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The ground state of the lithium atom is calculated using wave functions containing interelectronic 
separation terms. A 13-term properly symmetrized variational function is employed yielding a ground-state 
energy of —14.9559 in units of e2/2a0 as compared to the previous best value of —14.9542 using the super­
position of 45 configurations and the experimental value of —14.9561. A brief discussion of applications 
and extensions of the present work is given along with solutions of the integrals which occur. 

INTRODUCTION 

TH E principal defect in most approximations to 
the wave functions for many-electron atoms is 

the failure of such methods to account sufficiently 
for the relative motions of the electrons with each other. 
Thus, such solutions introduce the so-called correlation 
effect errors. Various methods have been introduced to 
compensate for these errors. The simplest approach 
analytically is to add configurations of hydrogen-like 
orbitals of the same symmetry as the atom under con­
sideration. The amplitudes of the configurations are 
obtained from the Rayleigh-Ritz variational principle 
and by this principle the approximate wave function 
converges to the exact wave function with the addition 
of configurations. I t has been shown by many authors,1-3 

however, that for configurations of hydrogen-like 
orbitals the convergence is quite slow. I t is reasonable, 
then, to investigate other configurations which although 
possibly more complex may converge rapidly enough to 
make the resulting wave functions more compact and, 
hence, more useful for general applications. 

Recently there has been considerable interest in the 
use of wave functions containing interelectronic separa­
tions terms for two electron atoms and ions.4,5 The 
convergence is rapid and Pekeris6 has been able to 
calculate measurable quantities within the limits of the 
presently known experimental deviations. I t is only 
recently, however, that computer technology has 
reached the stage where calculations involving inter­
electronic separation configurations for three electron 
atoms can be performed so as to improve the monumen­
tal work of James and Coolidge.7 

The present paper extends the work of James and 
Coolidge on the ground state of the lithium atom and 
considers possible extensions of the method to more 
complex atoms. Calculations of quantities other than 
the ground-state energy are briefly discussed along with 
the possible application of the wave function to solid-
state phenomena. A discussion of the integrals involved 

1 Charles Schwartz, Phys. Rev. 126, 1015 (1962). 
2 A. W. Weiss, Phys. Rev. 122, 1826 (1961). 
3 R. K. Nesbet and R. E. Watson, Phys. Rev. 110, 1073 (1958). 
4 C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216 (1959). 
6 Charles Schwartz, Phys. Rev. 128, 1146 (1962). 
6 C. L. Pekeris, Phys. Rev. 126, 1470 (1962). 
7 H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936). 

and the method of computation are discussed in an 
Appendix. 

CHOICE OF FUNCTION 

Neglecting nuclear motion, the nonrelativistic Hamil-
tonian for many-electron atoms with the energy in 
units of e2/2a0 is given by 

H=Z-W- (2Z/r<)+ ( £ 2/m). (1) 
i j>i 

By choosing a real wave function normalized to 
unity we are concerned with the calculation of J*<j>H<f>dT 
= T+V. The quantities T and V represent, respec­
tively, the kinetic and potential energy contributions to 
the total energy. 

Apart from electron spin, the approximate wave 
function employed here may be represented generally as 

Xexp[- (a f i+]8f 2+7^3)]. (2) 

Due to the complexity of the invidual terms, it is 
judicious to make limitations on the summing indices 
Thus, following James and Coolidge,7 choose Z, m, n so 
that at least two of them are always zero. Then, at 
most, only one interelectronic separation coordinate 
enters any given term. Further, consider the three-
electron atom as composed of a two-electron core 
interacting with a third electron. Choose Hylleraas'8 

two-electron core. Combine this with Wilson's9 rep­
resentation of the third electron and then add inter­
electronic separation terms between the core orbitals 
and the outer orbital. In this way one arrives at the 
James and Coolidge7 wave function approximation. 
The powers of the radial coordinates and of the coor­
dinate coefficients in the exponential are tabulated in 
Table I for this wave function. 

The first improvement considered is that of the 
proper spin angular momentum symmetry and has 
been discussed by James and Coolidge in a paper10 

subsequent to their initial calculation. In principle, the 
terms within the sum of Eq. (2) may in turn be written 
as sums of products of terms each involving only the 

8 E. A. Hylleraas, Z. Physik 54, 347 (1929). 
9 E. B. Wilson, J. Chem. Phys. 1, 210 (1933). 
» H. M. James and A. S. Coolidge, Phys. Rev. 55, 873 (1939). 
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TABLE I. James and Coolidge wave-function parameters. 

