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The BK approximation (Born approximation using only the proton-active electron interaction, ne) is 
used to derive the cross sections for ^-orbital capture from atomic nitrogen and atomic oxygen by protons. 
These processes are represented symbolically as follows: 

H.++AZpn(LS)3 -> H(2S)+A+Zpn-l(L'S')l-

Russell-Saunders (LS) coupling is assumed for the description of the atoms and ions, and only terms of the 
ground configurations are considered. Cross sections are derived for the set of processes for which the multi­
plicity is conserved between the initial state, H+-\-A[pn(LS)2, and the final state, H(2S)-M+L>W~1 ( ^Oi l -
Approximate cross sections for the inverse processes are expressed in terms of the cross sections for the 
corresponding direct processes. Furthermore, it is shown that all these cross sections are approximately 
related to one another for each atom. From this same analysis it is found that the cross sections for the direct 
processes are proportional to each of the following quantities: (2L+1) - 1 ; n, the number of p orbitals in the 
target atom; the square of a coefficient of fractional parentage; a sum of squares of vector coupling coeffi­
cients. Detailed numerical calculations are presented for the following processes: 

H++N(4S) -> H( l s )+N + ( 3 P) ; H + + 0 ( 3 P ) -> H( l s )+0 + ( 4 S; 2Z); 2P); H++0( 3 P) -* H(2*)+0+(4S). 

The cross sections for the last process are approximately J of the cross sections for the second process, and 
thus they obey the n~z law of Oppenheimer. This fact supports the use of this rule for estimating the cross 
sections for capture into all s states of hydrogen for each residual ion. Estimates of (2s) and (Is) orbital 
capture are also obtained; the cross sections for (2s) orbital capture from N(*5) and 0(3P) are compared, 
and it is found that the process becomes significant relative to ^-orbital capture for an impact energy 
somewhat below 1 MeV for nitrogen, and somewhat above 1 MeV for oxygen; however, (2s) orbital capture 
dominates (2p) orbital capture from both atoms for impact energies above 8 MeV, Estimates of the Born 
cross sections (Born approximation using the proton-nucleus interaction together with all proton-electron 
interactions, "nn+ne") are obtained from the relation, QB*(A) =i?(H; H.e)QBK(A). R is the ratio, QB/QBK, 
previously calculated for atomic hydrogen and helium, and QBK(A) are the calculated BK cross sections 
of this paper. These Born estimates, (>Be, do not differ a great deal from the experimental cross sections 
per gas atom for capture from the corresponding diatomic molecule. 

IN a previous paper1 this author proposed a method 
for estimating the Born electron capture cross 

section for protons passing through an atomic gas. This 
method is used in the present paper to estimate the 
Born cross sections for capture from the ground state of 
atomic nitrogen and atomic oxygen. As was discussed in 
I, this method consists of calculating the Brinkman-
Kramers cross section for the atom of interest, and 
multiplying this result by the ratio, 

R(A) = QB(A)/QBK(A), 

which has been calculated for atomic hydrogen and 
helium at the same impact energy. (A represents the 
atom, hydrogen or helium, and the subscripts, B and 
BK, refer to Born and Brinkman-Kramers, respec­
tively.) Although this program of calculation has some 
basis for successfully predicting the electron capture 
cross sections for a restricted energy range, there are 
questionable assumptions implicit which will be dis­
cussed later in the paper. (By BK approximation is 
meant the Born approximation with only the proton-
active electron interactions, ne terms, whereas the Born 
approximation is reserved to mean the same approxima­
tion but with the inclusion of the proton-nucleus inter-

1 Robert A. Mapleton, Phys. Rev. 126, 1477 (1962). This paper 
is denoted by I. 

action and all of the proton-electron interactions, 
"nn+ne" terms.) 

The unsymmetrized BK amplitude for the capture of 
electron one (1) from an oxygen atom by a proton is 
given by Eq. (I).2 [ In the integral of Eq. (1) and all 
subsequent calculations of this paper, integration over 
spin coordinates is always understood, and is not 
written.] 

g(6) = / l H ( x 9 1 ) 0 + ( x 2 . 
2irm J 

•#8)]0(xr- -x 8 ) |x9i 

Xexpp(A9- x9i—Ai- x i + £ Ay x,-)] 

Xdxndxi-• dx9. (1) 

For the present, some of the identifying subscripts are 
omitted from g(0), and the notation, 3 [HO + ] , is ex­
plained later in the text. The other notation used in 
Eq. (1) is now explained. The laboratory coordinates of 
the particles are the following: tj(j — 1 • • • 8) = electron; 
r n = oxygen nucleus; rp=proton. In the center-of-mass 
system, the set of independent relative coordinates used 
are 

xy= tj— tn(j= 1 • • • 8); x9 i= ri— rp. 
2 N. F. Mott and H. S. Massey, The Theory of Atomic Collisions 

