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Slow-Neutron Scattering by Hindered Rotators* 
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Using a description of a rotator in a strong static electric field the scattering of low-energy neutrons by a 
condensed system of polar molecules with only rotational degrees of freedom is discussed. Energy and 
angular differential scattering cross sections for symmetric and linear molecules are derived. It is shown in 
the case of symmetric molecules that there exist inelastic effects of the same order of magnitude as free-
rotation transitions. A simple expression useful for the description of hindered rotation excitations is given. 
The cross section for water is computed and compared with measurements and existing theory. 

I. INTRODUCTION 

IN analyzing inelastic scattering of low-energy 
(^10~2 eV) neutrons by macroscopic systems, 

methods have been given in which the molecules are 
assumed to be freely rotating.1-2 The formalism is 
therefore not applicable to systems in which appreciable 
orientation-dependent intermolecular forces are known 
to exist. For these cases a more realistic description of 
molecular rotations, in addition to being useful in 
neutron thermalization studies, should also be of 
considerable interest in view of recent efforts to in
vestigate liquid dynamics by means of inelastic neutron 
scattering. Among the various systems studied thus 
far, water is perhaps the most interesting as well as 
important. A relatively intense band of transitions have 
been observed in experiments with water and inter
preted to be associated with small-angle or hindered 
rotational motions of a molecule in the potential field 
of its neighbors.3 This type of motion has been con
sidered phenomenologically by Nelkin4 who assumed 
that rotations of the water molecule can be described 
by an oscillator of adjustable mass and frequency. 

In this paper we derive the energy and angular 
differential scattering cross section of a rotator using 
a description appropriate for polar, symmetric, and 
linear molecules in a condensed state. An early calcu
lation5 of the energies required for complete rotations 
of a water molecule in an ice-like structure has shown 
a large potential barrier restricting the rotation of the 
axis along which the permanent electric dipole moment 
is directed. The fundamental assumption in the present 
discussion is that the hindrance can be completely 
ascribed to a coupling between the dipole moment and 
a uniform and constant local electric field. This internal 
field presumably then represents the net effect arising 
from the presence of the near neighbors, and its order 
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of magnitude should be essentially that of the corre
sponding crystalline field.6 

The assumption that the local electric field is constant 
in time is not to be taken literally—especially so since 
our prime concern here is with the liquid state. Instead 
the assumption should be interpreted in the sense that 
there exists a time interval corresponding to the 
duration of local ordering throughout which the local 
field may be regarded as approximately constant. 
Furthermore, it is presumed that these "order intervals" 
are long compared to neutron-nuclear interaction times. 

Under the condition of strong coupling, the rotator, 
to first order in the energy, behaves as a two-dimen
sional isotropic oscillator. The second-order terms in 
the energy are independent of the coupling, and must, 
therefore, be associated with free rotational motions. 
Cross sections are then derived which include the 
second-order effects. The presence of energies pro
portional to the rotational constant gives rise to small 
energy transitions which conceivably will complicate 
the interpretation of center-of-mass motions from 
inelastic neutron scattering data. Moreover, a whole 
spectrum of frequencies is obtained with each transition 
involving the oscillator energy. These excitations can 
therefore be interpreted as giving rise to an effective 
hindered rotation band which will reduce to only one 
frequency in a first-order theory. In this sense the 
present work provides a systematic generalization of 
Nelkin's treatment. 

II. THE HINDERED ROTATOR 

The eigenvalue problem of a rigid symmetric molecule 
with dipole moment yt in a uniform and static electric 
field € is well known,7 

/ d\ (M-K cosd)2 

sin0— ) -
\ ddJ 

JLfi 
sin0 dd\ sin20 

/ (X cos0+E) I 
K2+ F(0) = O, (2.1) 

_ _ _ _ _ _ T* B ' 
6 For water a crude estimate gives a coupling of ^0 .4 eV which 

may be compared to the height of the hindering potential of about 
0.7 eV calculated by Magat. 