Coefficients11 

Powersb (<*«£*= 3.0). 
Terms1* i j k I m n y 

1 
2 
2 
3 
3 
4 
5 
6 

0 
1 
0 
2 
0 
1 
0 
0 

0 ] 
0 1 
1 
0 1 
2 1 
1 1 
0 1 
0 .1 

L 0 
L 0 
L 0 
L 0 
[ 0 
L 0 
[ 0 
[ 0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
1 
2 

0.65 
0.65 
0.65 
0.65 
0.65 
0.65 
0.65 
0.65 

7 0 0 0 0 0 0 1.5 
8 1 0 0 0 0 0 1.5 
8 0 1 0 0 0 0 1.5 
9 0 0 0 1 0 0 0.65 

10 0 0 0 0 1 0 0.65 

a Identical numbering of terms means they have identical amplitudes as 
a result of symmetry. 

b Powers and coefficients correspond to the representation 

riirzJrshrz3lrnmrnn exp[ — (an -j-0rz -f-77'3) ] . 

A1 and A 2 are variational parameters multiplying, 
respectively, the two linearly independent spin func­
tions. I t will be observed that any term which is enclosed 
by a square bracket may be obtained from any other 
term within a square bracket merely by a permutation 
of electrons and since the spin functions are orthonormal 
and not operated on by the Hamiltonian, then, for 
purposes of computation, one need only consider any 
one of the three spatial functions within the square 
brackets. 

Consider the first square bracket. Let the analytic 
form of K and Kr be identical. Thus, we have 

<t>i^2A£K(l)K(2)L(3)--L(l)K(2)K(3)l 

Xa(l)j8(2)a(3)+terms which differ only in 
permutation of electrons. (5) 

Now K and K' have identical analytic forms if two 
terms within the inner sums of Eq. (2) become identical 
when the numbering 1 and 2 is interchanged in either 
of the terms. This may be accomplished without 
resorting to expansions of the interelectronic separation 
terms by the simple expedient of requiring that those 
terms of Eq. (2) which differ only in the permutation of 
the 1 and 2 indices have the same amplitude factor. 
Thus, a single determinant wave function requires that 
the core orbitals have identical analytic representations 
to satisfy symmetry restrictions. This is not the case for 
the James and Coolidge function for it will be observed 

coordinates of a single electron. This may be done by 
expanding first the interelectronic separation terms by 
the law of cosines then the cosine of the angle between 
two radii by the rules of spherical trigonometry. Con­
sider a single term of an inner sum. Denote it by 
K{\)K\2)L{3). The total wave function is constructed 
by taking a product function of this spatial representa­
tion with a spin function of the proper symmetry. 

Two linearly independent spin functions with eigen­
values of 3/4^2 and l/2fi for S2 and 52 , respectively, are11 

2-^[a(l)i8(2)a(3)-i8 :(l)a(2)a(3)], 

6-1 /2[2«(l)a(2)/3(3)-a(l)/3(2)a(3)-^(l)a(2)a(3)]. (3) 

By combining the spin and spatial functions and 
antisymmetrizing the result, one obtains 

that all the terms have the proper symmetry. (The four 
from Table I that from symmetry criteria terms 9 and 10 
should then be a single term. From Table I I it is seen 
terms listed as 13 could have been grouped in two sets 
combining the first and last and the middle two terms 
and still satisfy symmetry criteria. They were combined 
in order to be able to write the individual terms as 
functions of the sum or product of r% and r2.) 

Additional improvement may be obtained by adding 
more terms representing the outer electron with the 
addition of interelectronic terms between the core 
orbitals and the improved outer orbital representations. 
Furthermore, one may introduce a scaling parameter K 
such that P~KY and the equation to be solved becomes 
J^(j)H(j)dT==K2T+KV. I t has been shown12 that the scaling 
parameter may, in principle, be easily determined. 
However, in the present calculation the use of a scaling 
parameter is circumvented by choosing the exponential 
coefficients of Eq. (2) from Wilson's9 calculation and 
from Slater's rules.13 Then set K = 1 . 

The final form of the wave function as determined 
from the previous considerations but reduced in size by 
calculation restrictions is given in Table II . 

11L. I. Scruff, Quantum Mechanics (McGraw-Hill Book Com­
pany, Inc., New York, 1955), p. 235. 

