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and for the configuration (I/7/2)3, the magnitudes of Qjs/(r2) in (A22) remain the same but all signs must be 
changed. 

As mentioned previously, the sign of QS/2
S for the configuration (I/7/2)-3 in Table VIII.3 of reference 4 is incor­

rect. This can be alternatively checked by using the shell-model wave function expressed in terms of Slater deter­
minants. For three particles (not for three holes), this wave function can be easily constructed: 

*^3/2 M = 3 / 2 = (3/14)1'2 |^7/25/V7/23/V7/2-5/2 | + (3/14)1'2 | ̂ / ^ / ^ V ^ 2 \ + (3/10)1/2 | h^'^V^hl^12 [ 

- (1/10)1'2 I ̂ 7/27/¥7/21/¥7/2-5/2 I ~ (6/35)1'2 I ̂ 7/25/V7/21/V7/2-3/2 | , (A23) 

where |^yw'V'/*yV'/'y'/| is the totally antisymmetric normalized Slater determinant. 
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Some systematic features of the magnetic moment distribution of odd-^4 nuclei are established and 
theoretical explanation for them is given. The explanation suggested here is based on the idea of quenching 
of the intrinsic magnetic moments of nucleons in nuclei. This idea was created independently by several 
investigators many years ago and has been re-examined in detail recently. Essentially all these investigations 
predict that the magnetic moment of an odd-,4 nucleus should be somewhere between the so-called Schmidt 
and Dirac limits. However, if the exclusion principle is the only reason for the quenching, the magnitude 
of the quenching turns out to be too small to explain the large magnetic moment deviations from the Schmidt 
limit. Therefore, the question is whether this idea is valid or whether, even if it is valid, other factors such as 
configuration mixing, core excitation, etc., are more important. In this paper, these questions are attacked 
empirically. Furthermore, it is shown that the parity rule may also be an important factor in quenching the 
intrinsic magnetic moments of nucleons in nuclei. 

I. INTRODUCTION 

IT has been shown by Bow that the magnetic moment 
ratio of two odd-Z-even-7V (or odd-iV-even-Z) 

nuclei with the configurations {nlj)v and {nlj)v' for the 
incomplete-shell nucleons of the odd parts, respectively, 
is given by the following relation (assuming j-j coupling 
and pure configuration)1: 

nj£(nlj) >y»j't(nlj) • ' ] = ( / ' + 1 ) / 2 / ( / + 1 ) / ' 2 , 

(1) 

where v and v are positive or negative odd integers 
(absolute value ^ i + | ) . When they are positive they 
represent the number of protons (or neutrons), and 
when negative the number of holes. The total angular 
momentum of the ground states of these two nuclei 
are / and / ' , respectively. 

The result of Eq. (1) is derived on the basis of the 
semiatomic model which is an extremely weak-coupling 
case of the unified model given by Bohr and Mottelson. 
The counterpart of Eq. (1) in the shell model (or 

Schmidt model) is as follows (also assuming j-j coupling 
and pure configuration)2: 

*jl(nljyy»j£(nlj)>'l=J/J', 
no restriction on v, vf, n, and n'. (2) 

Here "no restriction" means that n and n' can be either 
different or equal for arbitrary v and v (absolute value 

A test for the comparative validity of Eqs. (1) and 
(2) has been made in the region of (I/7/2) shell.1 The 
results show that Eq. (1) is better. I t is the purpose 
of this paper to extend this investigation to the whole 
range of the nuclear chart and, furthermore, to see if 
there is any regularity (in addition to the Schmidt and 
Dirac limits) in the magnetic moment distribution of 
odd-^4 nuclei. Theoretical explanation for the system­
atic features found in this investigation is also at­
tempted. 

When J=J\ Eqs. (1) and (2) become identical 
except for the more strict restrictions on v and n in 