(Oxford University Press, New York, 1949), 2nd ed., Chapter 
XII, p. 273. 
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The masses on the 016= 16 mass scale are: M = proton; 
m— electron; Mn%—oxygen atom; Mi=M+m; Mni 
= Mn%—m\ MT=Mn8+M] ix^MiMni/MT. The magni­
tudes of the initial and final wave vectors of relative 
motion are denoted by K0 and K, respectively, and 
other derived quantities are A9=KM/Mi—K0; Ai=K 
— K0Mn7/Mns; Aj=Ai?n/Mn7> The wave functions that 
represent the hydrogen atom, the oxygen ion, and the 
oxygen atom are denoted by H, 0+ , and O, respectively. 
Dimensionless units are used with ao—ffi/nie2, the unit 
of length, and eo=me4/2fi2, the unit of energy. In the 
subsequent calculations the momentum change vectors 
of the passive electrons, Ay (j—2- • -8), are neglected, 
since their omission does not affect the accuracy of this 
calculation.3 Before proceeding with the calculation it is 
necessary to determine the wave functions. 

The Russell-Saunders, or LS, coupling scheme is as­
sumed, and the LSM' LMs representation is used. Now 
the wave functions for the ground states of the oxygen 
atom and ion contain equivalent p electrons, and Racah 
has developed methods for the construction of such 
wave functions4; moreover, these wave functions not 
only are antisymmetrical in the electron coordinates, 
but they are orthogonal for the different terms of a 
given configuration. The wave functions for the 4S, 2D, 
and 2P terms of the configuration p*, written below, are 
taken from Table I of R. 

-KPK1D)P^D-}}> 
(2) 

^ 3 ( 2 i ) ) ] = [ l / ( 1 8 ) 1 / 2 ] { 2 ^ 2 ( 1 ^ ; 2P] 

-mp2{*P)p\*P~] 

-S^lp2QD)P',2p-}}. 

The notation used here is fairly standard, and it is 
described elsewhere.5 These relations are diagonal in ML 
and Ms, and the vector coupling formulas for the 
addition of two angular momenta are used to get the 
various components {ML and Ms values) of the differ­
ent terms.6 The numerical coefficients appearing in these 
relations are called the coefficients of fractional parent­
age, abbreviated cfp's.4 These cfp's and Eqs. (19R) and 
(65R) (with n=2) can be used to obtain the cfp's re­
quired for the construction of ^Zp* (*•?)!- Alternatively, 
one can use Eqs. (9R) and (11R) and solve for the cfp's, 
but, as discussed in R, this latter method leaves a phase 

3 Robert A. Mapleton, Pliys. Rev. 122, 528 (1961). This paper is 
denoted by II. 

4 Giulio Racah, Phys. Rev. 63, 367 (1943). This paper is denoted 
byR . 

5 D. R. Bates, Quantum Theory (Academic Press Inc., New 
York, 1962), Vol. II , Chapter I, pp. 66-67. 

6 E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra 
(Cambridge University Press, New York, 1953), Chapter III . 
This reference is denoted by T. A. S. 

factor undetermined. These cfp's and $\j>*(zP)~] are 
given by 

(p* *S}p* 3P)= - (4/12)1'2, (p* 2D\p* 3P)= (5/12)1'2, 

(f 2P}p**P)=- (3/'12)1'2; 

Kp*m> - Wuyi2KpK*s)p;*Pl (3) 
+ (S/12)uy,W(*D)p;*Pl 

~(3/12)1^lpz(2P)p^P'}. 

The normalized antisymmetric wave functions are 
now easily constructed by coupling the two lS subshells 
to the wave functions given in Eqs. (2) and (3). These 
wave functions can be expressed as linear combinations 
of determinants, and they are listed in Appendix II. The 
calculations for the processes of Eq. (4) are described 
next. 

+o+tf(*S);f<?D);f<?P)l- (4) 

Since spin-dependent forces are neglected, the final 
state, hydrogen atom, and oxygen ion, must be a triplet. 
This condition is fulfilled by vector coupling the spin of 
the hydrogen doublet to the oxygen ion in question so 
that the coupled state forms a triplet. The Ms com­
ponents of the coupled state, 'pBC^O+C28"1-1!,)], are 
given in Eq. (5) for the case that electron one (1) is 
captured (T. A. S.). The customary notation, a and /?, 
is used to denote the spin functions. 

3[H(25)0+(45)]: 

Ma=l, 

H(x„)[ia(l)0+(«5;i)—^8(1)0+(«5; |)1; 

Ms=0, 

H(x9X) 

—H>(1)0+(«S; -4)-j8(l)0+(<S;i)]; 

Ms=-l, 

H(x91)[ya(l)0+e<>; _ | )_J / 3 ( i ) 0 +e > 5 ; - J ) ] . 

«[He5)0+eL)]: , (5) 

MB=1, 

H(x 9 1 )a( l )0+eZ;M i i ) ; 

Ms=0, 

H(x91) 
——Ca(l)0+(*L; ML, -i)+/3(l)0+<*£; Mz,*)]; 

M.B=-1, 

H(x„)j3(l)0+(»L;JlfL,-i). 