7 The Eulerian angles are defined in the same order as that used 
by M. E. Rose, Elementary Theory of Angular Mamentum (John 
Wiley & Sons, Inc., New York, 1957). Throughout this paper we 
use a system of units in which ft—1, 
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where the rotational wave function is 

R(rpO<p) = eiai*eiK*Y(e). (2.2) 

In this notation y and £ are chosen along the body and 
space Z axes, respectively, X—pS, and B = (2I)~~l. The 
direction of 8 may be regarded as fixed for the molecular 
problem; however, in the cross section we must average 
over all possible field orientations. 

Equation (2.1) and the corresponding equation for a 
linear molecule have been studied quite extensively in 
the theory of Stark effect in molecular spectra.8 The 
corresponding equation for a plane rotator (Mathieu's 
equation) has also been used to study the transition 
from rotation to oscillation as the field increases.9 

The magnitude of an external field is generally such 
that XeXt/£ is of order unity or less. On the other hand, 
we can expect strong orientation-dependent inter-
molecular interactions in crystals and even liquids if 
sufficient crystalline symmetry still persists, whenever 
the molecules possess large dipole moment. For these 
cases Xint^>#. The high-field solutions of (2.1) should, 
therefore, correspond to a description of hindered 
rotations. 

The energies of rotational states in the limit of strong 
perturbation have been derived by Maker,10 and Martin 
and Strandberg.11 We adopt a somewhat different 
approach here by observing that under the influence 
of a strong field, likely values of 6 will be confined to a 
small region about the origin, and so in this sense it is 
meaningful to examine (2.1) in the small angle approxi
mation. To order 02 the resulting equation takes the 
form of the confluent hypergeometric equation,12 

f J2 d 
\x \-(\K-M\+l-x)~ 
{ dx2 dx 

r\+E / / 2\ M n 

4—Grsr-^-'T*' 
\K-M\+1 

Y(x) = 0, (2.3) 

where 
x—7}62, 

Y{x)^x\K~M^e-^L{x). 
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By requiring the wave function to be square integrable 
in x over the range (0, oo) we find 

R= \tKM)=NtKMeiM^eiK^K~M^ 

Xe-^L^-Wix), (2.4) 

EtKM = -\+(2\B)^(2^+\K~M\+l) 

+BK2( l\+BMK-lB{2U?+l) 

+2$\K-M\ + \K-M\-\K-M\2+2}, (2.5) 

NtKM2=tfV27r2Ltf+\K-M\)U\ (2.6) 

where f =0, 1, 2, • • •; M, K=0, ± 1 , ±2 , • • •; and 
L^\K-M\ j s the associated Laguerre polynomial. Hence
forth, we shall designate the terms proportional to 
(2XJ3)1/2 and B in E$KM as first- and second-order 
energies, respectively. By keeping terms to 02, the 
small-angle approximation gives the energy correctly 
only to first order. However, Eq. (2.5) is correct to 
second order because we have included the contri
butions from terms ignored in (2.3) but which con
tribute to the energy of order B. Higher order energies 
can likewise be developed, in fact, the form of E$KM 
implies an asymptotic series in inverse powers of 
(X/B)1'2}1 

The above strong-field solutions should provide a 
meaningful description of rotations of polar molecules 
whenever X is sufficiently large so the small-angle 
approximation is justified. This condition can be stated 

as 
<02>= (lA)(2f+ \K~M\ + 1 ) « 1 . (2.7) 

Equation (2.7) implies that only a subset of the totality 
of available eigenstates corresponds to physical solu
tions, and in principle only these states should be 
considered in the cross section calculation. 

We have investigated a possible generalization to 
the asymmetric molecule according to the method 
used by Wang13 and have found, as expected, that the 
terms arising from the asymmetry couple all states of 
the symmetric molecule. Thus, numerical methods are 
necessary to diagonalize the resulting infinite matrix. 