1 Y. F. Bow, preceding paper, Phys. Rev. 130, 1931 (1963). 

2 M. G. Mayer and J. H. D. Jensen, Elementary Theory of 
Nuclear Shell Structure (John Wiley & Sons, Inc., New York, 
1955). 
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TABLE I. Comparison of magnetic moments of odd-Z-even-iV nuclei. The experimental data are taken from the compilation of 
D. Strominger, J. M. Hollander, and G. T. Seaborg [Rev. Mod. Phys. 30, 585 (1958)]. All configuration assignments (except 
those with a question mark) are given in reference 2. In each of the exceptional cases, the first configuration is assigned by the 
present author and the second one by Mayer and Jensen. In making our configuration assignments, the following rules (and/or 
assumptions) are followed: (a) each assignment should be consistent with the spin and parity of the ground state; (b) the 
single-particle levels between the major closed shells (magic numbers) can be shifted around, keeping the level order of ./ '=/+£ 
and j ' = l—§ (same /) unchanged, for example, the configuration of the 43 protons in 43TC99 is assigned as 28-closed-shell plus 
(2p2n)i(2pi/2)2(lgm)_1 according to this rule; (c) the level j'=l—i can never be filled before the level j=l+h (same /) has 
been completely filled. These rules (a)-(c) have also been implicitly followed by Mayer and Jensen. However, we have applied 
them more strongly in some cases. 

Two cases, 33AS75 and 63Eu153, have been rejected in the calculation of the standard deviation a, on the ground that they may have 
different "configurations'' from those in their groups. It is interesting to point out that the assignment of (lg7/2)3 to 63Eu153 is 
not only consistent with parity and spin of the ground state but also in conformity with the magnetic moments of 7iEu175 and 
73Ta181. However, in this case, the experimental data are still not accurate enough for concluding whether Eq. (1) or Eq. (2) 
is better. 
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+2.689 

+2.628 
+1.131 
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(l£7/2)3 ? 
(lgm)'3 ? 
(l£7/2)-3 ? 
( IS7/2) - 3 ? 

Mexp 

(nuclear 
magneton) 

+5.657 
+5.496 
+5.508 

+3.342 
+2.794 
+3.48 
+3.8 
+3.4 
+ 1.5 
+3.144 
+3.176 

+2.533 
+2.603 
+2.564 
+2.713 
+2.822 
+2.761 

+2.0 
+2.1 

+0.16 
+0.17 
+0.136 

+ 1.596 
+ 1.612 

+1.4 
+ 1.4 

<r 

0.092 

0.121 

0.118 

0.071 

0.019 

0.011 

0.000 

a The fact that almost exactly identical magnetic moments in pairs or 
triplets of isotopes of equal spin happen in such cases has long been recog­
nized as an indication for the validity of the independent-particle model 
[see J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (John 
Wiley & Sons, Inc., New York, 1952), p. 773]. 

the former case. These restrictions originate from the 
general idea that the gyromagnetic ratio of a nucleon 
(in the nucleus) is in general a function of the configu­
ration (in the Schmidt model it is a function of I and 
j only). Obviously the most efficient way to compare 
the relative validity of Eqs. (1) and (2) is to consider 
all cases in which JT^J' . I t is unfortunate, however, 
that only limited experimental data for such cases are 
available [see Table I of reference 1 and the captions 
to Tables I and I I ] . Nevertheless, a detailed investi­
gation of those cases in which J—J' may provide some 
empirical verification for the general idea that the 
gyromagnetic ratio of a nucleon in the nucleus is in 
general a function of n, I, j , and v. 

I t is noted that Eqs. (1) and (2) do not depend on 

b In this case, probably a mixture of the two possible configurations 
(lg7/2)3 and (lg7/2)2(2dh/2)1 occurs. This is unlike the other cases in which 
only one configuration seems dominating. 

the gyromagnetic ratio of the nucleon, but rather on 
the coupling scheme. Therefore, our investigation also 
provides some indication of the validity of the j-j 
coupling scheme. 

In considering the general trend of the magnetic 
moment distribution, either the Schmidt model or the 
semiatomic model can be chosen as the basis of our 
discussion. The latter is a modification of the former 
by including the residual deformation of the core.1 

However, in this paper, we ignore all possible contri­
butions to the nuclear magnetic moment except the 
intrinsic motion of the incomplete-shell nucleons of the 
odd-part of the nucleus. For detailed calculation of 
some specific case, this is, in general, too crude. How­
ever, the dominating factor which controls the general 
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trend of the magnetic moment distribution can be more 
easily discerned in this crude treatment. Therefore, the 
simple Schmidt model will be chosen as the basis of 
our discussion [including the restrictions on n and v 
made in Eq. (1)]. 

