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The distortions of the lattice accompanying protonic order-disorder transitions, and the difference 
between the observed frequency of protonic or deuteronic intrabond motion and the one estimated on the 
basis of the rigid lattice model, seem to indicate that proton-lattice interactions are not negligible in the 
case of ferroelectric H-bonded crystals. In order to throw some light on this problem, the energy spectrum 
and polarizability of an isolated hydrogen-bonded proton, interacting with polar lattice vibrations in the 
presence of an electric field, have been studied both in the strong- and in the weak-coupling limits. The 
results obtained show that the intrabond tunneling frequency of a proton, interacting with the lattice, is in 
fact much smaller than the tunneling frequency of a bare proton in an undeformed lattice. In the case of 
strong proton-lattice interactions, the polarizability is anomalously large at relatively low field strengths 
and any small fluctuation in the lattice potential is accompanied by a trapping of the proton in an off-center 
position. Another specific consequence of proton-lattice interactions is an inherent distribution of dipolar 
relaxation times. 

I. INTRODUCTION 

THOUGH ferroelectric phenomena in hydrogen-
bonded KH2PO4 type crystals have been exten­

sively studied in recent years,1 our understanding of the 
basic interactions that lead to ferroelectric transitions is 
still far from being complete, and no comprehensive 
theory yet exists. 

In particular, model theories proposed so far2 have 
considered the hydrogen-bonded protons to move in a 
completely rigid lattice potential, thus, neglecting 
proton-lattice interactions. On the other hand, it is well 
known3 that the protonic order-disorder transition in 
KH2PO4 is accompanied by large displacements of the 
potassium and phosphorus ions, which account for 
nearly all of the spontaneous polarization of the crystal 
and which cannot be understood in terms of a rigid 
lattice model. Moreover, the observed protonic and 
deuteronic mobility4-6 is much lower than the one 
estimated6 on the basis of the rigid lattice model. This 
discrepancy in the order of magnitude of the protonic 
tunneling frequency, as well as the above-mentioned 
large lattice distortions, accompanying protonic order-
disorder transitions in KH2PO4 type ferroelectric crys­
tals, demonstrates that proton-lattice interactions are 
not at all negligible in ferroelectric, H-bonded crystals. 

The same seems to be true for some nonferroelectric 
H—bonded crystals. Here, as well as in the case of 
ferroelectric crystals, infrared absorption7,8 and dielec-

1 W. Kanzig, in Solid State Physics, edited by F. Seitz and D. 
Turnbull (Academic Press Inc., New York, 1957), Vol. 4., Chap. I. 

2 J. Pirenne, Physica 15,1019 (1949); T. Mitsui, Phys. Rev. I l l , 
1259 (1958); R. Blinc, J. Phys. Chem. Solids 13, 204 (1960); 
J. Grindlay and D. ter Haar, Proc. Roy. Soc. (London) A250, 266 
(1959); M. Senko, Phys. Rev. 121, 1599 (1961). 

3 G. E. Bacon and R. S. Pease, Proc. Roy. Soc. (London) A230, 
359 (1955). 

4 V. G. Schmidt and E. A. Uehling, Phys. Rev. 126, 447 (1962). 
6 R . Blinc, S. Detoni, and M. Pintar, Phys. Rev. 124, 1036 

(1961). 
6 D. Hadzi (private communication). 
7 S. Detoni and D. Hadzi, J. Chim. Phys. 53, 760 (1956). 
8 R. Blinc and D. Hadzi, Mol. Phys. 1, 391 (1958). 

trie relaxation spectra9 have been observed, which are 
difficult to explain in terms of protonic motion in a 
rigid lattice potential. 

In view of the complexity of the many-body problem 
in ferroelectric crystals, it seemed worthwhile to investi­
gate first the energy spectrum and polarizability of a 
single, isolated hydrogen-bonded proton interacting 
with polar lattice vibrations in the presence of an 
electric field. 

In Sec. II, the model Hamiltonian of the problem is 
defined. In view of the strong localization of the proton, 
the discrete structure of the lattice is taken into account 
explicitly. 