12 Per-Olov Lowdin, J. Mol. Spectr. 3, 46 (1959). 
13 J. C. Slater, Phys. Rev. 36, 57 (1930). 

^i^l(A1-A2)L(l)K\2)L(3)-(A1-A,)L(l)lC(2)K(3)-(A1+A2)L(l)K 

+ 2A2K\\)L(2)K{3)-2A2K{\)L{2)K\3)^ 

-(A1~A2)Kf(l)K(2)L(3)-~(A1+A 2)K(l)K'(2)L(3)+ (A1+A2)K(l)L(2)K'(3)+2A2L(l)K(2)K'(3) 

~ 2 ^ 2 Z ( l ) i T ( 2 ) ^ ( 3 ) ] / 3 ( l ) ^ 

~(A1+A2)K'(l)L(2)K(3)+(A1+A2)L(l)K'(2)K(3)+^ 

Xa(l)a(2)0(3). (4) 
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TABLE II . Wave function parameters of present calculations. 

Termsa 

1 
2 
3 
3 
4 
5 
6 
7 
7 
8 
8 
9 

10 
11 
11 
12 
12 
13 
13 
13 
13 

% 
0 
0 
1 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 

J 

0 
0 
0 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

Powersb 

k 

0 
0 
0 
0 
0 
2 
1 
1 
1 
0 
0 
0 
0 
0 
0 

I 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
1 
0 
1 
0 
1 
0 

m 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
1 
0 
1 
0 
1 

n 

0 
2 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Coefficients1* 
(a=/3 = 2.69) 

7 " 

0.64 
0.64 
0.64 
0.64 
0.64 
0.64 
1.5 
0.64 
0.64 
0.64 
0.64 
0.64 
1.5 
0.64 
0.64 
1.5 
1.5 
0.64 
0.64 
0.64 
0.64 

a Identical numbering of terms means they have identical amplitudes as 
a result of symmetry. 

b Powers and coefficients correspond to the representation 

riW>3fcr23*ri3w?'i2n exp [ — (ari +/3r2 -\-yrz) ] . 

METHOD OF CALCULATION 

The first step in the calculation is to break up the 
Hamiltonian into kinetic and potential energy operators 
and then perform the indicated operations. Thus, 

J 1 = - V 1
2 - V 2

2 - V 3
2 

r=-v12
2-v3

2. 

(6) 

(7) 
Now 

V 1 2
2 = 

2d 2d 4 d 2d2 

ri22+ri2—r2
2 d2 rn2 — ri2+r2 

rifn dridr12 r2rn 
dr2dri 

(8) 

The latter expression has been given by Hylleraas8 

and may be obtained by expressing the Laplacian and 
the ri, r2, Y\2 coordinates in cartesian coordinates. 

One must now calculate the kinetic energy, potential 
energy, and overlap matrix elements. A matrix element 
of an operator 0 is given by 

(9) (ft)**'= / fa&fa'dr, 

where fa and fa> are any two terms, aside from the 
amplitude factor, of Eq. (2). The resulting integrations 
are discussed in the Appendix. 

Denoting the ij energy and overlap matrix elements 
by Hij and S#, respectively, one is then led via the 
variational principle to the 13 secular equations 

Y.J HijCjk=Hj SijCjkEk, £= 1, • • •, 13, (10) 

where dj is the jih amplitude factor for the &th 
eigenvalue and Ek is the &th eigenvalue. The latter 
equation may be written in the usual matrix notation 
as HC=SCE, where E is a diagonal matrix. In this 
application H and S are real symmetric and £ is positive 
definite. The procedure then is to diagonalize S via the 
unitary transformation Us, forming the diagonal 
matrix Sf. Applying a similarity transformation with 
Us on (ST112 one obtains S~1/2. A matrix Hf^S~112 

XHS~112 is formed and then diagonalized to the matrix 
E via the unitary transformation UH. Finally, C=S~1/2 

XUH yields the associated amplitudes of the various 
eigenvalues.14 

Jacobi's method of matrix diagonalization is em­
ployed here. A unit matrix U is formed and a two-
dimensional rotation on the ij, ii, jj, ji elements is 
performed rotating U into U'. Then the transformation 
U'E (where H is to be diagonalized) is restricted to the 
case for which the ijth element and its symmetric 
counterpart are zero. This determines the transforma­
tion. The rotation of U and H is continued until H is 
diagonal.15 

In the actual calculations, one term at a time was 
added and the associated eigenvalue computed. How­
ever, at the completion of the calculation of an 11-term 
function a precision check in the program noted that 
the desired precision of 6 digits was lost. Thus, the 
first 10 terms with their associated amplitudes were 
combined into a single term and the remaining three 
terms of Table I I were added one at a time (without 
varying the relative amplitudes of the first ten terms) 
and the associated eigenvalues computed. 