II. EXPERIMENTAL 

The magnetic moments of odd A nuclei are collected 
in Tables I and II. (See also Table I of reference 1.) 
In these tables all nuclei with the same configuration 
in the sense of Eq. (1) are grouped together. In accord­
ance with our arguments, all nuclei in each group should 
have the same magnetic moment. However, except for 
a few cases, they deviate from this "hypothetical 
magnetic moment." In order to measure this deviation, 
a statistical point of view will be taken. Suppose that 
the "hypothetical magnetic moment" exists in each 
group and, in other words, our theory is perfect. Then 
the usual standard deviation, which is approximately 
the range (maximum value minus minimum value) of 
the magnetic moments in the group divided by the 
square root of the number of nuclei in the same group, 
would be solely a measure of the experimental accuracy. 
On the other hand, if the experimental magnetic 
moments are accurate enough, then the same standard 
deviation may be taken as an indication for the inaccu­
racy of our theory. Obviously, the more inaccurate 
our theory, the bigger the standard deviation. The 
standard deviations (a) are arranged in the last columns 
of Tables I and II, and are interpreted as a measure 
of the inadequacy of the theory. 

From the trend of the magnitude of the standard 
deviation, we may draw the following conclusions. 
(1) In the region of medium weight and heavy nuclei, 
j-j coupling is a good approximation. In the region 
of light nuclei, however, it may not be adequate. This 
confirms the conclusion of previous investigations.3 

(2) The magnetic moment variation in each group may 
be explained by the local irregularities such as core 
excitation,4 configuration mixing,5 deviation from j-j 
coupling,3 etc., but the sensitive dependence of the 
magnetic moments on v (and n) is hardly explainable 
by these local irregularities. (3) It seems impossible, 
by assigning one single-particle gyromagnetic ratio for 
each shell, to explain the whole range of the experi­
mental data of the magnetic moments for odd-^1 nuclei. 

The results of Tables I and II also show that the 
experimental magnetic moment deviations from the 
Schmidt limits are mainly due to the wrong value 
assigned to the single-particle gyromagnetic ratio in 
the theory. Now our question is whether the orbital 
part or the intrinsic part of the single-particle gyro-

3 A. M. Lane, Proc. Phys. Soc. (London) A66, 977 (1953); 
A68, 189, 197 (1955). 

4 A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab. 
Selskab, Mat. Fys. Medd. 27, No. 16 (1953), 

5 A. Arima and H. Hovie, Progr. Theoret. Phys. (Kyoto) 11, 
509 (1954); R. J. Blin-Stoyle, Proc. Phys. Soc. (London) A66, 
1158 (1953). 

TABLE II. Comparison of magnetic moments of odd-i^-even-Z 
nuclei. See the caption to Table I for a detailed explanation. The 
assignments of (l/?9/2)

3 to 6sDy163 and (2/s/2)3 to 760s189 are based 
on the sign of their magnetic moments, besides the requirements 
of parity and spin of their ground states. It is important to 
observe that the signs of the nuclear magnetic moments are in 
general correctly predicted by the Schmidt model. Here we have 
another example which seems to favor Eq. (1); the magnetic 
moments of 64Dy161, 60NdW5, 62Sm147, 62Sm149, and Er167 are more 
accurately related by Eq. (1) than by Eq. (2). 
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-0 .57 
- 0 . 7 
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-0.882 
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-0 .76 
-0 .64 
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-0 .37 
-0 .67 
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+0.600 
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+0.651 

-0.607 

<r 

0.734 

0.213 

0.065 

0.159 

0.141 

0.081 

0.212 
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. . . 

a The configuration for this nucleus was incorrectly assigned as (Spin)±1 

in reference 2, probably due to the fact that the experimental value of the 
spin of the ground state was uncertain at that time. 

magnetic ratio is incorrect. To answer this question, 
the following regularities of the magnetic moment 
distribution are helpful: 

(A) In the usual Schmidt plot, the experimental 
magnetic moments are bound between the Dirac and 
Schmidt limits. The magnetic moment deviation for 
each experimental value from the Schmidt limit can 



1950 Y . F . B O W 

TABLE III. Average value of the percentage reduction (r?) of 
the intrinsic magnetic moments of nucleons in nuclei. In making 
this table, Table VI of reference 2 is used. 

odd-Z-even-iV odd-iV-even-Z 
j=l+\ j=l-h j=l+i j=l-i 

Average value of 77 (%): 77 40 66 25 

be conveniently measured by a parameter rj which is 
the percentage reduction of the intrinsic magnetic 
moment of the nucleon. These parameters have been 
calculated in reference 2 and are used in Table I I I , in 
which the average values of 77 are tabulated for different 
types of nuclei. From Table I I I , it is clear that the 
magnetic moment deviations of odd-TV-even-Z nuclei 
are, in general, smaller than those of odd-Z-even-iV 
nuclei. I t is also true that nuclei with their incomplete-
shell protons (or neutrons) in the shell with j~l—%, 
in general, have less magnetic moment deviations than 
those nuclei with their incomplete-shell protons (or 
neutrons) in the shell with ./ = / + § . 