In Sec. I l l , the energy spectrum and polarizability of 
a H bonded proton interacting with polar lattice vibra­
tions are studied (i) in the strong coupling, low lattice 
frequency limit where protonic excitations induced by 
the zero-point fluctuations of the lattice field are 
neglected, and (ii) in the weak-coupling limit, where 
the proton lattice interactions are treated as a perturba­
tion. A short discussion of the dielectric relaxation 
spectra of "dressed," H-bonded protons is added. 

In the Appendix, the interaction parameters are 
explicitly evaluated for two simple lattice models, and 
a numerical example is given. 

It is the explicit introduction of the concept of a 
"dressed" O—H—O dipole and the examination of some 
of the observable consequences of proton-lattice inter­
actions that is the contribution of this paper. 

II. THE HAMILTONIAN 

We study the properties of the following Hamiltonian: 

H=Hp+Hl+Hi=HQ+Hi, (1) 

where Hp stands for the energy operator of an O—H—O 
hydrogen-bonded proton, moving in a "rigid lattice" 
potential in the presence of a time-independent electric 
field F, Hi for the energy operator of the polar lattice 

9 R. J. Meakins, Trans. Faraday Soc. 51, 371 (1955). 
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vibrations in the absence of the proton, and Hi for the 
electrostatic "proton-lattice" and "electric field-lattice" 
interaction operators. 

Experimental and theoretical investigations indicate 
that the potential energy surface of the proton in many 
H bonds has two minima.3'4,10 Assuming interbond pro­
ton jumping4 and band conductivity to be negligible for 
the phenomena treated in this paper, Hp is taken as 

Hp= - (h2/2m)A+V(t)-exF, (2) 

with V(t) being a double minimum potential, which is 
symmetric about the center of the H bond [e.g., com­
pare Eq. (43)]. I t should be noted that in the absence 
of F, the whole Hamiltonian has the same symmetry. 

The eigenfunctions of II p in the absence of the field 
describe a nonlocalized state with the proton oscillating 
between the two potential minima in V(r). The presence 
of a field results in a localization of the particle. In the 
case of a high intervening barrier—:which is the case 
treated in this paper—the two lowest eigenfunctions can 
be approximated by a linear combination of wave func­
tions localized in one or the other potential well, 
respectively, 

\l>i=c1<pi(i)+C2<Pr(r), (3) 

\f'2=C2(pi(r) — c1<pr(r), 
where 

(<Pz| <Pl)={<Pr\ ^ r ) = L 

As shown previously,8 

Ci.i{F) = I E I T M ^ / ^ + M 2 ^ 2 ) 1 7 2 ] , (4) 

where the overlap integrals 

S=((pi\(Pr) (5) 

are neglected, and where the symbols JU and ft are 
defined as 

P=(<pr\ex\<pr), , , 

P=(<pi\Hp\<pr), 

with e standing for the effective charge of the proton. 
In analogy to the procedure used in the treatment of 

electron-lattice interactions,11-13 the polar vibrations of 
the lattice are divided in an "inert" and an "inertless" 
component, and Hi stands only for the interaction of the 
proton with the "inert" component. The interaction of 
the proton with the "inertless" component, which 
follows the motion of the proton adiabatically, is in­
cluded in F(r) , whereas the interaction of the electric 
field with that component gives rise only to a constant, 
mass-independent term, which is omitted. 

10 R. L. Somorjai and D. F. Hornig, J. Chem. Phys. 36, 1980 
(1962). 

11 S. I. Pekar, Fortschr. Physik 1, 368 (1953); Untersuchungen 
uber die Elektronentheorie der Kristalle (Akademie-Verlag, Berlin, 
1954). 

12 H. Frohlich, Suppl. Phil. Mag. 3, 325 (1954). 
13 G. R. Allcock, Suppl. Phil. Mag. 5, 413 (1956); T. Holstein, 

Ann. Phys. (N. Y.) 8, 343 (1959). 

