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An approximation developed by one of the authors for treating macroscopic bound systems in the ground 
state is applied to a homogeneous system of nuclear matter using a simple separable potential. More exten­
sive numerical results are given for the density, energy density, chemical potential, effective potential, 
momentum distribution, pressure, and density correlation function. In addition, we discuss an ambiguity in 
the calculation of the pressure arising directly from the approximation. This ambiguity and its effect on 
the nuclear parameters at the physically meaningful point of zero pressure is treated in detail. In particular, 
three different expressions for the pressure are derived which lead to zero-pressure values of —14.4, —17.0, 
and —17.5 MeV for the binding energy/particle and 0.87, 0.95, and 1.01 F for the interparticle spacing. A 
numerical examination of the density correlation function suggests, as expected, that correlations of more 
than two particles are rare at nuclear densities. 

I. INTRODUCTION 

IN a previous paper,1 one of the authors developed 
an approximation for calculating the ground-state 

properties of nuclear matter based upon the general 
formalism of Martin and Schwinger.2 In this paper we 
present more extensive numerical results for the volume 
properties of nuclear matter, and discuss certain am­
biguities which appear in the calculation of the 
pressure. A later paper will be devoted to an extension 
of the approximation to the calculation of surface 
properties. 

The basic approximation involves a treatment of 
two-particle correlations which is sufficient to remove 
hard-core divergences and which allows for the effect 
of these correlations on both the energy-momentum 
relation and the momentum distribution. The approxi­
mation leads to a two-particle scattering matrix which 
is independent of many-body effects, so that only 
one-particle equations need to be solved self-con­
sistently. As a result, the necessary numerical com­
putations are straightforward, particularly for a simple 
interparticle potential. 

The development of the approximation leads to a 
set of equations which determine various parameters 
of nuclear matter as functions of the density. To 
determine these parameters for the physically mean­
ingful case of an unrestrained system, one must impose 
the requirement that the pressure be zero. This re­
quirement may be formulated in several ways which 
are completely equivalent in an exact theory. For 
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1 R. D. Puff, Ann. Phys. (N.Y.) 13, 317 (1961). 
2 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 

example, we know that at zero temperature and 
pressure the chemical potential equals the total energy 
per particle. An equivalent statement of the T = 0 , 
P = 0 condition is that the slope of (E/N)(p) be zero. 
The former condition was the first imposed in con­
nection with the application of the Martin-Schwinger 
formalism to nuclear matter.1 The second condition 
was used by Falk and Wilets3 in their investigation of 
nuclear compressibility. Numerical results for the 
parameters of interest were different in the two cases. 
Such differences are to be expected unless the approxi­
mation is capable of giving correctly both the chemical 
potential and the slope of the (E/N)(p) curve at 
saturation. The extent of these differences reflects the 
error involved in our approximation. 

There are, of course, other elementary relations 
among the thermodynamics quantities which in prin­
ciple can be used to find the density of the zero-pressure 
system. One can also use for the pressure an expression 
which we will derive from momentum transport 
considerations. All of these relations would give the 
same results in an exact calculation, but the answers 
may differ to some extent in any approximation. The 
best choice probably depends on just what quantity 
is to be calculated, and it is our feeling that there is no 
clear-cut basis at present for preferring one relation 
over another. We treat on an equal footing the choices 
used in references 1 and 3 together with the expression 
which we will derive from momentum transport 
considerations. 

In the following sections we discuss the general 
derivation of the approximation, the calculation of the 
parameters for a homogeneous system as functions of 
the density, the calculation of the pressure and the 
parameters of the system at zero pressure, and the 
calculation and interpretation of the density correlation 
function. 

3 D. S. Falk and L. Wilets, Phys. Rev. 124, 1887 (1961). 
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II. THE APPROXIMATION 

Since a detailed derivation of the approximation 
which we use has been given in reference 1, we will 
limit ourselves to a brief recapitulation. We deviate 
from reference 1 by postponing the transformation into 
momentum space to as late a stage as possible (antici­
pating the extension of the approximation to inhomo-
geneous systems) and by avoiding the use of Fourier 
series expansions over a finite time interval, which have 
rather obscure physical significance. 

A many-fermion system may be described by a 
sequence of w-particle Green's functions describing the 
propagation of n particles through a many-body 
background. These functions are defined as expectation 

values of time-ordered products of field operators, 

G„(l- • -n; 1'- • V ) - ( - ; ) » expRu £»• & • - / / ) ] 

x<n^(i)--^(»¥t(»/)--^i(i,))>, 
where each numerical argument is used to indicate a 
set of space-time coordinates (as well as a discrete 
internal coordinate specifying spin and isospin, which 
we will usually neglect). T is the usual time-ordering 
symbol, and the exponential phase factor is inserted to 
simplify boundary conditions. 

A set of coupled integrodifferential equations for the 
Green's functions may be obtained from the equation 
of motion for the field operators. For a nonlocal 
potential v these equations are 

r d v * i r 
i h—+ix \Gn(X" •» ; 1'- • •* ' )+* / <1, n+l\v\ 1", » + 1 " ) G , H . I ( 1 " 2 - • •», n+1"; V- • •*', n+V 

Ldh 2m J J 

7=1 

The integrations extend over space and time coordi­
nates and include an implied sum over internal co­
ordinates. The notation n+ refers to / n

+ = / « + 0 , and it 
indicates the correct ordering of field operators in the 
potential term. 