RESULTS 

The final form of Eq. 
calculation is 

(2) as determined by this 

0=1.03670(19.0146*1-2.02248*2-2.0863708 

-0.142702*4+7.02797*5-9.82786*6-0.562915*7 
-0.296473*8-2.19970*9-3.45488*10) 
-0.0913939*n+1.94123*i2+0.00994224*i3, (11) 

where the subscripted *'s refer to the terms of Eq. (2) 
without the amplitudes. The parameters of the *'s are 
listed in Table I I . 

Table I I I lists the energy values obtained as a func­
tion of the number of terms used. 

Table IV compares the theoretical values obtained 
here with those of Weiss2 and of James and Coolidge.7 

14 This solution of the secular determinant is due to Fred J. 
Quelle, Jr., of the Solid State and Molecular Theory Group at 
MIT and has been written by that group as MIT SSMTG 
Programming Note No. 17. 

15 This diagonalization procedure has been programmed in 
FORTRAN for the IBM 70 series machines. A more complete 
description is available from MIT in Computer Center Report 
CC29 written by Miss M. Merwin. 

file://-/-yrz
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TABLE III . Ground-state energy of the Li atom using terms 
containing interelectronic separation coordinates. 

No. of terms 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
O O a 

Energy (e2/2ao) 

-14.8358 
-14.8396 
-14.8849 
-14.9102 
-14.9345 
-14.9345 
-14.9363 
-14.9370 
-14.9370 
-14.9541 
-14.9549 
-14.9559 
-14.9559 
-14.9561 

a See reference 15. 

The experimental energy is taken from the compilation 
of Scherr et a/.16 

This table also includes comparisons of the energy-
values for equal numbers of terms in order to provide a 
clearer comparison between the different methods 
employed. 

TABLE IV. A comparison of ground-state energies of the Li atom 
as determined by various authors. 

No. of 
terms Author Method 

Energy 
(e2/2a0) 

45 Weiss* 

10 

10 

13 

James and 
Coolidgeb 

This paper 

This paper 

superposition of 
configurations —14.9542 

interelectronic separation 
coordinates —14.9522 

interelectronic separation 
coordinates —14.9541 

interelectronic separation 
coordinates —14.9559 

experimental0 —14.9561 

a See reference 2. 
b See reference 7. 
° See reference 15. 

DISCUSSION 

The advantage of using configurations containing 
interelectronic separation terms is apparent from Table 
IV. The convergence towards the experimental energy 
arrives very close to the experimental value with the 
addition of comparatively few terms. Also Weiss's best 
45-term superposition of configurations is as good as a 
10-term function of the type used here. 

The error introduced by using improper symmetry is 

16 Charles W. Scherr, J. N. Silverman, and F. A. Matsen, Phys. 
Rev. 127, 830 (1962). The experimental energy is the nonrelativis-
tic energy as obtained by these authors and combines two-electron 
theoretical energies with experimental ionization energies taking 
into account relativistic and nuclear motion corrections. 

also clear in the results tabulated in Table IV. I t is 
observed that the James and Coolidge710-term function 
and the 10-term function used here are quite different 
with the latter function lower by 0.002 e2/2a0. Although 
these two functions are not the same (see Tables I and 
II) , they do have identical interelectronic separation 
terms. Thus, as is expected proper symmetry of the 
wave function yields a better representation of the 
system. 

I t is worthwhile to consider the continuation of this 
calculation until one arrives at the accuracy achieved 
by Pekeris4 for helium. On the surface it might appear 
that a wave function that requires 3 hours running time 
on an IBM 7090 and at the same time extends the pre-
viouscalculation by only three terms is not worth contin­
uing. I t must be pointed out, however, that the present 
program is written in such a way that a great deal of 
calculation is unnecessarily repeated. With the initial 
program written and tested, numerical checks are now 
available to decrease, substantially, the required 
running time. Furthermore, although only three terms 
of different symmetry have been added to the function 
of James and Coolidge7 it will be observed by reference 
to Tables I and I I that the present calculation employs 
21 terms as compared to 13 terms for the earlier 
calculation. 