The "inert lattice" in the "absence" of the proton is 
supposed to consist of a regular array of n polarizable 
ions. Each of the polar vibrations of the lattice can be 
described by a polarization vector 

P = ( . . . j . . . j pix,piy,piz; ••• ;••*)> (7) 

where (pix{t),piy{t)ypiZ(i)) is the dipole moment associ­
ated with the polar deformation of the ^th ion. P is 
understood to be a vector in the 3w-dimensional 
Hilbert space, where the scalar product of two vectors 
P and P ' is defined by 

(P,P ;) = £,-„• Pupi/, i= 1, 2, • • •, n, j=x,y,z. (8) 

Assuming that the potential energy of the polar lattice 
vibrations is a quadratic functional of P, the inert part 
of the classical lattice Hamiltonian in the absence of the 
proton can be written as 

Hl=UtM?)+^,K¥), (9) 

with M and K being time-independent, self-adjoint 
matrix operators. Since the kinetic energy is always 
positive and the system is assumed to be stable for P = 0 , 
M and K are positive definite operators. Hence, Mm, 
M~1/2, and M~1/2KM~1/2 exist and are, as well, positive 
definite and self-adjoint. The eigenvalues co&2, k=l, 
2, •• • •, 3n, of M~1/2KM-1/2 are thus all positive, and the 
corresponding eigenvectors M1/2Xk form a complete 
orthonormal system: 

(X*,MX*0 = «**'. (10) 

Expressing the polarization vector P in terms of 
normal modes, 

P=£*-P*(0x* , (11) 

and inserting (11) into (9), we get 

Hi=iZic(o>k2Pk2+Pk2), (12) 

where the normal coordinates Pk are given by 

Pk(t)=(P,Mxk). (13) 

Introducing the dimensionless normal coordinates 
qk=(uk/h)ll2Pk and replacing Pk by —i(huk)

1/2d/dqk, 
the quantum lattice Hamiltonian is obtained as 

Hi=lE««j/ff*2 \ (14) 
* V dqk

2/ 

with cofc being the frequency of the &th polar lattice 
mode. 

The proton, moving slowly between the two potential 
minima in V(t), interacts electrostatically with the 
polar lattice modes. Using expansion (11), the electro­
static proton-lattice interaction Hamiltonian 

Hi=(v,— g r a c M r - r ' l - 1 - ^ (15) 
\ 47T60 / 
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can be written as 
Hi=XkVkqk. (16) 

Here the coefficients Vk are given by 

Vk= {h/<*hy»(xh, — g r a d ^ l r - r ' l ^ - F Y (17) 
\ 47T60 / 

and the 3^-dimensional vectors g rad r ' | r—r ' | - 1 and F 
are defined as 

g r a d r ' l r - r ' l - 1 

= ( . - . ; . . . ; a j r - r / J - 1 / ^ / , d | r - r / | - V d y / , 

X ^ l r - r / j - V ^ / ; • • • ; • • • ) ; (IB) 

¥=Feh ei= (1,0,0; 1,0,0; • •; • • •; 1,0,0). 

In case of the dielectric continuum model essentially 
the same treatment is applicable. The vector P becomes 
a 3-dimensional vector, the components of which are 
functions of the continuous variable r. Accordingly, in 
the definition (8) of the scalar product, the summation 
over the discrete variable Xi has to be replaced by an 
integration over the continuous variable r. 

III. ENERGY SPECTRUM 

A. Strong-Coupling Case 

Let us first investigate our Hamiltonian 

fi2 

H= A+V(r)-exF 
2m 

+ E Vkqk+h Z fco/g*2—Y (19) 
k k \ dqky 

in the strong-coupling, low-lattice-frequency limit, 
using a variational method.11-13 

We treat two distinct cases: 
In the first, the intrabond proton tunneling frequency 

j3 is larger than the lattice frequencies, but smaller than 
the spacing hvo of the unperturbed protonic energy 
levels in case of an infinitely high intervening potential 
barrier: ftcok<l3<hvQ. The lattice cannot follow the 
motion of the proton at all and responds to the charge 
density of the proton averaged over the two sites. 

In the second case, the lattice frequencies are larger 
than the intrabond tunneling frequency: f3<ha)k<hvo. 
The lattice cannot follow the motion of the proton with­
in one well, but is able to respond to the slower proton 
motion between the two wells. Thus, in this case, the 
lattice interacts with the charge density of the proton 
averaged only over one site. 

(i) fto)k<p<hvo 

In this case, where the lattice interacts with the 
charge density of the proton, averaged over both sites, a 
Hartree-type wave function 

is indicated for the investigation of the ground state.11-13 

Here \[/i depends only on the protonic coordinates and <f> 
on the coordinates of the polarization field. We assume 
that both ypi and <j> are normalized, 

< * I | * I > = < * | * > = 1 . (21) 

Minimizing the expectation value (^\H\^) with 
respect to <t> under the restraint (<£|#)=1, we obtain a 
solution for <f> in the form11 

* = I L <t>nk{qk—qk,i), gjb,i= — (iAi| V*|^i)/fe*jfc, (22) 

the <t>nk(qk—qk,i) being displaced harmonic oscillator 
wave functions. 