The expectation values of various operators can be 
expressed in terms of the G's; in particular the number 
and Hamiltonian operators may both be written in 
terms of Gi. Furthermore, the nature of the expec­
tation value used in defining the Green's functions acts 
as a boundary condition on Eqs. (1). We are actually 
interested in the expectation value 

(X)ON= (N,E0(N) | X | N,E0(N)) 

for a state of N particles (in a fixed volume) with 
ground-state energy E0(N). However, it is convenient 
to treat this as the low-temperature limit of a grand 
canonical expectation value, <X)* r»*=Tr[r- ' r<*-^>X]/ 
r£r£e~ir(H~flN)~], which is taken over a complete ensemble 
of states with temperature 1/ir and chemical potential 
ix. As ir—•» oo the weighting exponential picks out the 
state or states for which E—pN is a minimum. This 
occurs at E=EQ(N), where N is such that 

dE0(N)/dN=fx. (2) 

The advantage of the canonical expectation value 
lies in the cyclic properties of the trace, which lead to 

antiperiodic boundary conditions on the Green's 
functions for real r. Thus,2 

G»( / I = T ) = - G „ ( * I = 0 ) , (3) 

if r is real and positive and all time coordinates lie in 
the interval 0 to r. 

The use of these boundary conditions for real r 
necessitates using analytic continuation to obtain the 
limit i r —> oo. For a one-particle function such as G± 
this continuation may be carried out by expressing 
the Green's function in terms of a spectral function. 
Thus, one defines two continuous functions G> and 
G<by 

G1{VJV)^G>(\]V), h>h' 

= G<(1;1') , h<ti. (4) 

Then, an expansion of G> and G< as traces shows that 
for arbitrary complex r 

G>(t,t+T;r'0=-G<(tt;r'0. (5) 

This relation establishes a proportionality between the 
Fourier time-transforms of G> and G<. By expressing 
these transforms symmetrically in terms of a function 
A, called the spectral function, one may write Gi in a 
form which insures the satisfaction of the boundary 
conditions, 

/

dw 
— £-^(<i-'i')^(riri'co)X^ 
2iri 

1 

l+e~' 

- 1 

-, t>V 

-, t<i\ 

(6) 
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The magnitude of the discontinuity in G\ at h=ti, where 
which is determined by the field operator anticom- / x _ f _^_ ^rrco^. 
mutation relations, establishes a normalization con- J 2w l-\-ei(aT' 
dition on the spectral function, and (9) 

F rdu l r V2 -b4(rr'co) 
« ( ' ) = / — l i m - co \-fji 

^ J 27r r^ r2L 2m J l + ^ W T 

/ — 4(riri'co) = 5 ( r i - r i 0 . (7) 2 are particle and energy densities which will be constant 
for a homogeneous system. 

The use of a spectral representation for Gi is a special 
The number and energy averages may be written in c a s e o f a general method for analytically continuing 

terms of A as a n y function F(t—tr) which is discontinuous only at 
t=t' and satisfies either periodic or antiperiodic 

/

boundary conditions within 0 to r. These conditions 
dx p(r); (H)— I dx e(r) (8) iniply that the function may be expressed in terms of a 

J spectral function £F(co) by 
1 

/

do) 

2m 

, t>V 
l=Fe-ic0T 

(10) 

where the upper and lower signs are appropriate for periodic and antiperiodic functions, respectively. We may 
then define a function of complex energy, 

da)' ^(w') 
F(c) = Fo+l , (11) 

r da)' &((*') 

J 2TT CO—co' 

such that the spectral function is just the discontinuity in F(co) across the real axis, 

^(co) = limc^+o (l/i)[_F(a)-ie)-F(a>+ie)J (12) 

The replacement F(t—tf)—>$(oo)—>F(o>) is a linear transformation which obeys general convolution and 
product rules. One may show that if 

F(t-t') = J dt"G(t-t")H(t"-t'\ (13) 

when 0<t, tr<r> and F, G, and H are all periodic or all antiperiodic, then 

F(co)==G(co)#(co). (14) 
On the other hand, if 

F(t-t') = G(t-t')H(t-t'), (15) 

where neither G nor H contains delta functions, then 

do)idoo2 8(coi)3C(co2" 

(2ir)2 co—coi—C02 

1 f do)idcc2 8(coi)3C(co2) 
F(co) = - / {|[coth(^coir)]^+i[coth(^co2r)]C 2} 

i J (2irY 

/

do' 
—{J[coth(^coV)]^8(coOi?(co-coO+i[coth(^coV)]^G(co-co05C(coO}, (16) 

2iri 
where the script letters designate spectral functions and ei= + l if G is periodic or —1 if G is antiperiodic, while 
€2 depends similarly on H. Finally, if 

' F(t-?) = G(t'-t), (17) 
then 

ff(<o)=-S(-<o), (18) 
and 

F(co) = G ( - w ) . (19) 

file:///-fji
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To produce a computable approximation, the infinite set of coupled equations (1) must be truncated by ap­
proximating some Gn by a combination of smaller G's. For this purpose the equations for Gi, G2, and Gz may be 
manipulated to obtain an equation for 62 which is symmetric in variables 1 and 2, 

r d Vx2 n r d V2
2 1 r 

*—+—+/* i—+~+M Cft(12;l ,20-G1(l;10Gi(2;20+Gi(l;20G1(2:l0]-i/(12|£; |12)G2(12;l /20 
L dh 2m JL dfe 2w J J 

= - /"<13|»| I3><24|»| 24>{G4(l234; l/2/3+4+)—G2(I3; l/3+)G2(24; 2 /4+)+Ga(I3; 2/3+)C?2(24; l/4+)}. (20) 

Our approximation is obtained by neglecting the right-hand side of this equation, and a discussion of its inter­
pretation can be found in reference 1. We may rewrite both the approximate expression for G2 and the exact 
equation for G\ in integral form by introducing the function Gi° which satisfies Eq. (1) without the interaction 
term, together with the boundary condition (5). Thus, we have 

and 

G2(12;l '20«Gi(l;lOC?i(2;20-^^ (21) 

Gi(l; 1 0 = GI° (1 ; I ' M / G I ° ( 1 ; l)<l2[t>| 1'2')G2(1'2'; 1'2+), (22) 

where the time integrations as well as the free time variables are restricted to the interval 0 to r. 
We then define the function T by 

/"<12|3T|I2>Gi(l; 1 0 G ? I ( 2 ; 2 0 = /"<12l»| I2>G2(I2; 1'20, (23) 