With the completion of refinements of the present 
program it would be interesting to apply the general 
approach to other atoms. Beryllium, being spherically 
symmetric, should not present any great difficulties. 
Terms containing only one interelectronic separation 
term each would be used and then basic integral 
programs for lithium could once more be applied. 

Since the energy value is not a very good criterion of 
the "goodness" of a wave function and since the 
present energy value is still outside of experimental 
limits, it was considered unnecessary to calculate any 
other quantities. With the improvement of the wave 
function, however, such things as ionization potential 
and electron density at the nucleus for use in hyperfine 
structure calculations should certainly be ascertained. 
Application of the wave function to solid-state phenom­
ena should also be considered especially for applications 
using the orthogonalized plane-wave representations. 
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APPENDIX 

The following integrals occur: 

A{k 
Jo 

xhe~axdx, h^O (12) 

/.oo ,.00 

V{g,a/hfi)= / dxj dy x"yhe-^x+M; 

g>0, h+g^-1, (13) 

~oo /.oo ~oo 

W(a,b,cjdyej)= \ dx dy dzx^yh^-^^6^^, 
J0 J x J y 

a^O, a+b^-1, a+b+c^-2. (14) 

All of the integrations which occur in the present 
calculation may be put into one of the three afore­
mentioned forms via the general relationship 

/.& /*y /»& /»& 

/ dy dxg(y)f(x) = dx dy f(x)g(y). (15) 
J a J a J a J x 

The limits on the powers of the V and W integrals 
are obtained via Taylor series expansions. Thus, 

V(g,a/h,P)= Z 
oo (— \)kah f™ yh^+k-j-l 

*=0 kl Jo g+k+1 
•e-^dy. (16) 

From g+k+1^0 one obtains g^O. From h+g+k+1 
^ 0 one obtains h+g^ — 1 . The power limitations for 
the W integrals are obtained in the same manner. 

Recurrence relationships between the A, V, and W 
integrals are given by James and Coolidge.7 

The general form of the integrals evaluated here is 

J (a,b,c,d,e,f/a,p,y) 

= / riar2hzcHZ
druQrnfe-^ri+^^n)dridT2dTZ. (17) 

If the interelectronic separations have even powers, 
they are simply expanded by the law of cosines. If the 
powers are odd, then numerator and denominator are 
multiplied by that term and the numerator is expanded 
by the law of cosines and the denominator expanded in 
the usual way by Neumann's expansion in terms of 
Legendre polynomials. 

By rotating, where necessary, the coordinate systems 
of one or two of the electrons in such a way that the 
z axis is along the radius vector of another electron the 
0 integrations have the general form 
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TABLE V. Values of j(g,n) = y ^ n (cos0)cos*0 smddd. 

g 

0 
1 
2 
2 
3 
3 
4 
4 
4 

n 

0 
1 
0 
2 
1 
3 
0 
2 
4 

/(&») 
2 
2/3 
2/3 
4/15 
2/5 
4/35 
2/5 
8/35 
16/315 

terms of Eq. (17). Some values of these integrals as 
determined by Barnett17 are listed in Table V. 

Using the notation 

I(a,b,c/d,e,f) = \ r1V2V3
we- ( a n +^2 +^3 ) 

COSa(023) COS&0i3 COSc0i2 

x- •drxdrtflTz, (19) 
r2z

a ru
e rW 

we have 

7(0,0,010,0,0) = 64TTM (k+2, a) A (1+2, 0) 
XA(m+2Jy)J 

7(0,g,0|0,l,0) = 64ir»i4(/+2,/3)i: 
f(g,n) 

(20) 

/(f t 
Jo 

(cos0) cos°(0) sin0d0 (18) 

X[V(m,+2+n,y\k-n+l,a) 

+ V(k+2+n,a\m+l-n,y)], (21) 

, , ^ ^ ^ f(h,n) f(g,p) 
W , S I W ) = 6 4 T T * I ; I : 

n p 2 2 

X[W(f+p+n+2,fn+n+l,k-p+l\p,yp) 

+ W(m+n+2, l+p~n+l, k-p+l\y,P,a) 

+ W(k+p+2, l+n-p+1, m—n+l\a,p,y) 

+ W(k+p+2, rn+n+2, l-p-n\a,y,P) 

+ W(m+n+2, k+p+2, l-p-n\y,a,p) 