Substituting this solution into (SF | H | SI>) and putting 
all displaced lattice oscillators in their ground states, 
nk=0, we obtain 

<^|JJ |^> = ^ ( ^ i ) + i E * « « * , (23) 
with 

*(*i) = <iMff , |* i>-£ EjbftojfeffJb,!2. (24) 

The protonic part of the ground-state wave function 
has now to be determined by minimizing the functional 
#6Ai) with respect to \pi. 

Since we are interested in the effects of strong proton-
lattice interactions in the presence of a field F, we take 
for the protonic part of the trial wave function an eigen-
function of Hp in the presence of an arbitrary field u, 
which is considered as a variational parameter: 

ypi=ci(u)<pi(r)+C2(u)<pr(r). (25) 

Here c\(u) and c*(u) are given by Eq. (4), with u taking 
the place of F. In this way, the effect of the induced 
lattice displacements on the motion of the proton is 
replaced by an effective field u which has to be deter­
mined self-consistently. The treatment of the problem, 
taking into account the changes in the shape of <pi and 
<pr—which are small anyway in the case of high inter­
vening barriers—is reserved for a subsequent paper. 

Inserting (25) into (24), and noting that the ground-
state energy does not depend on the particular direction 
of F, the functional # (^i) becomes a functional of u: 

0*+H2u(l+B)F yfu* 
cj(u)= A„ A+-DF2, (26) 

(p+lM)1'2 I32+IJL2U2 

with 
zW£*«*-*(x*,*i)2-

Here B stands for 
B = Y^k Bk, 

with (27) 
e(Xk,ei)/ r<P?(r)-<pr2(r) \ 

Bk= 1 Xk, grad r / / dr ), 
S7reofjiO)k

2\ J | r—r r | / 

^ ( r , - • - , ? * , - ' O ^ i f r X - • • , ? * , • • • ) (20) and A±, which is a measure of the strength of the proton-
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lattice interaction, for 

-4±=Efc Ak,±> 
with (28) 

1 / e \ V f r<pm±<PrKr) \2 

^*d==-( ( xfc, gradr' / ; ; dx . 
2\8ire<fi>J \ J | r - r ' | / 

In deriving expression (26), overlap integrals have been 
neglected. 

I t should be stressed that the expression (26) contains 
just one effective parameter A-., which determines the 
change in the polarization behavior of the proton due 
to proton-lattice interactions. B, namely, amounts just 
to a renormalization of the O—H dipole moment: 
Instead of the field F} the proton "sees" the field 
(1+B)F. In the following A-, B, and D will be treated 
as parameters which have to be evaluated for each 
particular crystal lattice we are interested in (cf., 
Appendix). 

Minimizing the ground-state energy (26) with respect 
to the variational parameter u, d$/du=0, the self-
consistency equation for u is obtained as 

* = (l+B)F+2A-.u/(t32+fJ
2u2)1i2. (29) 

Any change in F results according to Eq. (29) in a 
change in u and in qk,i. Inserting (22) into (11), the 
time average value of the lattice distortion due to 
proton-lattice and electric field-lattice interactions, is 
obtained as 

P = - E * ft-1/2«jT*'2<*i| Vk\fi)xk. (30) 

I t should be noted that in the absence of an external 
or internal field F, the true ground state of H must have 
the symmetry of F(r) , and hence a nonvanishing value 
of u is not allowed. 