(B) Except for 109W183 and 77Xe131 the range of the 
parameter t\ for those nuclei with their incomplete-shell 
protons (or neutrons) in the shells (npyz) and (ndz/2) 
(n> 1) is approximately 3-25%, which is much smaller 
than other cases (>50%) . 

(C) For an odd-Z-even-i^ nucleus, the magnitude of 
the magnetic moment tends to increase with increasing 
number of protons (or proton holes) in the incomplete 
shell for the case j=l+%, and decrease for the case 
j=l~,h- However, for an odd-iV-even-Z nucleus, the 
magnitude of the magnetic moment tends to decrease 
with increasing number of neutrons (or neutron holes) 
in the incomplete shell for the case j=l-\~i, but no 
experimental information is available for making 
similar statement for the case j—l—\> 

The peculiar regularities discussed above would not 
be expected, if the magnetic moment deviations were 
entirely due to core excitation, configuration mixing, 
and deviation from j-j coupling, because these factors 
are more or less local in nature. Furthermore, in view 
of the large intrinsic magnetic moments of proton and 
neutron, an error in the orbital part of the gyromagnetic 
ratio would not be very decisive in accounting for 
these peculiar regularities. Therefore, there would seem 
to remain only one possibility, namely, that the 
intrinsic magnetic moment of a bound nucleon can be 
rather different from its free-particle value. A more 
detailed investigation of this possibility is presented in 
the next section. 

III. THEORETICAL EXPLANATION 

The intrinsic magnetic moment of a nucleon, say, a 
proton, consists of two parts, namely, the normal part 
and the anomalous part. The Dirac equation of the 
proton automatically gives the normal part (one 
nuclear magneton) but fails to account for the anoma­

lous part (+1.793 nm). This has been explained in the 
following well-known fashion: The interaction between 
the proton field and the positive pion field leads the 
proton to the virtual emission and re-absorption of 
positive pions; the anomalous part of the intrinsic 
magnetic moment of proton is then due to such an 
interplay of these two fields. Similar arguments also 
hold for neutrons. 

Since virtual process is a second-order effect, inter­
mediate states are necessary. For a free nucleon, say, a 
proton, the exclusion principle does not affect the inter­
mediate states (because no other neutron is present), so 
the virtual emission and reabsorption of positive pions 
gives the full amount of the anomalous magnetic mo­
ment of the proton. However, for a proton bound in 
the nucleus, many intermediate states are blocked by 
the exclusion principle, so the full amount of the anoma­
lous moment cannot be reached. In other words, the 
anomalous part of the magnetic moment of a nucleon is, 
in general, quenched in the nucleus. These arguments 
have been used earlier6-10 to explain the magnetic 
moment deviations. Now let us see if they are consistent 
with the empirical observations made in Sec. I I . 

Roughly speaking, the reduction of the anomalous 
magnetic moment of a nucleon in the nucleus is de­
termined by the level density of the intermediate states 
permitted by the exclusion principle (and by the parity 
rule as we shall see later). I t seems reasonable to assume 
that the level density of these possible intermediate 
states is proportional to the "total" single-particle level 
density of the nucleus. Taking the cold gas model as 
first approximation, the "total" single-particle level 
density is given by exp(<xE1/2), where a is a parameter 
and E is the excitation energy.11 Since the single-particle 
levels with j=l—% are always comparatively higher in 
energy than those with j ' — l-\-\ (because of strong spin-
orbit interaction) and since the topmost neutron levels 
in a nucleus are, in general, higher in energy than the 
topmost proton levels in neighboring nuclei (because 
of Coulomb interaction), the general feature of the 
empirical observation (A) is completely explained. 