ELECTRON CAPTURE FROM ATOMIC N AND O BY PROTONS 1831 

The relations in Eq. (5) are diagonal in ML of the ion. 
These relations are not antisymmetrical in all electron 
coordinates, but this detail is treated at a later stage of 
the calculation. At this point of the calculation an 
interesting fact is mentioned. Since the independent 
relative coordinate, x9i, of the electrostatic interaction 
is not contained among the coordinates of O and 0 + , and 
remembering the approximation, Ay= 0 (j = 2 • • • 8), it is 
evident from Eqs. (1), (3), (4), and (5) that non-
vanishing matrix elements occur only for the case that 
coordinate one (1) of O is occupied by a p orbital; i.e., 
only a p orbital is captured. For example, if the ap­
proximation, Aj=0, is not invoked, then matrix ele­
ments exist for s orbitals of O occupying coordinate one. 
This approximation is excellent and it simplifies the 
calculation immensely. 

For the calculations of this paper, the wave functions 
derived by Tubis are used.7 The one-electron orbitals 
are written for convenient reference: 

/ 725 \ 1 / 2 f 

<3wN(A)j 
52(x) = ( ) \xe-^x *"*** , 

\3irN(A)J L T2 J 

(a+b)* 4 8 4 ( 4 ) 3A(A)2 

MA) = TT7-r> N(A) = \ ~ —h , (6) 
(1+aY (1+bY 

/a5vl/2 r - g m 0 -, 
P±i,o(x) = f — J xe-ax\ ****, cos0 , 

7 1 = u a , 7 2 = u , 7 3 = ^ a~uc. 

The functions of Eq. (6) are the one electron orbitals for 
0 and N written in the notation of this paper. S\,% 
denote the orbitals of the subshells (Is)2 and (2s)2, re­
spectively, and the notation for the p orbitals is self-
evident. This notation is replaced by the following 
notation for the 0 + and N+ orbitals. Ti,2 are the (Is)2 

and (2s)2 orbitals; 71,2,3 are replaced by ft,2,3; Pm is 
replaced by Pm*, and a is replaced by 0. fTThe value of 
(ub) is misprinted in the table of the 0(3P) parameters,7 

and the corrected value, ub— 7.11, has been supplied by 
a separate calculation.8] An important property of the 
orbitals, 7\,2, of the ion is their approximate ortho­
gonality to the orbitals, 52,1, of the parent atom, and in 
the subsequent calculations, the following very good 
approximation is used: 

/ -
( x ) « r dx ri,2(x)52fi(x)« / dx T1,2(x)51,2(x)= (ri,2,5i,2). 

With this stock of information, it is not difficult to 
evaluate the BK matrix element. That capture process 

7 Arnold Tubis, Phys. Rev. 102, 1049 (1956). 
8 Professor John C. Slater (private communication). 

of Eq. (4) which leaves the ion in the 45 state is de­
scribed first. With the use of the relations in Eq. (5) 
that define 3[HO+(45)], and Eq. (1), the BK amplitude 
can be reduced to the form 

gML,MS(B) = 
2fxao 

2wm(24:)1f2 -(T2 ,52)2(ri ,51)2(M1 5 / 2 

x(^)7fc 
.^X9l|x9 l |"1H(X9i) 

XPML(*I) expp(A9- X91—Ar xi)] . (7a) 

In Eq. (7a), both ML and Ms assume the values, =b 1, 0, 
corresponding to the three orbitals, P±i,o, and the triplet 
state of the atom, O (3P); however, this amplitude is the 
same for all three Ms values. The integrals in Eq. (7a), 
called I±i,o are easily evaluated, and are given by 

-iUSwa112 rAlx±iAly 

t±i,o-
[l+^9

2][a2+^i2]3L V2 
-,AXA. (7b) 

In Eq. (7b), (A iz,A iy,A ±z) are the rectangular com­
ponents of Ai. At this stage of the calculation a nor­
malized antisymmetric state is constructed from the 
quantity, 

3CH(x9 i)0+(45;x2-- .x8)] , 

in the usual manner. As discussed in I I , this operation 
requires the use of a different relative coordinate, 
x9j ( i = l * • -8), for each permutation of the electron 
coordinates. However, the relabeling of x9j- does not 
change the value of Eq. (1), and thus, using the 
antisymmetric property of 0( 3 P) it follows straight­
forwardly that the net effect of calculating the ampli­
tude with the antisymmetric final state is to multiply 
the amplitude of Eq. (7a) by the factor, 81/2. 