On the other hand, Eq. (29) shows that if the condi­
tion 2A->fi is fulfilled, i.e., if the strength of the proton-
lattice interaction exceeds a critical value, determined 
by the tunneling frequency of the proton in the ground 
state, even the smallest F will result in a relatively large 
u. Thus, the system is inherently unstable, if 2^4_>/3, 
and any small asymmetric fluctuation A in the hydro­
gen-bond potential is immediately accompanied by a 
self-trapping of the proton, i.e., a nonzero value of u: 

^ = O , A ~ O - M - K 4 ^ - 2 - / 3 2 ) 1 / 2 . (31) 

The protonic part of the " t rue" ground-state wave func­
tion corresponds thus in the presence of small fluctua­
tions A to a localized, "self-trapped" state— though 
J F = 0 — a n d permanent "O—H" dipoles are thus created. 
The ground-state energy E\ of such a self-trapped state 
in the absence of F is obtained in the limit of A « 0 as 

E i = - / 3 2 / 4 , 4 _ - (A++AJ)+| E * »«*, (32a) 

if the condition 2AS>fi is fulfilled. 
The "self-trapped" ground state evidently corre­

sponds to a lower energy that the state of the bare 

proton in the undeformed lattice, 

£ i = - | / 3 | + £ E * * « i b , (32b) 

since the constants A± are always positive. 
Excited "dressed" proton states ^f(p,- • * , ^ v • •) 

= ^2>(r)XH& 4>nk{qk—qk,^) can be calculated in a similar 
fashion, using trial wave functions \[/p which are 
mutually orthogonal. 

Using a trial wave function 

\p2=c2(u)(pi(r) — ci(u)<pr(r), 

orthogonal to the ground state, the energy of the first 
excited state is obtained in the case 2A _>j3 and F=Q as 

£ 2 - S^/4A-- (A++A-)+i E * ««*. (32c) 

The introduction of proton-lattice coupling, thus, 
reduces the resonance energy splitting of the ground-
state doublet from 2/3 to the smaller value fi2/A- and, 
hence, decreases the intrabond tunneling frequency of 
the proton. 

(ii) P<ho)k<hvo 

In this case, where the lattice interacts with the 
charge density of the proton, averaged only over one 
well, a ground-state trial wave function 

s&i=ci(u)yl+C2(u)Vr, 

*i= <Pi(*)H<t>nk(qk-qk,i), (M) 
k 

qk,i= — (<Pi\ Vk\ <pi)/ffc)k, i=l, r, 

is indicated. This function is a linear combination of 
states where the proton is localized on one site and is 
surrounded by suitable displaced lattice oscillators. 

Minimizing the expectation value (\pi\H\\l/i) with 
respect to the variational parameter u, we obtain u as 

u=(l+B)(0/pd)F, (34a) 
with 

/3 d =<^ |F |^ r >=/3exp( -2E f c i 4 i f e , _ /««*) . (34b) 

Inserting this value for u into 

<^i(»*=0) | i5r |^i(»*=0)) , 

the ground-state energy E\ and the energy of the first ex­
cited state E2 [corresponding to ^2—C2(u)^i—C\(u)^r~\ 
are obtained as 

Ei,2= - {A++A-)-DF2^[$£+ix2{\+B)2F2y2 

+§£**«*' (35a) 
and ci,2 as 

^i,22(F) = H l ^ M ( l + ^ ) ^ d 2 + M 2 ( l + ^ ) 2 £ T 1 / 2 } . (35b) 

The above treatment is appropriate as long as 
(E2—E\) Kfiotk. Hence, we get for its validity, in the 
case F = 0 , the condition Pd<fio)k<hvo which is less 
restrictive than the one assumed before: /3<fiWk<hvo. 
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I t should be pointed out, that in contrast to Eq. (29), 
Eq. (34a) does not have a nonzero solution for u in the 
absence of F and, hence, the ground-state wave function 
(33) automatically has always the correct symmetry. 
On the other hand, here as well as in the former case, 
even the smallest F will result in a large u, i.e., in a 
localization of the particle. 

The resonance matrix element fid between two 
"dressed" protonic states ty? and tyr is always smaller 
than the corresponding resonance matrix element fi 
between two "bare" protonic states. The reduction is 
the larger, the greater the strength of the interaction 
Ak,-, and the lower the frequency of the normal mode 
C0&, interacting with the proton. 

The intrabond tunneling frequency of the proton, 
dressed in a self-consistent polarization cloud, may be 
thus much smaller than the tunneling frequency of a 
bare proton in an undeformed lattice. Strong proton-
lattice interactions, thus, drastically reduce the mobility 
of the protons, since the whole lattice ought to "tunnel" 
through the potential barrier together with the proton. 