III. THE DIFFERENTIAL CROSS SECTION 

The energy and angular differential scattering cross 
section for a system with only rotational degrees of 
freedom is given by1 

2irNki w 

J —00 

X / dt(xaa,)Te-M, (3.1) 

13 S. C. Wang, Phys. Rev. 34, 243 (1929). 
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where aia denotes the scattering length for the ath 
nucleus in the Ith. molecule; tt» and fikf are, respec
tively, the initial and final neutron momenta; e=Ef—E% 
is the neutron energy exchange; 6 is the scattering 
angle, and N is the total number of nuclei in the system. 

The intermediate scattering function is given by 

(Xaa'h^lLtKMP^KM^KM\exp(itH) exp(iK-bja) 
Xexp(-itH) exp( - iK-bz^Ol f^M) , (3.2) 

where H is the Hamiltonian for the Ith molecule, 
b denotes the nuclear position measured with respect 
to the center of mass of the molecule, K=k—k/ , P$KM 
is the probability that the system is initially in the 
state \£KM): 

with temperature T in units of Boltzmann's constant. 
We consider first the scattering by a single symmetric 

where 

<?«*'= [(/+*) !(/-*) IQ+m)!(/-!») !]1/2, 

g-»t-k
l(s)= (-)8L(l+m-s) l(l-k-s) l(s+k-m) Isl]"1, 

2p=\a\ + \a+A\+2s-A, 

2j=\a+A\-\a\+2s-A, 

2q=\a\-\a+A\+2s-A, 

A=m—k, 

a=M-K. 

In writing an explicit expression for the rotation matrix, 
use has been made of the small-angle approximation. 
The integral 6* is evaluated using generating functions 
of L^a\ and is valid for j and q positive or zero. 

The above equations represent a formal calculation 
of the cross section in which all possible transitions are 
taken into account. In view of the fact that the rotator 
model used is meaningful only if ??^>1 it is then appro-

molecule, 

{KM S'K'M' 

A=<fJKTAf| exp(*K-b«)|r#'M'> 
X(tfK'M'\ exv(-iK-ba>)\t;KM). (3.4) 

I t is advantageous to first perform the average over 
electric field orientation. Dependence upon this di
rection is made explicit by the expansion 

exp(iK.b) = 4 7 r E ^ r ^ i z ( ^ ) F ^ ( 5 , ) ^ ( n 

X D ^ ( ^ ) D _ r , J ( ^ V 0 , (3.5) 
where primed and double primed arguments are 
measured with respect to the body and laboratory axes, 
and Dmth

l is the familiar rotation matrix.14 The orien
tation of the space system (along whose Z axis 8 is 
directed) with respect to the fixed laboratory axes is 
specified by Eulerian angles (\f/'6'<p'). We now make 
the assumption that the direction of £ is random, and 
obtain after some manipulation 

priate to develop a series expression for the cross section 
in inverse powers of this parameter. The form of Eq. 
(3.8) is very convenient for this purpose and we find 

2VF= f0+ (1/4^^+ (l/477)/2+0[(l/477)3/2], (3.10) 

where 

X I dx Ji;(l«l+l«±i!+i)/ViBZri««Zrl«
±1i, 

/ 2= -5mk(P-k*+2l) jdx *W+lLri«iZ,r>i. 

The double sign in f\ denotes a sum of two terms 
corresponding to upper and lower signs, respectively. 
The indicated integrals are seen to be special cases of 

14 M. E. Rose, see footnote 7, 

A=2(2TyNtKM2Nt>K>M>2 Zlkm Qlh°a'F&K>,K-k8M>,M-m, 

F= Gmk
l Z g-m.-kl(s)(-) S, 

2TJ S UTJ/ 

.00 

S= I dxxpe"^^1)xL^L^q 

Jo 

« » (-)°+d£"d(p+<r)\(j+<T-d)Kq+<r-d)]-
= (-K+f'(W-i) Kt'+p-q) \ZZ-. a dl(<r-d)\(<;'-d)\tf-d)\(j+<T-d)\(q+*-d)\ 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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5 with £ = 0 which will provide relative selection rules 
for f and f'. . 