The cross section is defined by2,9 

Q=2T ddsinef—) 
Jo \givj 

x E E £ \gMLMsML'(e)\\ (8a) 
ML'=*~L' ML=-L MS=*S 

In Eq. (8a), Vi and Vf are the initial and final velocities 
of the incident particle, respectively; g;is the degeneracy 
of the target atom; L! and L are the L values of the ion 
and its parent atom, respectively, and (25+1) is the 
multiplicity of the atom. In the present example these 
values are g ;=9, I / = 0, and L = l . Conservation of 
energy is applied and momentum change variables are 
introduced. The final result for the process of interest is 

9 Gerhard Herzberg, Spectra of Diatomic Molecules (D. Van 
Nostrand Company, Inc., New York, 1951), Chapter I, p. 21. 
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given by 

Q(*s)=-
4»/C(45) 

9 ViKoK 
-7TOo' 

J X 

dA1A1* 

il+AfJtoP+AxZj 

=~Q(x), x=Ai{ram), 
9 

C(*S)=,—_[ • -(TAY 

(8b) 

Mn1 L W 

X(ri5i)203a)16/2f ^ 

In.Eq. (8b), # is the minimum value of the momentum 
change variable, and the notation, Q(x), is introduced 
for later use. Since (K0K), Ag2, and Ai2 are all pro­
portional to the impact energy E, the cross section de­
creases as E~7 for sufficiently high energies.10 I t is a 
relatively simple exercise to derive the cross sections for 
the other two processes of Eq. (4), and the results of this 
calculation are given by 

e(*D)=(5/9)G[*(*Z))], 

Q(*P)=(3/9)Q\x(*Pn 
(8c) 

The quantities, Q[x(2D)~] and Q[_x{2P)~], differ only 
slightly from Q(x) of Eq. (8b), and these differences 
result from the small internal energy changes together 
with the small changes in the atomic orbitals of the 
different terms of the ions. Mention is made of the fact 
that the internal energy associated with the center of 
gravity of the multiplet of a given term is the energy 
that is used in the calculations [(T.A.S.), p. 195]. Each 
of these cross sections exhibits the same energy depend­
ence at high energies; however, the onset of the Er7 

dependence occurs at a higher impact energy than it 
does for the corresponding cross section for capture of 
an s orbital from atomic hydrogen and helium into a p 
state of hydrogen.1,3 This difference in the onset of the 
Er7 dependence is readily explained in terms of the 
difference in the exponential terms of the relevant 
orbitals for these three cases. Perhaps more interesting 
is the fact that the cross sections of Eqs. (8b) and (8c) 
are proportional to the squares of the cfp's [see Eq. (3)]. 
Thus, approximately f of the 0 + ions are left in the 
metastable 2D and 2P states. From a consideration of the 
degeneracies associated with the final states, ion, and 
hydrogen atom, and 0(3P)—or by a direct calculation— 
it is rather easy to derive the approximate cross sections 
for the processes inverse to those of Eq. (4).11,12 These 

10 D. R. Bates and R. McCarroll, Phil. Mag. Suppl. 11, 39 
(1962). 

11H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic 
Impact Phenomena (Oxford University Press, London, 1952), 
Chapter VII, p. 417. 

-12 Donald Rapp and Irene B. Ortenburger, J. Chem. Phys. 33, 
1230 (1960). 

cross sections are labeled by the term values of the ion 
and the atom. 

e [ 4 s^ 3 p>(9 /8 )e [ 3 p-

Q\?D -> IP] «(9/20)Q[*JP -

<2[2P^3P>(9/12)Q[3P-

•4S]=4Q[*(4S)1 

>2Dl=lQlx(2Dn 

>2P>iQM2Pn 

From these relations it is seen that the sum of the cross 
sections for the inverse processes is approximately equal 
to f the sum of the cross sections for the direct processes. 

An investigation of electron capture from 0( 3 P) 
leaving the 0 + ion in excited configurations is treated 
next. The first cases considered are the processes given 
by 

H + + 0 ( 3 P ) - » H ( l s ) + 0 + ( 4 P ; 2P), 
*PL2s(2pYl 2Pt2s(2pn (9a) 

This example of the capture of a 2s orbital is of particular 
interest since the cross section for this process obeys an 
E~% law at high energies in contrast to the Er7 law for p 
orbital capture. Thus, the problem is to determine the 
energy region where this process becomes important. 
The procedure for deriving the BK cross sections is 
described briefly. From considerations of coupling two 
angular momenta, it is clear that the ion wave functions 
are obtained by vector coupling a (2s) orbital to £4(3P), 
and with this task accomplished, one forms the antisym-
metrical states, 3[H(x9y)0+(4P)] and 3[H(x9 / )0+(2P)], 
as outlined previously. The cross sections for the two 
processes have been estimated by using the 0 (3P) radial 
functions for 0 + ( 4 P ; 2P). These cross sections are given 
by 

VfC(2P) 
Q(*P) = f xao2— J|>(2P)1 

ViK0K 

VfC(*P) 

Q(*P) = lra<? /|>(4P)], 
ViK0K 

r» dAiAi r 1 
/ ( * ) = / — 

J, [ l+^9 2 ] 2 L(72 2 +4i 2 ) 2 

(9b) 

34(0)73 

{yi+A?y 72(732+^!2)2J 

These formulas were evaluated for two values of E, and 
the results are expressed in terms of the sum of the cross 
sections, Y,(E), of Eq. (4). 