<12|r|l/2/> = <12|v|l/20—<12|»l2a0+* Al2|v|I2>Gi0(I; IOGi°(2; 2')<I'2/| T| l^')- (24) 

and so obtain 

T is symmetric in the unprimed and primed coordinates higher order functions, is 
and also independent of Gi. The substitution of its n ,1 0 1 / o A n (A .,^n M o A n (A OA~ (n. 1A 

definition into the exact differential equation for Gx
 &2{U]1 2 ) « M 1 : 1 ) M 2 ; 2 )»G1(1; 2 )G1{2; 1 ) 

glV6S +*/G2(12; n X n ^ l r ^ G i ^ l ^ l O G x ^ ^ ^ O . (28) 

L ^ + 2 w + / * J G l ^ ' ; 1 ^ N o w ' w e find ^ = G i G i r (instead of 23), and Gx is 
again given in terms of T by Eqs. (25) and (26)! 

/

However, although this procedure gives exactly the 
2(1; l)Gi(l; 10 = 5(1-1'), (25) s a m e Qh [t [s c i e a r t n a t the G2 given by (21) is not the 

, same as the solution to (28), even though both forms 

/

have the proper symmetry upon interchange of indices 
(12\T\ 12)Gi(2; 2+) (26) 1 and 2 or 1' and 2'. Baym and Kadanoff have shown4 

that if Gi satisfies both (22) and (27) with the same 
. . approximate G2, and if that G2 has the correct 1-2 and 

is the usual self-energy function (or effective potential), y_2, s y m m e t r y ? t h e n a l l of t h e b a s k conservation laws 
which is nonlocal in both space and time. a n d s i m p l e s u m m l e s w h i c h follow d i r e c t l y f r o m t h e 

It is, of course, possible to investigate^ the Green s d e f i n i t i o n of Gl a r e satisfied. The fact that our approxi­
mation equations by manipulating the primed indices. m a t i o n w i u g i y e t h e s a m e Qi f r o m ( 2 2 ) a n d i t g « a d j o i n t » 
The exact expression for Gx is equation (27) only by using two different expressions 
Q fi-i /) = G °C1* 10 ^or ^2 s n o w s t n a t w e n a v e n o t satisfied the Baym-

Kadanoff sufficiency conditions. Since the conservation 

/

laws are, of course, used in the derivation of many 
G2(12'~; 12)(12|fl| 1'2 )G\ (1 ; 1 ), (27) relations between thermodynamics quantities, this is a 

4G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961); 
and the G2 equation, within our approximation on the G. Baym, ibid. 127,1391 (1962). 
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possible source of the discrepancy between numerical important.5 In any case, we investigate the importance 
results obtained from the same approximation when of this difficulty for nuclear matter. 
different exact thermodynamic relations are used for The fact the v is an instantaneous interaction allows 
finding the point of zero pressure. I t is certainly to be the substitution 

regarded as a flaw in the approximation, since the {X2\T\l'2') = S(t1-tt)(t1r^\T\r1'ti%yi^-tt'), (29) 
ambiguity in the proper pressure relation is conceptually x ' ' ' v x ' ! ' K » \ J 
disturbing even in cases where it is not numerically where the common-time T satisfies 

< r 1 r 2 ^ T | r 1 ^ , > = { < r i r 2 | t ; | r i / r 2 0 - < r i r 2 | » | r 2 V > } « ^ - 0 

+ Ar1r2 |^ |r1
, /r2 ' ,)A0 0(ri , ,r2

/ //; xx
mt%

n,tn){t1
mrJttV'\ T\rx

fr2r), (30) 

and 
AM(rirrf; r i V O ^ ^ G i 0 ^ ; ti't'Wirti u'l'). (31) 

Since the functions in this equation depend only upon a single time difference, we may perform the transformation 
to functions of complex energy which is described by Eqs. (10) through (12). We note that A00, and therefore T, 
is periodic over 0 to r since it is the product of two antiperiodic functions. The transformed equation is 

<nr21T(«) | ri'iV> = (rir21 v | rx ' r2 '>- <rir21 v | r2 ' r / ) + [ ( r ^ | v | ri"r2">A00 ( r i"r2"; r 1"'r2" /a>Xri"'r2 '"1T(«) | r,'r2'>, (32) 

where 

/

do)ido)2 740(rir1
,coi)^40(r2r2

/co2) 
[ I t a n h d i c o ^ + i tanh(i&>2r)], (33) 

(2TT)2 co—COI—co2 

|< r i - r 2 | r K (co) | r 1
, - r 2

, > 

and A0 is the spectral function for noninteracting particles. 
This result may be further simplified by the introduction of center of mass and relative coordinates and a 

transformation into momentum space, 

r dK r / r i + r 2 r i ' + r 2 V 
<rir2 T(co) n /r2

/>= exp *K-( -) 
J (2TT)3 L \ 2 2 / . 

r dK r dkdk' r / r i + r 2 r Z + r A 1 
= / / exp « . ( J + A - C n - r O - i k ' - C n ' ^ r , ' ) <k|rK(co)|k'>. (34) 

J (2TT)3J (2TT)3 L \ 2 2 / J 

This reduces the J1 equation to 

<k|rK(o>)|k'> = < k | ^ (35) 

where the use of the momentum-space spectral function for free particles 74°(kco) = 2x5(co+/x—k2/2w) gives 

AK
00(kco) = rco+2M 1 I - t a n h W — ( i K + k ) 2 - / * ) 1 + - t a n h f - f — ( I K - k ) 2 - ^ ] ) . (36) 

L Am m\ 12 L 2 \ 2 w / J 2 L 2 \ 2 w / J J 

In the zero-temperature limit, providing p is negative potential and the addition of 2/x—K2/4w to the energy. 
(as will be the case for nuclear matter) the statistical This result reveals the essential simplicity of the 
factor in brackets will become unity. Under these approximation; that the T matrix is isolated from any 
conditions T will satisfy consideration of many-body effects. I t also yields an 
(klrK(co)lk') = ( k | , | k ' ) - < k | H - k ' > immediate knowledge of the singularities of T, which 

1 will have a branch line along the real co axis for 
r (k\v\k'yy'\Tx(<a)\kf) co>K 2 /4w-2M ,andasimplepoleatco=co d+K 2 /4m-2/x ) 

J o)+2fx-K2/Am-kff2/m where corf is the binding energy of the deuteron. 