Since the square of F enters into A, we find to order 
(4^)~1 in the cross section 

<X«a'>r = 4ir E QikaafP^KM 
lk$KM 

x[w0(t)+W1(t)+o( - ) 1 , (3.11) 

where 

^o(0 = [ l (l2+l-k2){2$+\K-M\+\)\ 

s^ eitBk [{I Hz) (2K-k)+M-K] 

r 

r 

a±=(/=F*)(l±ft+l), 

^ + = ( f + | i T - M | + l ) 5 r f + f 5 r r _ 1 , 

/?_= (f + | £-AT | )«r r + (f+ l)«r r+i-

In PFi the ± signs again imply the sum of the two terms 
corresponding to upper and lower signs, respectively. 
The corresponding expression for the linear molecule 
is obtained from (3.11) by ignoring the quantum 
number K and replacing Qikaa' by 

[(2/+l)/4ir]i,(ic6a)i«(ic6«0(2fi««,-l.)^o. 

When (Xaa/)y is inserted into (3.1) the time inte
gration gives delta functions which are merely state
ments of energy conservation. In Wo(t) the first term 
represents the only part of the scattering that is 
independent of the coupling. All terms with k = 0 
contribute to purely elastic scattering whereas the 
k^O terms correspond to energy transitions involving 
second-order energies. These excitations are of the 
same order of magnitude as what one may expect for 
the possible hindered translational modes in a liquid. 
Since only the k = 0 terms appear in the linear molecule 
cross section there are thus no small energy transfers 
associated with rotational motions. This fact suggests 
that experiments involving polar liquids of linear or 
diatomic molecules are better suited for the study of 
molecular center-of-mass motions. 

The term Wi(t) represents excitations of first-order 
as well as second-order energies. It is readily seen that 
the first-order energy exchange is (2KB)112. Transitions 
involving multiples of this amount appear only in 
higher order terms which have been neglected in (3.11). 
For example, one can easily show that fz leads to an 
energy transfer of 2(2A£)1/2, the intensity of which is 
of order 1/16rf. We consider a transition involving an 

exchange of (2\B)112 as a hindered rotation excita
tion. Because of second-order energy transfers, the 
resulting line shape, even in a reasonably good resolu
tion experiment, will likely appear as a broad distri
bution rather than a single sharp line. 

For scattering from different molecules (l^lf) the 
intermediate scattering function is time-independent. 
If we perform the average over field orientation for the 
two molecules separately, then 

(X«a'>T= jo(Kba)jo(Kba>)- (3.12) 

A consequence of the single-particle model is that the 
"outer" effects are purely elastic and independent of 
the initial states of the molecules. 

In order to exhibit inelastic effects specific to hin
dered rotation excitations we shall assume X$>B so 
that terms proportional to B in E^KM can be ignored. 
This simplification leads to 

<X„*) r=4ir£ei*aa / 

f l(l+l)-k2 } 

I 2v(l-e~v) J 

where v= (2\B)ll2/T. In writing (3.13) we have kept 
only the leading term in Wo(t). Furthermore, although 
it is not entirely consistent with (2.7) to admit very 
large values of f and \K—M\ we have ignored this 
restriction in carrying out the average over initial 
states. We anticipate no significant error in doing so 
since the series is, in general, very rapidly convergent. 
For water at room temperature exp(—2^)^10~2. 

The intermediate scattering function (3.13) now 
describes the scattering process in terms of two com
ponents, the time-independent component gives elastic 
effects while the time-dependent component gives 
inelastic effects due to hindered rotations. The factor 
e~v associated with neutron energy gain assures that 
the condition of detailed balance is satisfied, 

<r(£i -* E2fi) = er (E2 -> Eh6) (E2/EMEl~m,T. 