£ = 1 MeV, £K*P)+e(2^) = 0.05 £ ( 1 ) , 

£ = 1 0 M e V , <2(4P)+<2(2P) = 24XX10). 

These results show the predominance of (2*) orbital 
capture at high energies.2 For sufficiently large impact 
energies (Is) capture likewise becomes important, and 
for this case the ion configuration is ls(2pY. In fact, (Is) 
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capture dominates (2s) capture for a sufficiently high 
energy since the (Is) electron is more tightly bound, and 
consequently, has the larger spread in momentum 
space.10 The cross sections for the process given by Eq. 
(9c) have also been computed, but a discussion of these 
results is deferred for the present. 

H + + 0 ( 3 P ) -> H(2s)+0+( 4S). (9c) 

Also included in Eq. (10a) is the approximate relation 
between the inverse and direct processes. All the nota­
tion was described under the oxygen calculations. At­
tention is directed to the absence of the numerical factor 
that defines the cross section [see Eqs. (8b), (8c)]; the 
origin of such factors is explained in Appendix I. With 
use of the same type of approximation that led to the 
relations of Eq. (9b), several cross sections for capture 
of (2s) and (Is) orbitals were calculated. The nitrogen 
ions in this case are the 5S and SS terms of the configura­
tions 2s(2pf and \s(2pf. The cross sections are written 
in the notation of Eq. (9b), and are given in Eq. (10b) 
for (2s) capture—of course, 72,73, etc., are the constants 
appropriate to nitrogen. 

5 vjC(*S) 
Q(*S) = ~ TGtltxWl, 

4 ViK0K 
(10b) 

3 v/C(*S) 
Q(*S) = 7rao2/[>(3S)1, 

4 ViKoK 

These cross sections were calculated for two energies, 
and the cross section for (Is) capture was evaluated only 

The calculation of cross sections for capture from atomic 
nitrogen is described next. 

The first process considered is the one given by 

H++N[> 3 ( 4 S)] -> H( l s )+N+[£ 2 ( IP ) ] . (4a) 

The unsymmetrized BK amplitude for the preceding 
process is given by Eq. ( la) . 

for one energy. The results are expressed in terms of 
Q(8P) of Eq. (10a). 

e=ees)+ees); 
1 MeV, e ( l ) = 0.2Se(3P)(l), (lsy(2s)(2p)z; 

lOMeV, <2(10) = 49<2(3P)(10), (U)2(2s)(2pY; 

1 MeV, e ( l ) = 0.03<2(3P)(l), (ls)(2sY(2p)\ 

A comparison of these results with s-orbital capture 
from oxygen suggests that this capture process starts to 
dominate ^-orbital capture at a somewhat lower energy. 
However, this comparison should be accepted with reser­
vation until it is supported, or rejected, by a calculation 
with improved wave functions, a task the author hopes 
to accomplish. I t is instructive to notice that the nu­
merical factors in Eqs. (9b) and (10b) are equal to 
(2S'+1) (2Z/+1) / (25+1) (2L+1), and this factor is the 
ratio of the degeneracy of the ion to that of its parent 
atom. 

The numerical values of the cross sections are pre­
sented in Tables I and I I . The notation used in Table I 
is explained first. P (H) and P(He) denote the ratios 
that were described at the beginning of this paper, 

fiao r 7 
g(6)= / 4[H(x8i)N+(x2- • -x7)]N(xi- • -x7) | xsil"1 e x p p ( A 8 - x 8 1 - A r x i + £ A /--x i)]dx8idxi-. • dx7i 

2icm J y-2 

A1== K - KoM n 6 /M n 7 , A 8 = K M / M x - K0, (la) 

Aj=Aitn/Mne, MnG^Mtf—in, 

MT=M+Mn7, ^MxMne/MT. 

In Eq. (la) Mn7 represents the mass of the nitrogen atom, and the other notation has been explained. Exactly the 
same procedure as described under the oxygen calculations is repeated, and with the omission of these details, the 
results of this calculation are 