This is simply the equation for the energy-dependent 'Similar objections can, of course, be made against both the 
, . r 1 i • J. r Hartree and random-phase approximations, but where these 

sca t te r ing ma t r ix of two nucleons in a ^ center-of-mass approximations are useful the neglected symmetry (exchange) is 
system, apart from the antisymmetrization of the not numerically important. 
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The remainder of the approximation is the relation 
between G\ and the self-energy 2 expressed by Eqs. 
(25) and (26). By applying the usual energy trans­
formation to (26) one may obtain 

2(, 
r du' r A (to') 

« ) = / — T(co+co'): 
l + gi-'T 

T V ) 

1 
—pGCw'-w) L 
_e»»'r J 

(38) 

where T is the spectral function corresponding to T. 
However, for ground-state nuclear matter this result 
is subject to an important simplification. On the one 
hand, 2" will vanish at all real a/ for which T is analytic, 
i.e., for a/<co<*—2/z, while on the other hand the factor 
(l — ei(a'T)~1 will vanish for c / > 0 as ir—» oo. Thus, the 
second term will be zero if 2/i<co^, which wTe find to be 
true for nuclear matter at reasonable densities. When 
the appropriate spatial variables are inserted into the 
remaining term and the low-temperature limit is taken, 
the equation becomes 

r° do)f r r 
S(riri/co)= / — / dr2dr2' I 

dK 

( 2 ^ 

Xexp [~;KY 
r i + r 2 r i '+r 2 ' \ " J 

X ( r i - r 2 | rK(co+coO W-x^A (r2'r2o/). (39) 

I t should be noted that this equation implies that 2J (co) 
is continuous across the real axis in the region 
o)<o)d—2fx7 which includes the region co<0. 

Finally, Eq. (25) may be transformed into 

v2 • 
coH K M 

2m 
G(rr'co) 

7 rfr" S(rr,/o>)G(r,Yco) = 5( r - r / ) , . (40) 

which establishes G(co) as the energy-dependent Green's 
function for the self-energy 2 . The spectral function A 
is then obtained as the discontinuity in G across the 
real co axis. 

Throughout our derivation we have neglected the 
effects of spin and isospin, which produce a few modifi­
cations of the final formulas; we will state these without 
proof. We assume that the interaction between particles 
conserves the total spin and isospin and is symmetric 
in these variables, i.e., that there is no spin-orbit 
coupling or electromagnetic effects. In this case the 
T matrix becomes a combination of the two-particle 
scattering matrices Sss, Sts, Sst, and Stt for singlet 
(spin)-singlet (isospin), triplet-singlet, singlet-triplet, 
and triplet-triplet scattering, respectively. If each S 

satisfies 

<k|S(«)|k')=<k|*|k'> 

+ 
/ • 

Jk\v\k'W'\S(»)W /iMN 
dk" (41) 

co-k , ,2/w 
for the appropriate matrix element of the interaction, 
then 

+ | 5 s , ( c o O + ( 9 / 4 ) ^ M ] | r / ) 

+<f| l-\SnW+iSu(<*')+lS,t(f*') 

- (9/4)S«(a/)] | - r ' > | „ ^ 2 ^ - K V 4 » . (42) 

A second consequence of the internal variables is 
that Eqs. (9) for the particle and energy densities must 
be multiplied by a degeneracy factor of 4. The numerical 
results which we give for these quantities do not include 
this factor. 

III. RESULTS FOR HOMOGENEOUS 
NUCLEAR MATTER 

For a homogeneous system, single-particle functions 
such as A(xr'oi) depend only upon the difference of 
their spatial variables and may be expressed by Fourier 
transforms in one momentum variable, such as 

^( r r ' co) -
dk 

( 2 ^ 
eik'(T-x,)A(ko)). 

Equation (39) and (40) can then be written in mo­
mentum space and the function A (kco) is given by the 
discontinuity in G(kco) across the real co axis. The 
expressions for S and for the particle and energy 
densities require a knowledge of A for negative fre­
quencies only. In this region, however, the properties 
of T imply that 2(o>) is continuous, so that A will 
vanish except in the neighborhood of co = a>o(k), where 
coo(k) is the solution to 

co0(k) = k2/2w-M+2(k,wo(k)). (43) 

Using the Taylor series expansion of S(co) about this 
point, we find 

where 
A (kco) = 27rp(k)6[co-coo(k)], (44) 

P(k)={i-as(k,co0(k))/aco}-1. (45) 

This procedure is carried out in detail and the unique­
ness of the solution is discussed in reference 1. I t is also 
shown that d2/dco is negative, so that 0<p(k) < l . 

Since the spectral function A (kco) describes the 
energy spectrum of a single-particle excitation of 
momentum k, we see that the negative region of this 
spectrum either consists of a single delta function of 
strength p(k) or else vanishes completely, depending 
on whether k is smaller or larger than a cutoff mo-
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mentum kf determined by co0(&/) —0. Of course, since 
p ( k ) < l , the normalization condition (7) implies that 
A (kco) is nonzero in the positive energy region. However, 
this portion of the spectrum, which describes hole 
excitations, does not contribute to 2 or to the particle 
or energy densities. 

For a homogeneous system, the momentum dis­
tribution is given by the integral of A over negative w, 
which gives p(k) for k<kf and 0 for k>kf. As in 

conventional perturbation approximations there is a 
sharp cutoff momentum kf, but the distribution below 
the cutoff is now decreased by the factor p(k). This 
implies a corresponding increase of the cutoff mo­
mentum beyond the conventional Fermi momentum. 

