FILMS 
C£ I ' ' 

§ , 6 0 0 r 

g 1400 f- + * . 

s • ̂  + • 
a. 1200 H • + •• • 

c I O O O K . ^ • • 
< +*+ 
ui + 
£ 800 h • 

I I I I I 
0 0.5 1.0 1.5 ZO 

RESIDUAL RESISTIVITY, />0(/xfl-cm) 

FIG. 8. Comparison of weak field penetration depths of pure 
indium films to those of the indium-tin alloy films. The penetration 
depths are calculated from the measured critical fields by means of 
the Ginzburg-Landau theory and are plotted vs the directly 
measured residual resistivities. In the thin indium films, the 
resistivity is largely due to boundary scattering; in the alloy films, 
it is caused by a combination of boundary scattering and impurity 
scattering. 

effects. The experimental evidence appears to substanti
ate this conclusion. 

In Fig. 8 are plotted values of the weak-field penetra
tion depth, do, versus measured residual resistivity, for 
pure indium films and indium-tin alloy films. These 
values of do were calculated from the critical field data 
at 0.9 Tc using the Ginzburg-Landau theory. (See Fig. 1 
of I.) If the pi constant were the same for the pure and 
alloy films, one would expect the two sets of data to 
coincide in the high-resistivity limit in the event that 
boundary scattering and random defect scattering were 
equivalent. As Fig. 8 indicates, the two sets of data di
verge in the high-resistivity limit. To account for this 
divergence, one would have to postulate a 300% 
change in the constant A over the range 0-5 a t .% Sn. 
This seems too large to be reasonable. On the other hand, 
we have seen in I and in Sec. 4 of this paper that the 
proposed theoretical model, which treats thickness ef
fects and mean free path effects independently, fits the 
critical field data of the pure indium and the alloy films 
reasonably well if we assume a constant value for A. 
We can even force a fit of the theoretical model to the 
critical field data by assuming a variation in A of only 
20% over the range 0-4.6 a t .% Sn. 

6. SUMMARY OF CONCLUSIONS 

The contents of this paper can be divided into two 
broad categories. The first part of the paper, Sees. 2-4, 
contains a discussion of mean free path and thick
ness effects upon the critical fields of thin films. Theoreti
cal results, calculated from the model proposed in a 
previous paper1 and using the Pippard kernel with 
specular boundary conditions, are compared to experi
mental data obtained for alloy films of indium containing 
0-4.6 a t .% Sn. In making the comparison, the values of 
£0XL2 and £o were taken to be those previously determined 
by fitting the theoretical model to critical field data on 
pure indium films. The coherence length, £, was 
calculated from the intrinsic mean free path which in 
turn was calculated for each film from the measured 
residual resistivity and thickness for three values of 
the pi constant: infinity, which leads to the result £= £0, 
i.e., which neglects mean free path effects; 0.98X10 -11 

O-cm2, a value obtained from critical field measurements 
on indium films; and 2.0X 10~n ft-cm2, a value obtained 
from resistivity measurements on thin indium films. 
Of the three values for pi, the best agreement between 
theory and experiment was obtained for 2.0 X10 - 1 1 

12-cm2. For this value of pi the difference between the 
measured and calculated film critical fields was less 
than ± 6 % for most of the films measured. If we postu
late a 20% variation in pi over the composition range 
0-4.6 a t .% Sn, we obtain exact agreement within experi
mental error between theory and experiment. 

The second portion of the paper, Sec. 5, contains a 
discussion of whether boundary scattering is equivalent 
to scattering by randomly distributed defects in films. 
I t is concluded that the two are not equivalent. In fact, 
it is demonstrated that whereas the London or "local" 
limit obtains in the presence of high concentrations of 
randomly distributed defects, the Pippard or nonlocal 
limit obtains in very thin films. 
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