Q(*P)= *a<? -eoep)], 
vtKoK Jx Vl+Atjrtf+AW 

2Mn1r6±fxaV2 ( 2 \1 0n2 (10a) 
C(3p) = -77-\ (T£tf(TjStf(fkz)*( J , 

MneL m \p+a/ J 

ec 3p-> 4 s > (2/9)e[*s-> 3 P ] = (2/9)e[>(3P)]. 
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i£(He) is obtained from the cross sections that were 
calculated using the six-parameter helium wave function 
of Hylleras.13 Qi(28+1L) signifies the BK cross section for 
capture from 0(3P) into the final state, B.(ls)+0+(2S+1L) 
[see Eq. (4)] ; (M4^) denotes the BK cross section for 
capture from O(IP) into the final state, H ( 2 s ) + 0 + ( 4 S ) ; 
Qz is the sum of the BK cross sections for capture into 
all s states of hydrogen and the same three states of the 
ion, AS, 2D> and 2P. (>Be(H) and (>Be(He) are estimates of 
the Born cross sections, and are equal to QZR(H) and 
QsR(H.e), respectively. In both tables the Born esti­
mates contain allowance for (2s) orbital capture at the 
energy, 1 MeV. This notation, interpreted through Eq. 
(4a) instead of Eq. (4), is used for the analogous cross 
sections for capture from atomic nitrogen that are 
presented in Table II. The notation, QE, appearing in 
both tables, denotes the cross sections per gas atom for 
electron capture by protons from the corresponding 
diatomic molecule.14 Some interesting properties of the 
numerical values of Table I are now discussed. I t has 
already been suggested following Eq. (8c) that the 
ratios of the cross sections, Qi, are nearly proportional 
to the ratios of the corresponding squares of the cfp's, 
and the numerical values of Qi, support this remark. 
The second interesting feature is the nearly constant 
ratio, Q2(AS)/Qi(4S). Except at the lowest value of E, 
this ratio is approximately equal to | , and this is the 
first term of the n~~z relation for capture into ^-states of 
atomic hydrogen.1,3'15 Since this relation is obeyed so 
well for capture into H(2s), this n~z law is assumed to 
hold for capture into all s states of hydrogen (for each 
of the three 0 + ions), and thus, one obtains the cross 
sections, Q$. The two Born estimates are not in serious 
disagreement with the cross sections per gas atom of the 
molecule; nevertheless, the experimental values for 
capture from O2 do not cover a sufficient energy range to 
allow much of a comparison. However, in the case of 
capture from N2, the energy range of the measured 
values is much larger. 

The cross sections, QE, for N2 are larger than those for 
O2 at the low energy part of Tables I and II, but the O2 
cross sections start to dominate those for N2 in the 
vicinity of 100 keV. This same behavior is exhibited by 
the corresponding two calculated sets Q%, and @Be(H or 
He). The Qne are smaller than the corresponding QE 
near both ends of the energy range, but some of this 
apparent discrepancy can be explained. First, the study 
made of BK and Born cross sections for electron capture 
from atomic and molecular hydrogen showed that the 
cross section per gas atom for capture from H2 exceeds 
the corresponding cross section for capture from H for 
energies above 400 keV.16 Moreover, the preceding 

13 R. A. Mapleton, following paper [Phys. Rev. 130, 1839 
(1963)]. 

14 S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958). 
16 J. R. Oppenheimer, Phys. Rev. 31, 349 (1928); J. D. Jackson 

and H. Schiff, ibid. 89, 359 (1953). 
16 T. F, Tuan and E, Gerjuoy, Phys. Rev. 117, 756 (1960). 

analysis also showed that agreement between these two 
cross sections at any energy was accidental. Since it is 
reasonable to expect similar relations to exist between 
the cross sections for capture from N and N2, the afore­
mentioned high-energy discrepancy is less disturbing. 
But quite separate from these molecular effects, there 
are other contributions to the total capture cross section 
that require mention. No allowance has been made for 
capture into p and d states of atomic hydrogen, and the 
calculations of 1 and II show that these contributions 
are significant in the low-energy range of Tables I and 
II; furthermore, contributions from simultaneous cap­
ture and excitation have been omitted, but again using 
the results of II as an example, the author does not 
believe that these latter omissions would significantly 
alter the present values. However, it does appear that 
the calculated cross sections are probably too small at 
(Table II) energies in excess of 700 keV, and this may be 
due to the inadequacy of the present estimates, but 
perhaps more likely, to the failure of the Born approxi­
mation itself, and an example of this sort of failure is 
found in the helium capture calculations.3,13 Additional 
evidence that the Born approximation underestimates 
the cross sections for impact energies exceeding (roughly) 
800 keV is supplied by comparisons of the Born ap­
proximation with recent calculations using an improved 
perturbation procedure.17,18 

The author believes that the relative simplicity of 
Born capture calculations together with the apparent 
success of this method in predicting reasonably good 
cross sections for capture from helium and the atoms of 
this paper justifies the use of this method in the inter­
mediate energy range of 40 keV to 1 MeV. 