I t is convenient to define an effective potential which 
is a function of momentum alone by F(k) = S(k,co0(k)). 
Then F(k) and p(k) are solutions of the simultaneous 
equations 

k i - k 2 

and 

F(kO= f dk2P(k2)(-
J \k2\<kf > 2 

/ kx2+k2
2 \lkx-k: 

V(k1)+V(k2)+ 2fx 
2m 

P(k1)={l-/" dkiP(k,)( dkiP(k2)(—\nl+kAv(k1)+v(k2)+— 2n 
2m 

\ | K i - K 2 \ 

)\~2~/' 

)\T~)\ ' 

(46) 

(47) 

where T' is the energy derivative of T, and kf is related 
to fi by 

fi=kf
2/2m+V(kf). (48) 

From Eqs. (9) (in the zero-temperature limit) we may 
obtain the particle and energy densities as 

and 

dk 
-P(k), 

- / 
•/ |k|<k/ 

|k|<k/ (2TT)3 

dk r k2 -] 

:p(k)| —+J7(k)j. 
(2TT)3 L2m 

(49) 

(50) 

The numerical solution of these equations was per­
formed on an electronic computer. The solutions of 
Eqs. (46) and (47) were obtained for a range of fe/, and 
these results were used to evaluate Eqs. (48) through 
(50). The integrations were approximated by Gaussian 
quadrature and the resulting nonlinear matrix equations 
were solved by a multidimensional Newton-Raphson 
technique. 

As in reference 1, an interparticle potential was used 
which is the sum of three separable terms; an S-state 
hard shell, and two Yamaguchi potentials acting in 
single and triplet spin states, 

V^Vc+VYsPs'+VYtPt", (51) 

where the P 's are spin-state projection operators and 

7rXc 1 
vc(rr')= lim 8(r—rc)d(r'—re), 

x^°° 2m rrf 

t>r<..t)(rr ')=-
7rXs,e 1 

2m rr' 

(52) 

•exp[—as,t(r+r ,)~\. 

Here a and X are the range and depth parameters for 
the attractive potential in the appropriate spin state 
and rc is the hard shell radius. For a potential of this 
sort the scattering matrix may be obtained analytically.1 

The values used for the parameters are those given in 

reference 1 and were obtained by fitting the singlet 
phase shift at 310 MeV, as well as the usual low-energy 
scattering data and the binding energy of the deuteron. 
We have 

as= 2.004 F-1 , Xs=3.64037 F~3, 

at= 2.453 F - \ X*= 8.6949 F"3, rc=0.45 F, (53) 

while the average nucleon mass was taken as 
(2m)-x= 20.7347 MeV-F2. 

The results of the calculations are shown in Figs. 1 
to 4. Figures 1 and 2 show the values of e, p, fi=kf2/2m 
+ V(kf), E/N=e/p, and dE/dN=de/dp (computed 
from the values of e and p) as functions of kf. Figures 
3 and 4 show V(k) and p(k) for selected values of kf. 
The results for E/N appear to agree with those given 
by Falk and Wilets3 for a more limited range of kf. 

As shown in Fig. 2, the numerical results for p,, as 
given in our approximation by Eq. (48), violate the 

o.io 
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FIG. 1. Particle density p and energy density e as functions of 
the cutoff momentum kf. Both p and € must be multiplied by a 
degeneracy factor of 4. 
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FIG. 2. Chemical potential /z = k/2/2m-\-V(k/), binding energy 
per particle e/p, and the derivative of energy with respect to 
particle number at constant volume de/dp as functions of the 
cutoff momentum k/. 

(Both these expressions should be multiplied by a 
degeneracy factor of 4, which will be omitted from our 
equations and numerical results.) 

Unfortunately, since our calculated p. violates the 
relation p = de/dp, Eqs. (54) and (55) lead to different 
values of the pressure and thus to different densities 
for uncompressed matter. We refer to (55), which was 
used in reference 1, as the p, pressure and to (54), which 
was used by Falk and Wilets,3 as the F-W pressure. 
The corresponding values of kj at zero pressure will be 
called the p and F-W zero points. 

In choosing between expressions for a quantity which 
differ only because of the approximate nature of a 
calculation, it is impossible to single out one relation 
as correct in any absolute sense. We might expect both 
p and de/dp to be less accurately given by any approxi­
mation than e or p. Indeed, we can see no reliable basis 
for preferring either (54) or (55) and suggest that the 
discrepancy between results at the two zero points 
should be viewed as a reflection of the inaccuracy which 
is inherent in the approximation. Nevertheless, we 
wish to derive and use a third expression for the 
pressure which, although not inherently better in any 
sense, is at least a plausible alternative, and which 
will be required for consistency in the extension of the 
approximation to inhomogeneous matter. 

This third expression is derived from the definition of 
pressure in terms of the local transport of momentum. 
The local momentum density g(r/) is given in terms of 

exact thermodynamic relation p = dE/dN. I t is the 
extent of this failure and its effect on the calculation 
of nuclear parameters which we want to investigate. 

IV. COMPUTATION OF THE PRESSURE 

The results of our calculation specify the properties 
of nuclear matter as functions of the cutoff momentum, 
or equivalently of the density. We must now determine 
the point on these curves which corresponds to an 
actual nucleus. As we stated before, the necessary 
physical condition is that the nuclear material is un­
compressed, i.e., that the pressure of the system is zero. 