+ W(l+p+n+2, k-p+1, m-n+l\p,a,y)l. (22) 

The integrals represented thus far are reducible from 
terms containing 0, 1, or 2 odd powers of interelec­
tronic separations. The general form of the reduced 
integral for three odd powers of interelectronic separa­
tions is I(h,Q9g/l,l,l) and this becomes a rapidly 
converging infinite series. However, by the choice of 
wave function employed here three odd powers of the 
interelectronic separations may occur in only one way, 
viz., 

^23^12 

K= I r1*r2V8
m -e~^r^r^yr^dTidr2dTzy (23) : = / rihr2

lr9
n 

ru 

for all cases of odd powers of interelectronic separation 
17 M. P. Barnett, University of Wisconsin Naval Research 

Laboratory Report WIS-ONR-30, 1958 (unpublished). 



1876 E . A . B U R K E 

which reduces to 16 infinite series of the type 7(0,0,0/ obtained in two or three terms. The computation of 
— 1,0,-1) . Each of these series converges to the this integral required double-precision arithmetic 
desired accuracy within three or four terms. It is found tabulating. It is the only place in the entire calculation 
to be more expedient, computationally, to combine all which such precision is required. 
16 series into a single series for which convergence is By the definition 

WW(K,M,N,A,B,C,L,J,q) = W(M-2+2q+L+J, N+3-L, K~-2q+2-~J, B, C, A) 
+ W(N'+2q+L, M+l-L+J, K~2q+2-J, C, B, A) + W(N+2q+L, K-l+J, M+A-L-J-2q, C, A, B) 
+ W(M~2+2q+L+J,K+3-JiN-2q+2+L,B,A,C)+W(K+2q+J,M+^ 
+ W(K+2q+J, M+l-J+L, N-2q+2-L, A, B, C)+W(K+2q+J, N- 1+L, M-2q+4:-L~J7A> C, B\ 

(24) 
one obtains 

1 f 
K = 64x3 E [WW{K+2, M+2, N, A, B, C, 2, 2, q)+WW(K, M+4, N, A,B, C, 2, 2, q) 

« (2q+iy{ 

+ WW(K+2, M, N+2, A, B, C, 2, 2, q)+WW{K, M+2, N+2, A, B, C, 2, 2, §)] 

2q 
[WW(K+l, M+3, N, A, B, C, 1, 2, q)+WW{K+l, M+l, N+2, A, B, C, 1, 2, q) 

(2?- l ) 
+ WW(K+2, M+l, N+l, A, B, C, 2,1, q)+WW(K, M+3, N+l, A, B, C, 2,1, q)~] 

2(2+1) 
[WW(K+l, M+3, N, A, B, C, 3, 2, q)+WW(K+l, M+l, N+2, A, B, C, 3, 2, q) 

(2q+3) 
+ WW(K+2, M+l, N+l, A, B,C, 2,3, q) 

4g2 

+ WW(K, M+3, N+l, A, B, C, 2, 3, g)]+ WW(K+1, M+2, N+l, A, B, C, 1,1, q) 
(2§-1)2 

4(rM) 2 1 
+ [WW{K+\, M+2, N+l, A, B, C, 1, 3, q)+WW{K+l, M+2, N+l, A, B, C, 3,1, q)]\. 

(2q+3Y J 
(25) 

T- .- /r,c\ • u • J I T- /Ti\ • 4-U su normals to Pa(cos0i3). Thus, we have 
Equation (25) is obtained from Eq. (23) m the follow­
ing way: P,(costfu) = P,(cos0i)P4(cotf,)+/(*«)• (26) 

1. Multiply by »"28fi2/r23ri2. Upon integration over \f/u, /(^i3) vanishes. 
2. Expand numerator by law of cosines. 6. Integrate r2 between the limits (0,r <i3), (r<i3,f>i3), 
3. Expand denominator by Neumann expansion. and (r>i8,«>), and integrate n between the limits 
4. Rotate Za and Z3 along r2. Hence, 012=02. (°>ri) a n d K ° ° ) . 
5. Apply the addition theorem18 for Legendre poly- ,7- * » » % e x P r e s s t h e resulting integrations in terms 

^ F J F of the W integrals.19 

18 P. M. Morse and H. Feshbach, Methods of Theoretical Physics u A more detailed discussion of the evaluation of this integral 
(McGraw-Hill Book Company, Inc., New York, 1953), p. 1274. and a discussion of convergence properties is available on request. 