APPENDIX I 

A different approach to the calculation of BK cross 
sections for ^-orbital capture is described in this Ap­
pendix. I t is recalled that the ^-orbital part of the wave 
functions for the terms of the configuration pn are ex­
pressed as linear combinations of terms of the con­
figuration pn~l each coupled to p(2P). The normalized 
antisymmetrical wave function for (^+4) electrons can 
now be written in terms of the (w+4)!/^!4! products of 
the antisymmetrical pn (p orbital) part and the anti-
symmetrical (Is)2(2s)2 part. Thus, in the calculation of 
a BK amplitude for ^-orbital capture, one can anti-
symmetrize the captured electron with respect to the p 
orbital (configuration pn~l) part of the ion, and then 
antisymmetrize this group of electrons with respect to 
the (Is)2(2s)2 group as was just described. Since it is 
readily verified that there are (n+4) !/w!4! nonvanishing 
integrals of the type implicit in Eqs. (1) and (la), and, 
that the values of these integrals are all equal, the result 
for n—4: is the same as given in Eq. (7a) except that the 

17 R. McCarroll, Proc. Roy. Soc. (London) A264, 547 (1961). 
18 R. McCarroll and M. B. McElroy, Proc. Roy. Soc. (London) 

A266, 422 (1962). 
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numerical factor 2 (24)~1/2 is replaced by the product of 
several numerical factors. 

Attention is now focused on the numerical factors, 
and the origin of these factors is what motivated this 
separate investigation. The number, nll2

y originates 
from antisymmetrizing the captured electron [now part 
of H( 2 ^)] with respect to the configuration pn~l of the 
ion; i.e., the normalizing factor of the p orbital part of 
the ion, [_{n— 1)Q~1/2, has to be changed to [w!]~1/2 to 
allow for the inclusion of the hydrogen atom coordinate 
in this group, and since n permutations are involved, the 
origin of this number is clear. (It will be recalled that the 
factor, (^+4)1/2, was required using the methods in the 
main body of the text.) The next modification intro­
duced is the decomposition of the triple sum of Eq. (8a) 
into the following three triple sums: 

E E C E + E + E ] . 
Ms=-S ML^-L ML'^ML ML'=ML+1 ML'^ML-1 

This expression represents the nonvanishing con­
tributions to the sums of Eq. (8a). The result becomes 
self-evident when one considers the fact that coupling 
the components, mi= ± 1, 0 of p(2P) to the components, 
ML of a given term of the ion can change these ML 
values only by dbl, 0. From these considerations and 
the correspondence between the components of the mo­
mentum change variable, Ai, (A in this discussion) and 
the p orbitals, P± l f 0(xi) , [see Eqs. (7a), (7b)] it is 
readily verified that the contribution from the sums of 
Eq. (8a) can be written as in Eq. (Al). 

(2S+l)n\ (pn~1(2S'+1Lf)}pn(2S+1L))\2 

X L U2 £ \C(ML,ML)\2+\A^\2 

ML—L \ML\<V 

X E \C{ML+\yML)\2 

\ML+\\<V 

+ M I | 2 E \C(ML-l,ML)\2l\g(d)\2. (Al) 
\ML-\\<V 

The notation used here corresponds to the notation 
employed for the process defined by Eq. (A2). 

TABLE III. Nitrogen cross sections, n=3. 

H++Alpn(2S+1L)1 -> K(ls) 
+A+tpn-1(2S'+lL')']; w=3,4 . (A2) 

In Eq. (A2), A denotes the atom and A+, the ion. Much 
of the notation used in Eq. (Al) has been explained pre­
viously; g(6) is that part of the unsymmetrized ampli­
tude that is independent of L and L''; the quantities 
C(ML,ML) are the vector coupling coefficients, orbital 
and spin parts combined, that enter into the construc­
tion of ip[_pn(LSMLMS)~] from the various components 
of 4fy^(L'S'MLtM&,)p(ML"Ma")\ pn(LSMLMs)J 
For any of the ^-orbital capture processes considered in 
this paper, the three sums in Eq. (Al) are equal, 

Direct Inverse 

Q(*S->*P)=Q(x) 
Q(*P-+iS) = (2/9)Q(x) 
Q<*P-+1D) = (5/1*)Q(*) 
Q(*P-+*P)=iQ(x) 

Q(*D-+W) = iQ(*) 
Q?D->*P)=iQ(*) 

Q<*P-+'S)~(2,9)Q(x) 
e(tf-*«p)«ie(*) 

Q(»P-»»P)«iOW 
Q?D-+*D)~hQ(x) 
G(*P-+«Z>)«(5/18)G(*) 

although the value of the sum is usually different for 
each process. (More will be said about this in a future 
publication.) Consequently, the sums appear as a com­
mon factor, denoted by J^(L—>L'), and the desired 
numerical coefficient can now be identified in terms of its 
separate factors. The factor, &)-*= l(2S+ 1)(2L+1)]"1 , 
is taken from Eq. (8a), and it is combined with the other 
factors of Eq. (Al) to give the final result. 