One equation for the pressure may be obtained from 
its definition as the negative rate of change of the energy 
of the system with respect to its volume, with the 
number of particles held constant. If surface effects are 
neglected, the energy density e=E0/V will depend on 
the volume only through the particle density p = N/V, 
so that the pressure will be 

/dE0\ / d \ de 
P^-vzn ="b [ F t ( i V / F ) ] = T - € ' (54) 

\dV/N \dV JN dp 

or, by using /x = de/dp, 

•P=PV-c. (55) 
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FIG. 3. Effective potential V(k) as a function of k/kf for 
discrete values of kf. 
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FIG. 4. Momentum distribution p(k) as a function of k/kf for 
discrete values of k/. 

d by 

8(ri)=-lim (V-VOWOlKr*)) 

= - \ lim ( V - V')Gi(rt; r'*+), (56) 
r'->r 

which has the time derivative 

d i r d d-] 
9 ( r 0 = - lim ( V - V ' ) U - + i — Gi ( r t ; rT) . (57) 

La* an a/ 2 r'-*r, *'-*«+ 

(Of course, this derivative must vanish for a stationary 
system; this will lead to the requirement that the 
pressure be constant over the system. A rigorous 
derivation would require an explicit extension of the 
Green's function formalism to a stationary inhomo-
geneous system, but we will ignore this complication at 
present.) 

To obtain the time derivative of G\ we would nor­
mally use Eq. (22) along with the corresponding adjoint 
equation (27). However, as we discussed previously, 
(22) and (27) do not lead to the same Gi when we use 
our approximate G2 in both equations. Therefore, we 

must instead use the adjoint of Eq. (25), 

r d Vi2 1 
- * — + — + M G i ( l ; l ' ) 

L dh' 2m J 

7 Gi( l ; 1 )2(1 ; l ') = 5 ( l - 1 0 , (58) 

which is satisfied because of the symmetry of T in 
unprimed and primed coordinates. 

The use of (25) and (58) in (57) allows us to express 
the time derivative of the momentum density as a sum 
of kinetic and potential contributions. These contri­
butions must then be rewritten as divergences of a 
stress tensor in order to obtain the pressure. Thus, 

- 9 ( r i ) = - V T < » ( r ) - V T ^ ( r ) . (59) 

dt 

The kinetic portion of the stress tensor is 

i 1 
T<°>(r)= lim(V-V0(V—V')Gi(ri;r 'f»-) 

2 2m *'-** 
1 1 

= lim ( V - V) ( V - V) 
2 2m r ,^ r 

r° do) 
X — ^(ir'co), (60) 

J -oo 27T 
or for a homogeneous system 

r° do) r dk kk 

/

u do) r aK KK 
— / A(h*) 

^2* J (2ir)32m 

•V 
3 i l k 

dk Ikl2 

>(k), (61) 
iki<fc/ (27r)3 2m 

where d is the unit tensor. However, the potential 
contribution of d$/dt cannot be generally expressed 
as a divergence. Nevertheless, for a short-range po­
tential, it is possible to express this contribution as a 
divergence in a region of local uniformity. This may be 
done by integrating the potential contribution, 

* / . V-T«(r 1 ) = — lim (Vx-VxO / [ 2 ( 1 ; i)G1(l;V)-G1(l; 1 )2(1; 1')] 
2 ri'-»ri,ti'-*«i+ 

/

u doido) r 
/ Jr/ 'Jr2^r2

,{(r1r2 | T^+^lr^x^A^r^Uir^x^) 
(2TT)2 J 

-A (r1r1"co)(r1"r2| r(a>+«') | xx
fx2

f)A (r2'r2a/)} (62) 

over a macroscopic region V. 
We first note that since T is independent of Gh it is independent of its average spatial coordinate, even in a 

system which is inhomogeneous. Using this fact and the symmetry of T and A in unprimed and primed coordi­
nates, we obtain 

V T W ( f ! ) = f dx1
ffdx2dx2

/ {x1x2\Tlri'VMI-Vi+V^'+Vj+V^^'r,)^^'^) (63) 
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(where the energy variables and integrations have been omitted). If we introduce the change of variables 

n = R , r / ' ^ R - r , 

r 2 = R ' - r ' , r2 '=R', (64) 

then the integral of the potential contribution over V may be written as 

f rfRvT«(R)= fdR'dtdt'f dR(R, R ' - r ' | r |R-r , R ,)[-VR+VR .-2VR]^(R / , R'-r'M(R-r, R). (65) 

Then by using a second change of variables 

J* JT^-Knewj J* * ==: •"• new? /s/-\ 
__ _ __ ,_ , (66) 

1" r n e w , r r new? 

and again employing the symmetry of T and A we obtain 

f JRV-T^(R)= fdR'drdt' f dR(R, R'-r']:T|R-r, R0[VR+VR,+2Vr;>l(R', R'-r'M(R-r, R), (67) 

where V is the region of R such that R—r is in V. By averaging (65) and (67) we may write the integral as two 
terms, 

f dRV-TU(R) = I+r, (68) 
J v 

where 

r= jdR'drdt' f i dR <R, R'-r'| T\ R-r, R')VR^ (R', R'-r')A (R-r, R), (69) 
J J v 

and 
J'=- dR'drdt' f dR(R, R ' - r ' | r |R-r , R')[VR+VR,+2Vr]4(R', R-r')A(R-r, R). 

2 J J v'—v 

Using partial integration and the fact that VRT= — VR/T, we may then write / as 

/ = fdrdt' fdR' fdR A(R', Rf-r')A (R-r, R)J[VR- VR,]<R, R'-r'| T\ R-r, R'). (70) 

In this form the integrand is antisymmetric under the interchange R <-» R', r <-» r', so that the portion of the 
integral which arises from R' in V vanishes, and we may limit R' to the region outside V. Then, since the integrand 
vanishes when R—R' is macroscopically large, we find that R and R' are limited to a region near the surface of V. 
For the portion of this region where the system has local uniformity we may write the integration as 

r r r r (i, n(R-R)<o 
/ dR' dR=- dSn- / (R-R 'M(R-R' )X (71) 

Jnon-v Jv J J 10, n (R-R ' )>0 , 
where S is the surface of V and n is a unit vector normal to the surface in the outward direction. Finally, using 
the antisymmetry of the integrand we have 