Now let us consider the single-particle level scheme 
proposed by Mayer and Jensen2 more literally. We 
notice that all levels between the major closed shells 
(magic numbers except 2, 8, 20, and 28) have the same 
parity except for the last (highest) one whose parity is 
always opposite to the others. For simplicity, let us 
neglect all those (nucleon) states which are not between 
the two major closed shells in which the original proton, 
say, is situated. Consider a proton in the state (nlj) 
and the virtual neutron in the state (n'l'f). If these 

6 F. Bloch, Phys. Rev. 83, 839 (1951). 
7 H . Miyazawa, Progr. Theoret. Phys. (Kyoto) 5, 801 (1951). 
8 A. de-Shalit, Helv. Phys. Acta 24, 296 (1951). 
9 C. Candler, Proc. Phys. Soc. (London) A64, 999 (1951). 
10 S. D. Drell and J. D. Walecka, Phys. Rev. 120, 1069 (1960). 
1 1E. Fermi, Nuclear Physics (University of Chicago Press, 

Chicago, 1950). 
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two (nucleon) states have the same parity, then all 
virtual states in which the positive pion emitted or 
reabsorbed has even orbital angular momentum are 
forbidden, because the intrinsic parity of a pion is odd. 
On the other hand, if these two (nucleon) states have 
the opposite parity, then all virtual states in which the 
positive pion has odd orbital angular momentum are 
forbidden. 

Now taking into account the exclusion principle, we 
note that all states below the state (nlj) usually have 
less chance to be considered as intermediate (virtual 
neutron) states, because all these states may be already 
completely filled up by neutrons. However, it may 
happen that in the vicinity of the state (nlj), states 
with both parities exist and are not completely filled 
with neutrons. Then the level density of the inter­
mediate states would be greatly enhanced and conse­
quently the anomalous magnetic moment of the proton 
would approximate its free-particle value. Such a 
situation is likely to happen near the end of a major 
closed shell, because only there do (nucleon) states 
with both parities exist. A glance at the level scheme 
will show that when the proton is in the state (npi/2) 
or (ndz/2) (n> l),12 the chance for the reduction of its 
anomalous magnetic moment would be greatly de­
creased. This is exactly what we have observed. Of 
course, similar arguments can be carried through for a 
neutron, and good agreement is found in this case also. 
This completes the detailed explanation of the em­
pirical observation (B). 

Now let us consider the explanation for the empirical 
observation (C). First of all, it is noted that increasing 
the number of nucleons in the single-particle levels 
with either i = / + § or f = l—%, increases the level 
density in the vicinity of this level and therefore 
decreases the reduction of the anomalous magnetic 
moments of the nucleons. Since a virtual neutron 
(presumably a Dirac neutron with vanishing intrinsic 
magnetic moment) has no orbital magnetic moment 
contribution, the Schmidt formulas for odd-Z-even-iV 
nuclei2 {ACodd-z-even-Ar= j+ [_j/ U+1)] ( i - M A where 
j=l~i; and v0dd-z-even-N= j-%+Vp°, where j=l+%} 
can be expected more valid as the magnetic moment of 
proton (in the nucleus) approaches fip° (the free-
particle magnetic moment of proton). However, since 
the magnetic moment of proton (in the nucleus) can 
vary from one nuclear magnetron to JJLP°, the experi­
mental magnetic moment distribution spreads out 
widely between the Dirac and Schmidt limits. Finally, 
the sign difference of JJLP° in these two formulas gives 

12 The orbital angular momentum L of the pion is determined 
by the conservation of angular momentum: (1) j=l±i, j'=V±\ 
a n d / , / V O then \V-l\ <L< | / ' + / ± l | ; (2) if i = J ± i , / = / / = F j 
and /, ZVO, then \l'-l±l1 <L< \l'+l\; (3) if J = 0, JVO, then 
V<L<1'+1 or l'-l<L<V; (4) if 1 = 0, then Z = 0 or 1. From 
this simple calculation, we see that although the single-particle 
level 3 î/2 is also situated near the end of the magic number 82, 
the intermediate states for a nucleon in this level is still quite 
limited. 

the complete explanation for the case of odd-Z-even-iV 
nuclei. 

However, for odd-iV-even-Z nuclei, the orbital mag­
netic moment contribution of the virtual proton 
complicates the situation. For simplicity, let us consider 
one intermediate (virtual proton) state only, say 
f=l'+%. (The virtual proton is presumed to be a 
Dirac proton with magnetic moment of one nuclear 
magneton.) Now suppose that for a certain fraction 
of time r the neutron (in the state j=l+i) is a virtual 
proton and negative pion. As r increases the magni­
tude of the anomalous magnetic moment of the neutron 
increases, and at the same time the orbital magnetic 
moment contribution due to the virtual proton also 
increases. Since the increments of both are not neces­
sarily linear in r, we shall assume that HN°fi(r) is the 
intrinsic magnetic moment of the neutron in the state 
i = H - § , and g i ( r ) ( / + i ) is the orbital contribution of 
the virtual proton in the state f=l'+%, where / i ( r ) 
and gi(r) are functions of r. (HN0 is the free-particle 
magnetic moment of neutron.) Combining these two 
contributions to the magnetic moment, we have 