F{L->lJ)^{2L+l)-htY.{L->L') 

X | [p«-\2S'+lL')\pn{2^L)~]\2. (A3) 

This number, F(L-^Lf), is the factor by which the 
quantity, Q(x), (explained in the text) is multiplied to 
get the cross section for the processes of Eq. (A2). The 
BK formulas are now given for both the direct processes 
of Eq. (A2) and their inverses. By inverse process is 
meant the process obtained by reversing the direction of 
the arrow. The formulas for the inverse processes are 
only approximate in that small changes in velocities and 
reduced masses are ignored. The argument, x, of Q(x) 
[see Eq. (8b)] denotes the x value appropriate to the 
process. The cross sections in Tables I I I and IV are 
labeled by the terms of the atom and ion of Eq. (A2); 
e.g., Q(2S+1L —•» 2S'+lL'). Any other process between the 
ground-state terms of the ion and the atom violates the 
conservation of multiplicity, and therefore is forbidden 
in the absence of spin-dependent forces. Since the value 
of Q(x) differs only slightly among these possible 
processes for a given target atom, the ratios of the cross 
sections are nearly equal to the ratios of the numerical 
factors. Although the values of the cross sections are 
not representative of the actual cross section, except for 
very large impact energies, these ratios are perhaps good 
approximations to the ratios of the exact cross sections. 

TABLE IV. Oxygen cross sections, w = 4. 

Direct Inverse 

<2(3i>-+3S) = (4/9)<2(>) 

e(»P->*!>) = (5/9)0W 
e(»p->»p)=ie(*) 

Q?D->*P) = lQ(x) 
op.s->»p)=*e(*) 

e(*s-«p)«ie(*) 
e(y>-»P)«*g(*) 
Q(2P-+3P)~iQ(x) 
Q<*D-*iD)~m*) 

.Q(*P-+lD)~(S/36)Q(x) 
Q(2F^lS)^iQ(x) 
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APPENDIX II 

In this Appendix some of the wave functions used are written as linear combinations of determinants. For 
economy of space the s orbitals are not written, but are understood. Only the first row of the determinant is written, 
and the notation used in Eq. (6) is used for the p orbitals; the customary symbols, a and 0, are used to denote the 
spin functions. The wave functions are labeled by their ML and Ms values as \f/(ML,Ms). 

Ground-State Configuration Terms for (2py 

1 

(71)1/2' 

1 
*(£) = ( i P - ^ P i o ^ ^ l + l P - i a P i a P ^ I + lP-iaPi/SPoal)---, 

(3X7!)1 '2 

2D: M&=^y^p^ 
i 

*(!,£) = (\PopPiaPoa\ - | P_iaPiaP,01), 
(2X7!)1 '2 

1 
* (0,i) = ( - 21 P-iaPiaPo01 + | P-tfPiaPoot | + | P - i a P ^ P o a | ) , 

(6X7!)1 '2 

1 
\ K ~ 1, *) = (1 P-tfPiaP-ia| - | P_iaPo«Po^ | ) , 

(2X7!)1/2 

1 

(7f)l/2 
1 

2 P : * ( l , i ) = (|P_iaPij8Pia| + |PiaPo|8Potx|), 
(2X7!)1/2 

1 
*(0,§) = ( | P o « P i a P - ^ | - |Po«Pi0P_ia|) , 

(2X7!)1/2 

1 
* ( - l , i ) = (|P_iaPo^Poa| + |Pi«P-i/?P-ia)- • •. 

(2X7!)1/2 

Ground-State Configuration Terms for (2py 

1 
3 P : *(1,1) = | P i a P ^ P - i a P o a | , 

(81)1'2 

1 
^(1,0) = (| PiaP^P_i/3Poa| + | PxaPtfP^aPoP\ ) , 

(2X8!)1/2 

1 
lK0,l) = |PiaP_iaPoaPo0| , 

(8!)1'2 

1 
lK0,0) = ( i P i o P ^ P o a P a P l + lPiiSP-iaPoaPaPl), 

(2X8!)1/2 

1 
* ( - l , 1) = - |P_iaP_ijSPaaPia | 

1 
* 05) = (| PiaP^P_iaP_ij31 - | PuSP-iaPoaPtf \ + \ PxtP-iflPoaPifi \); 

(3X81)1/2 
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1 
iD: ^2) = — \P1aPi0PoaPo0\y 

(8!)1/2 

1 
<K1) = QPiaPtfPifiiP-tfl - \P1aP$P$P-1a\), 

(2X8!)1'2 

1 
*(<)) = (2 |P 1aP^P_iaP-i j8 | + iPijSP-ioPoaPoPl ~ |PiaP_i/3PoaPo^|), 

(6X8!)1 '2 

1 
* ( - l ) = (|PiaPci8P-iaP-ii8| ~ \P^P^P-iaP.^\\ 

(2X8!)1 '2 

1 
* ( - 2 ) = |P_iaP_ii3PoaP^| . 

(81)1/2 

Although some of the wave functions for pn(2S+1L) have been omitted from this list, enough are given to illustrate 
the structure when they are expressed as combinations of determinants. The wave functions for p^Q-D) and pi(1S) 
require the following cfp's for their construction: 

w?p)w?s))=u (f(2P)wm)=-h; <#»ewoi>))=-^/2. 
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