J= fdSn- J — /d(R-R0&rfr'(R-R')4(R', R'-r'M(R-r, R)§[VR-VR/]<R, R ' - r ' | r |R-r , R')l, (72) 

where the quantity in brackets is identified as the I contribution toT(1)(R). 
Next consider / ' . In this case, the vanishing of the integrand for macroscopically large r limits the integration 

over V— V to a region near the surface of V, and for a locally uniform portion of this region, we have 

J <m= fdSnr, 
J V'-V J 

(73) 
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so that 

F= fdSn- j - f dR'dtdt'r<R, R ' - r ' | r | R - r , R />ivR+VR*+2V r]i4(R / , R ' - r ' M ( R - r , R ) l , (74) 

where the quantity in brackets is the / ' contribution toT ( 1 ) (R) . 
For a homogeneous system (or within a locally uniform region) A will depend only upon the difference of its 

spatial coordinates, so that the gradients VR and VR/ in the / ' contribution will vanish. By using partial integration 
on the / ' contribution, we may write the combined contributions as 

1 r° dudu' r 
T ( « = — / / r f ( R - R O * & ' i l ( - i t o ) i l ( r V ) 

2 7-oo (2TT)2 J 
, 0 

(2T)* J 
X [ J ( R - R 0 ( V R - V R 0 + 2 V r r ] ( R , R ' - r ' | r ( « + w ' ) | R - r , R>, (75) 

which becomes in momentum space 

1 r° da>da>' r dkdk' / k - k ' k - k \ 
TW = - / / ^(kcoM(kV)[S+2kV k ]< |rk+L< («+« ' ) I >. (76) 

2 J ^ (2TT)2 J (2TT)3 \ 2 2 / 

The substitution of the expressions for S and A in our approximation reduces this to 

\ r dk r 2 d -l 
T < » = ^ / P(k) 1 + - A - p(k,co0(k)). (77) 

2 7|k i< fc / (2TT)3 L 3 dkJ 

The partial derivative of S(k,co0) may be related to the total derivative of F(k) by 

d d d d 
—s(k,co0(k))=—S(k,Wo.(k)) S(k,ft>o(k))—«0(k) 
d& ^ dco dk 

= - F ( k ) - [ l - p - H k ) f - + - F ( k ) l . (78) 
d& Lra dk J 

Substituting this result into (77) and integrating by parts gives 

\kf
z r dk r k-

. . . . f , x , fCl-p(k)]—+Hp(k)-l]F(k)]j. (79) 
16TT2 i |k |< f c / (2TT)3L 2 W J J 

Finally, the pressure may be identified as the average diagonal element of the full stress tensor T c o ) + T(1), 

£ 5 £ 3 ~ fa 
P= +—V(kf)+ / _ _ [ J p ( k ) - l ] 7 ( k ) . (80) 

30TT2W 6TT2 J|k|<fc/ (27r)3 

We refer to this expression as the L-T (local transport) for the Falk-Wilets zero point may be found in reference 
pressure. As usual, it must be multiplied by a de- 3. 
generacy factor of 4 which will not be included in our The values for the energy per particle e/p and the 
equations or numerical results. interparticle spacing constant r0=[3/(167rp)]1 /3 lie in 

The numerical results presented in the preceding the ranges —14.4 to —17.5 MeV and 0.871 to 1.01 F, 
section were used to evaluate all three expressions for respectively. These may be compared with values of 
the pressure as functions of kf. The results, given in e/p ==—15.75 MeV, obtained from fitting nuclear 
Fig. 5, show distinct but similarly behaved functions, masses,6 and r 0 = 1.1 to 1.2 F, obtained from high-energy 
with JD

M<PL-T<i>F-w. Each pressure relation leads to electron scattering data.7,8 However, because of the 
a distinct zero point, and the basic nuclear parameters 6 A. E. S. Green, Phys. Rev. 95, 1006 (1954). 
at each zero point are summarized in Table I. The '&• A- Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 
functions V(k) and p(k) for the fx and local-transport 8B/Halm, D. G. Ravenhall, and R. Hofstadter, Phys. Rev. 
zero points are given in Fig. 6, while analogous results 101, 1131 (1956). 
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FIG. 5. Pressure P as a function of the cutoff momentum k/, as 
calculated from Eqs. (54) (F-W), (55) (M), and (80) (L-T). These 
functions must be multiplied by a degeneracy factor of 4. 

unrealistically simple potential which was used in our 
calculation, it is difficult to infer much from these 
results about the inherent accuracy of the approxi­
mation or the best choice among the pressure relations. 
I t should be noted that at all three zero points the 
momentum distribution p{k) shows a significant de­
crease from unity, although not as great as was expected 
in earlier work with the approximation. 

FIG. 6. Effective potential V(k) and momentum distribution 
p (k) as functions of k/kf for the ju and local transport (L-T) zero 
points. 

V. THE DENSITY CORRELATION FUNCTION 

Since the basic task of a many-particle theory of 
nuclear matter is to treat particle correlations, it is 
desirable to investigate some measure of the correlation 
effects which occur in our approximation. The simplest 
description of these effects is given by the density 
correlation function / ( r i f i^ fo) , which measures the 
probability of simultaneously rinding a particle at ri 
with spin and isospin fi, and a second particle at r2, 
with spin and isospin f 2. This function may be expressed 
in terms of Gi as 

/(rifi,r2f2) = -G2(rififr2{V; rrfi/+r2f j+). (81) 

From Eqs. (21) and (23) we have 

/ ( r i r 2 )= -Gi( r i* ; itf+-)Gi(r2*; r 2 ^)+Gi( t i* ; r2/+)Gi(r2*; ri*+) 

+i /A°°(rir2*; rMV^XxW\ T\t^t2
fr%(r^t2

frf; r ^ ) , (82) 

where A00 is given by (31) and A by the corresponding equation with interacting G's. By introducing the usual 
energy transformations, we may obtain 

where 

f r° du ] 2 r° da> 1 
/(ri—r2) = p2— { I — A (rir2co)} - / — lim -[C(rir2 , a)-ie)-C(r1r2, co+ie)], 

C ( w ) = [A00(a>)T(o>)A(a>). 