Modd-iV-even-Z = M i N r 0 / l W + ^ l W ( / + i ) J C /= * + £ ) . (3) 

The fine structures of the two functions in Eq. (3) 
are still unknown, except for the fact that these two 
functions should be non-negative. [Also, obviously, 
/ i(0) = gi(0) = 0.]] However, with this single piece of 
information, it is possible to explain the general features 
of the magnetic moment distribution of odd-iV-even-Z 
nuclei. Since / i ( r ) and gi(r) are non-negative, the two 
terms in Eq. (3) are always opposite in sign. Therefore, 
if these functions are reasonably well-behaved, then it 
can be expected that the magnetic moment will decrease 
as r increases (that is to say, as the number of neutrons 
in the state j=l+% increases). Furthermore, even if 
/ i ( r ) ~ l , the second term always leads to a deviation. 
Actually, / i ( r ) can vary from one to zero, so the 
distribution spreads out widely with more weight given 
to the Dirac limit. This completes the explanation for 
the case j=l+i. 

Now consider the case j= I— | . By similar arguments, 
we may define two more non-negative functions, f^ir) 
and £2(7*), and have 

j 
Modd-2V-even-Z= M t f ^ M + ^ M C / ' + i ) , 

i + i 
0'=*-*)- (4) 

I t is noted that the two terms in Eq. (4) always have 
the same sign. Therefore, even when the first term 
cannot attain the Schmidt value ("that is, . M T ) = 1 ] , 
the second term always makes a compensation for this 
reduction. Consequently, the range of the magnetic 
moment distribution is narrower in this case. From 
Eq. (4) we can also conclude that the magnetic moment 
tends to increase with increasing number of neutrons 
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in the state j—l—% (that is, as r increases). However, 
no empirical example for this statement has been found. 

In Eqs. (3) and (4), the second terms are assumed 
to vary more slowly and to be smaller in magnitude 
than the first terms. Otherwise the magnetic moment 
distribution would extend beyond the Schmidt limits. 
However, if the first term in Eq. (4) nearly attains the 
Schmidt value, then the contribution from the second 
term would move the magnetic moment upward (in the 
Schmidt plot) and eventually beyond the Schmidt 
limit (r] is negative). As pointed out before, such a 
situation is likely to happen near the end of a major 
closed shell. A glance at the Schmidt plot will show 
that this prediction is indeed fulfilled. In passing, it is 
noted that for 7 = J , semiatomic model and shell model 
coincide, because the residual deformation of the core 
vanishes in this case.1 This may partially explain the 
fact that negative value of rj only happens in such cases. 

IV. GENERAL DISCUSSION 

From the above discussion, it becomes clear that the 
reduction of the anomalous magnetic moment of a 
nucleon in a nucleus can be separated into two parts, 
one of which results from the exclusion principle and the 
other from the parity rule. The exclusion principle limits 
the virtual nucleon states, and the parity rule restricts 
the virtual emission and absorption of pions. 

The regularities of the magnetic moment distribution 
discussed in this paper originate from a single source 
(except for the Coulomb perturbation), namely, the 
strong spin-orbit interaction. In our treatment, the 
spin-orbit interaction has been considered phenomeno-
logically, that is to say, we first assume the single-
particle energy level scheme of the j-j coupling shell 
model, and then consider the virtual emission (and 
absorption) of a pion in this scheme. Here the parallel 
analog between the photon emission (and absorption) 
in the atomic case and our present situation is obvious. 
The main differences between them are that, firstly, the 
former process is real but the latter is virtual, and 
secondly there is only one type of photon but there are 
three types of pions. Consequently, the rigorous way 
to attack our problem may be considering the three 
types of pions together in the so-called symmetrical 
theory. However, our simple phenomenological treat­
ment may give some clue to the more rigorous formula­
tion. In conclusion, we may note that it is possible that 
the spin-orbit interaction itself may be accounted for 
by the so-called three-pion resonance (in the T—0, 
J—\ state).13 If this is indeed the case, then the regu­
larities discussed here would ultimately be the mani­
festation of the interplay of the three pion fields. 

13 J. J. Sakurai, Phys. Rev. 119, 1784 (1960). 