Equation (3.13) is actually comparable to the cross 
section used by Nelkin.4 The results are similar in that 
both describe the mechanism underlying hindered 
rotation excitation as an oscillator transition. Other
wise, the intensity factors and associated parameters 
in the two models differ significantly. The present work, 
taking explicit account of molecular symmetry and the 
polar nature of the molecule, is less empirical. Moreover, 
by using the rotator description discussed here we 
obtain a generalization of the first-order result (3.13) 
to include effects of rotations whose energies are of the 
same order as those of free rotations. 

According to the foregoing discussion the hindered 
rotation excitation is associated with an energy transfer 
of about (2\B)112. From an early discussion given by 
Pauling9 we estimate A^-0.15 eV for HC1, and thus 
expect a line at 0.02 eV. Such a transition has recently 



1864 S . Y I P A N D R . K . O S B O R N 

been observed for H O at — 130°C in cold-neutron 
studies of hydrogen halides,15 A similar transition of 
^0.066 eV has also been found in both solid and liquid 
phases of HF. We can then estimate X-^0.83 eV, a 
value comparable to that for another highly associated 
system, water. 

IV. NEUTRON SCATTERING BY WATER 

As an illustration of the formalism just developed 
we compute the energy distribution of a beam of 
0.065-eV neutrons scattered at 90° by water at 296°K. 
To simplify the calculation we will assume the water 
molecule can be treated as a mass 18 diatomic molecule. 
Moreover, since the experiment16 under consideration 
is not sensitive to center-of-mass motions17 we will use, 
for convenience, the free gas description for the trans-
lational degrees of freedom.1 The incident neutron 
energy is well below the first excited internuclear 
vibrational state, i^ = 0.2 eV,18 so only the effect of 
zero-point vibration is considered. The cross section 
thus becomes 

*b/ Ef \1/2 

a (Ei -> Effi) = —( ) e-lsEli/E* 
4:Tr\47rEREiTj 

X J e-(e+ERWERT_\ £ 1(1+1) 

[ 2r}(\-e~v) i 

_|_g-(e+ER+^XBlVlERT-J [ ( 4 ^ 

where ER^K2/2M is the recoil energy and ab is the 
bound atom cross section of hydrogen. Equation (4.1) 
is actually the incoherent cross section for hydrogen 
since the contributions from coherent scattering and 
the oxygen effects have been estimated to be about 
5% and is, therefore, ignored. The following values are 

15 H. Boutin, G. Safford, and V. Brajovic, Bull. Am. Phys. Soc. 
7, 500 (1962). We thank Dr. Boutin for sending us the data prior 
to publication. 

16 B. N. Brockhouse, Suppl. Nuovo Cimento 9, 45 (1958). 
17 S. Yip, thesis, 1962, University of Michigan (unpublished). 
18 G. Herzberg, Molecular Spectra and Molecular Structure (D. 

Van Nostrand, Inc., Princeton, New Jersey, 1950), Vol. II. 
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FIG. 1. Energy distributions of neutrons scattered by water, 
present calculation (solid curve), Nelkin's calculation (reference 
4) (dashed curve), and experimental points (reference 16). Also 
shown is the experimental resolution (reference 16). 

used for the parameters, X = 0.825 eV, B = 2.2X 10~3 eV, 
6=:9XlO-9cm. 

In Fig. 1 the average of (4.1) over the experimental 
resolution is shown along with Nelkin's calculation4 

and the experimental points of Brockhouse.16 It is 
observed that within the rather large experimental 
uncertainties both curves are in qualitative agreement 
with the measurements. The two predicted intensities, 
however, differ significantly in the region 0.10-0.14 eV, 
a region where prominent hindered rotation effects can 
be expected. Before the accuracies of the two models 
can be assessed on any quantitative basis, it appears 
that additional calculations and more sensitive com
parisons should be made. 

Work is now underway to study the effects of small 
energy transitions. This investigation along with a 
discussion of the center-of-mass motions in liquids will 
be reported later. 
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