(33) 

(84) 

However, since in the low-temperature limit A00 and T are continuous for a><0, the effect of taking the discon-
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tinuity of C across the real axis is simply to replace A by the corresponding spectral function, which is (at zero 
temperature) 

ASpectrai (rir2r/r2 'w) = / — M r i r i ' - + « ' )A ( r 2r 2 '—co') . 
J_ W / 2 2TT \ 2 / \ 2 / 

(85) 

By transforming to momentum space and using (36), we, thus, obtain 

| r° du r dk }2 r dkdkidk2 
/ — / • -eik-'A(kw)\ + 

IJ-oo 2TT J (2TT)3 1 J 
/ ( r ) = P 2 -

(2x)« 

r<> daidat- (ki+k 2 ) 2 1 / . C k i - k ^ T * 
X / — —I W1+W2+2/U 

/

" dwidwif 

-» (2T)2 L 4m m 

=< 
X<k+ 7\1+k2(coi+a;2) - V (kicoiM (kaco2), (86) 

I 2 / 
and the substitution of (44) gives 

dk 
f(r) = P2- / 

|k|<fc/ (27r)8 
c*"P(k)[ + f 

< 

dk 
»ik«r 

Ai^kj 

X<k-

(2TT)3 ^iki i . ikjKk/ (27r)3L 

k i - k 

F(k0+F(k2) k (k+k 

rkl+kJF(ki)+F(k2)+ 
2m 

i-k2)] 

)l"T~/p(kl )p(k2)' (87) 
2 2 \|ki-k: 

-2jJL 

The consideration of internal variables complicates 
this expression considerably for a general interaction, 
but for our particular choice of a potential, which is 
independent of isospin and acts only in the 5 state, the 
situation is fairly simple. There are four cases, de­
pending on whether the correlated particles have the 
same or opposite spin and isospin. The second term 
in (87), which describes exclusion effects, vanishes for 
unlike particles, while the third term vanishes for 
identical particles, which are excluded from the S 
state and do not interact. For unlike particles, the 
combinations of the singlet and triplet scattering 

matrices which form T are 

Spin 
opposite 
same 
opposite 

Isospin 
same 
opposite 
opposite 

T = SS 

T=St 

T=(Ss+St)/2, 

where vSs and St are the appropriate scattering matrices. 
The four correlation functions, as calculated for the 

local-transport zero point, are shown in Fig. 7, along 
with the function 

N(x) = - f dr '£/(r ' f) , 
P J \t'\<r S 

(88) 

TABLE I. Parameters of nuclear matter at zero pressure. 

Cutoff momentum k/ 
Chemical potential fi 
Density pb 

Interparticle spacing r0 

Energy density eb 

Energy per particle e/p 
fx pressure PM

b 

L-T pressure PL-T1* 
F-W pressure Pp_wb 

M ( 5 5 ) 

1.8491 
-14.437 

0.09028 
0.871 

-1.3034 
-14.437 

0.0 
0.9073 
1,4 approx 

Pressure expression set to zero: 
L-T (80) 

1.6865 
-24.028 

0.06991 
0.949 

-1.1903 
-17.026 

-0.4895 
0.0 
0.38 approx 

F-W (54)a 

1.575 
-27.7 

0.0579 
1.01 

-1 .01 
-17.5 

-0 .59 
™0.27 approx 

0.0 

F-1 

MeV 
F - 3 

F 
MeV-F~3 

MeV 
MeV-F-3 

MeV-F-» 
MeV-F"3 

a Quoted or calculated from results given in reference 3, 
*> These quantities must be multiplied by a degeneracy factor of 4, 
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FIG. 7. Density correlation function F(r£) and its integral N(r) 
as functions of the distance r. The density correlation function is 
given for particles with the same spin and isospin (S-S), opposite 
spin and same isospin (OS), same spin and opposite isospin (S-0), 
and opposite spin and isospin (O-O). The function N(r) [cf., Eq. 
(88)] is the expected number of additional particles within a 
radius r of a given particle. Note that f(r) and N(r) have ordinates 
with different origins. 

which gives the expected number of additional particles 
to be found within the distance r of a given particle. 
It can be seen that there is only a 24% probability of 
finding an additional particle within 0.7 F, which is the 
approximate distance at which correlation effects other 

than the exclusion principle begin to play a major role. 
In view of this result, it can be expected that corre­
lations of more than two particles should be sufficiently 
rare as to have only slight effects on nuclear properties. 

A rather disturbing result is the large value of the 
unlike-particle correlation functions within the core 
radius of 0.45 F. This is a consequence of our use of a 
hard shell to approximate a hard core, and represents 
the unphysical situation of particles bound inside the 
shell. However, the large size of the correlation functions 
is offset by the small size of the shell, so that N{t) is 
only 6.3% at the shell radius. 

In summary, by applying a rather straightforward 
approximation to a vary simple particle interaction, 
we have obtained qualitatively reasonable results for 
nuclear matter (using various pressure relations) of 
— 14.4 to —17.5 MeV for the binding energy per 
particle and 0.87 to 1.01 F for the interparticle spacing 
or radius constant. The resulting momentum distri­
bution is significantly smaller than a filled Fermi 
sphere and leads to a cutoff momentum which is 5.7% 
to 4.4% higher than the conventional Fermi mo­
mentum. The resulting density correlation function 
indicates that correlations of more than two particles 
should not exert any substantial effect at nuclear 
densities. 

The major defect of the approximation is its violation 
of the exact relations between the calculated chemical 
potential and the total derivative with respect to 
particle number. This is presumably a result of the 
asymmetric form of our approximate G2; however, it is 
this particular form which is needed to obtain a T 
matrix independent of maiiy-particle effects and there­
fore calculable analytically. 
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