In this connection it should be noted that the fre­
quency of the deuteron intrabond motion in KD 2P0 4 , 
as obtained from magnetic resonance data,4 is much 
smaller than the one estimated on the basis of the rigid 
lattice model. The temperature dependence of the 
deuteron motion4 shows further that the contribution 
of tunneling to the deuteron mobility is negligible 
within the investigated temperature region ( r = 2 0 0 -
300°K), and that the deuteron—in spite of the low 
potential barrier—behaves like a classical particle with 
a large effective mass. Similarly, the frequency of the 
protonic ground-state doublet transition in6 KH 2 P0 4 is 
much lower than the one calculated within the rigid-
lattice model6 on the basis of neutron diffraction data.3 

Moreover, no double minimum effects at all have been 
observed in the vibrational spectra of triglycine sul­
phate,5 where proton-lattice interactions seem to be 
particularly strong, though the rigid lattice model pre­
dicts very large resonance matrix elements due to the 
shortness of the O - H - 0 bond (RQ...Q=2A3 A). The 
introduction of proton-lattice coupling and the corre­
sponding reduction of the resonance matrix elements 
may explain all above discrepancies. 

B. Weak-Coupling Case 

Since the protonic excitations, induced by the zero-
point fluctuations of the lattice field, have so far been 
neglected, the above treatments are essentially static. 
Let us now investigate the dynamic aspects of proton-
lattice interactions in the weak-coupling limit, using 
second-order perturbation theory. Since the two lowest 
eigenvalues of Hp form a closely spaced doublet, 
separated by a large gap from higher vibrational states, 
we will consider only protonic excitations induced within 
the doublet and neglect the contribution of higher 
excitations. 

The matrix elements of Hi with respect to the eigen-
functions of H0 are 

1 

<^n*nJb|H<î n*»'*>=-E< î̂ î '> 
k k V 2 k 

(36) 

and the ground-state energy E\ is obtained in the dy­
namic case as 

£ i=£i<°>+£i ( 2 ) (37) 
with 

El(0) = _ ( / 3 2 + M 2 P ) 1 / 2 + 1 ^ fak ( 3 8 ) 

being the lowest eigenvalue of H$, and Ei ( 2 ) being the 
energy shift due to proton-lattice interactions: 

^ ^ - l l h - ^ + -——- ). (39) 
* \ fio>k 2 ( / 3 2 4 V ^ 2 ) 1 / 2 + W 

Replacing uk with the limiting lattice frequency co and 
noting that EQ is an even function of F, the above sums 
can be evaluated giving 

Exw= - (A^+AJ)-DF2-Bix2F2(fi2+fx2F2)~1/2 

+^_/32(^2+M
2F2)-1/2[(^2+M2F2)1/2+to/2]-"1. (40) 

Here A±1 B, and D are given by Eqs. (28), (27), and 
(26) with Wfc=co. 

In the absence of the field F, Eqs. (37), (38), and (40) 
yield 

Ei= ~ |/?l + 1 T,k fim-AJiu(fiu+2(i)^-A+, (41) 

and the ground-state energy of the proton, interacting 
with polar-lattice waves, is again lower than the ground 
state of a bare proton in a rigid lattice. 

C. Polarization Behavior 

Let us now investigate the polarization behavior of an 
H-bonded proton, interacting with the lattice. The 
polarization in the state ^(p; • • • ,nk, • • •) is obtained as 
P(p; - • -,«&,- • -)=—dE(p; • • -,nk,- • -)/dF and the po-
larizability as a(p; • • -,nk,- -) = P(p; • • -,nk,- • -)/F. 

The ground-state polarization is obtained in the case 
/3<ho)k<hvo as 

P= 2DF+lx
2(l+B)2FZl3d

2+fx2(l+B)2F2'yi/2. (42) 

As a consequence of the introduction of proton-lattice 
coupling and the corresponding reduction of the reso­
nance matrix element, fid ^ fi, we obtain with increasing 
static field F a rapid build up of an anomalously large 
polarization, which approaches the saturation value at 
relatively low-field strengths. The polarization is larger 
for a deuterium than for a hydrogen-bonded crystal, 
thus showing the correct dependence on the mass of the 
hydrogen isotope.2 
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Essentially the same behavior is obtained in the 
other two cases, treated above. It should be mentioned, 
that in the weak-coupling dynamic case the correction 
term due to proton-lattice interactions goes mono-
tonically to zero as the lattice frequencies increase. 

Strong proton-lattice interactions may as well result 
in a freezing out of the dielectric relaxation spectra at 
sufficiently low temperature due to immobilization of 
the O—H—O dipole moment by self-trapping in the 
ground state.14 The necessary small, asymmetric de­
formation of the O—H—O potential, which is strongly 
enhanced by the effect of proton-lattice interaction, 
may be provided, e.g., by short-range interactions 
between the O—H—O dipoles. A diminishing of the 
amount of dielectric absorption with decreasing tem­
perature has in fact been observed in a variety of solids 
with long H bonds and a correspondingly small /3.9 

Another specific consequence of strong proton-lattice 
interactions is an inherent distribution of dipolar re­
laxation times, leading to broader dielectric loss vs 
frequency curves than expected on the basis of the 
Debye model with a single relaxation time. This effect, 
which has been observed in a variety of H-bonded 
solids,9,14,15 can be easily understood in terms of a 
classical model: At the time, when the external polariz­
ing field is removed, the effective lattice potentials will 
not be exactly the same for all O—H—O dipoles, and 
any class of dipoles in a given effective potential will 
relax exponentially, with its own relaxation time. 
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APPENDIX 

In order to get a notion for the dependence of the 
coupling parameter A- on the lattice structure, let us 
consider two specific models. 

In case of the dielectric continuum model, A- is 
easily evaluated, if we assume co&=co, i.e., an Einstein 
model. Describing the shape of the hydrogen-bond 
potential by 

F(r) = i*[(*+/)2+y2+»8l *<0 

and taking 

A-is explicitly obtained as 

e2 / l 1 \ / 1 /-«27)i/2 \ 
A_= ( )( (27)1/2— / (T*dx ), (44) 

327re0W J \ lj0 1 
14 R. Fuchs and A. von Hippel, Technical Report 156, Lab. Ins. 

Res., Massachusetts Institute of Technology, 1960 (unpublished). 
15 R. M. Hill (private communication). 

(43) 

Y=M0 1 / 2 A, 

with n2 and e being the high- and low-frequency 
dielectric constants of the medium.11 

In contrast to A~ which increases with increasing 
mass of the particle, B is mass independent in case of 
the homogeneous continuum model. 

Due to the strong localization of the protonic wave 
functions, the continuum model is a rather inadequate 
approximation and expression (44) is not very useful for 
a quantitative estimate of the magnitude of A-. 

Therefore, let us consider a case with the simplest 
possible discrete structure of the lattice. In this model, 
the proton, moving in a double minimum potential F(r), 
interacts with two identical oscillating "lattice'' dipoles 
[.(pi.x^edXi, 0, 0) and (pr,x~ed%r, 0, 0)], located on the 
x axis in a distance zhd from the center of the H-bond 
potential. Writing the polarization vector P as 

\Xr/ 

and assuming 

M=mded~
2 

1 0 

0 1 
, K=ed 

(45a) 

(45b) 

we obtain Xi and X2 as 

Xi=[ed/(2f»d)1/2]( \ X2=led/(2mdyi22( \ (46a) 

and the frequencies of the two normal "lattice'' modes as 

an,22=(&=F£')/W (46b) 

Here md stands for the effective mass of the oscillating 
"lattice" dipole, k for the corresponding force constant 
and k' for the interaction force constant between the 
two dipoles pix and prx. 

Inserting the above expressions for X& into Eq. (28), 
and expanding |r'—r|_1 in powers of r', we obtain Ak,-
explicitly as 

6d2LL2 

<4i.-= , ^ , - = 0 , (47a) 
(2Teo)2o)i2mdd

6 

if terms higher than (1/d)6 are neglected. Within the 
same model 

B i = -
e<? 

ir€QO)r 

, B*=0, D=- (47b) 

In order to get a feeling for the order of magnitude of 
Ah- let us evaluate A\- assuming co/27r=:300 cm"1, 
d=1.2Sh, wd=16X1.67X10-27 kg, ^=e=1.6X10~19 

A sec, M=1.6X10~ 1 9 A sec 0.15 A. We get 4 l f_=744 
cm-1, showing that the magnitude of Ah,- in polar 
crystals may well lie in the 102 cm-1 range, and is thus 
definitely not negligible. The corresponding values of 
Bx and D are: £i=5.5, D=1.5XlQr17 (m/V)2 cm"1. 


