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Electrodisintegration of H3 and He3f 
RONALD MCCLURE HAYBRON* 

Case Institute of Technology, Cleveland, Ohio 
(Received 6 August 1962) 

The electrodisintegration cross sections for 400-MeV electrons on H3 and He3 were calculated using the 
Born approximation for the motion of the electrons and allowing both nucleon-deuteron and three-nucleon 
disintegrations. The contributions due to these two processes were found to be comparable for both nuclei, 
assuming the processes to be uncoupled. The cross sections for both processes were found to be essentially the 
sum of the cross sections for elastic scattering off the free fragments multiplied by a function characterizing 
the momentum distribution of the fragment in the ground state of the target nucleons. The effects of the 
final-state interactions between the fragments were considered and found to reduce the cross sections 
appreciably relative to the result obtained by neglecting these interactions. 

INTRODUCTION 

MUTO and Sebe have calculated the high-energy 
(~400 MeV) electrodisintegration cross section 

for1 He4 using the following assumptions: (1) The effects 
of the scattered electron at the nucleus may be repre
sented by the Moiler potentials2; (2) the nuclear 
ground-state wave functions may be represented by 
Gaussians in the squares of the internucleon separa
tions; (3) the predominant reactions are one-particle 
dissociations; (4) the motion of the nuclear fragments 
may be treated in the first Born approximation. 

The M oiler potentials result from regarding the initial 
and final electron states as plane waves. At bombarding 
energies of 400 MeV with targets of small atomic num
ber, distortion effects should be negligible and the first 
assumption may be used. Assumption (2) is made for 
convenience. 

Assumption (3) will be dropped for the following 
reason. Muto and Sebe chose a range parameter for He4 

corresponding to an rms charge radius of 1.69 X10"13 cm 
in order to fit the experimental electrodisintegration 
data.3 This radius is very close to the range of accepted 
experimental values [(1.61—1.68)X10~13 cm] but it 
should be corrected for the finite size of the proton, in 
which case calculations based on the assumption that 
multifragment final states may be ignored lead to re
sults which disagree with observation. The inclusion of 
other possible breakup reactions could conceivably cor
rect this situation. Hence, a more detailed investigation 
of the possibility of multiparticle breakup is in order. 

The disintegration of He4 can lead to five different 
final states if multifragment processes are allowed. The 
A = 3 nuclei admit to only two possibilities: 

H3- •n+H2 

• 2n+p, 
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with an analogous scheme for He3. In order to investi
gate the possibility that multifragment reactions may 
contribute substantially, we shall investigate the cross 
sections for H3 and He3 taking into account both pos
sible reactions. If the two-particle contribution does not 
clearly dominate the cross section in this case, it will 
indicate that multifragment reactions must be con
sidered for an adequate discription of the He4 disinte
gration. 

Inclusion of the complete breakup reaction for H3 and 
He3 introduces an additional complication into the 
calculations. If only the two-fragment breakup is con
sidered, assumption (4) is reasonable to a good ap
proximation. For an incident electron energy of 400 
MeV and a scattering angle of 60° (a typical experi
mental situation) the nuclear excitation energy is 
roughly 60 MeV. If all this energy is manifest in the 
relative motion of two particles, it is reasonably accu
rate to ignore their interactions, that is, to use the Born 
approximation. However, with three fragments sharing 
this energy, it is unlikely that we will be able to ignore 
interactions between them. Therefore, corrections for 
final-state interactions among the nuclear fragments 
will be made. 

The cross sections for H3 and He3 will both be con
sidered here, since it turns out that the effects of the 
final-state interactions are substantially different for 
these two nuclei. 

PRELIMINARY DISCUSSION 

The qualitative aspects of the electrodisintegration of 
He3 will be reviewed briefly before presentation of the 
actual calculations. For simplicity we shall discuss only 
the static Coulomb portion of the interaction. 

The wavelength of the incident electron is small com
pared to the average separation of the nucleons in the 
He3 nucleus at beam energies on the order of 400 MeV. 
For that reason, if an electron interacts strongly with 
one of the protons, it is unlikely that it will interact 
strongly with the other proton and we may conclude 
that large-angle scattering will be characterizable in 
some sense as a two-body collision. 

If the proton undergoing the collision were at rest, the 
electron scattered through a given angle would possess 
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a unique final energy. However, the proton is contained 
in a nucleus and has a momentum distribution charac
teristic of the structure of that nucleus. The component 
of the proton's velocity parallel to the direction of the 
incident electron's momentum will in effect vary the 
bombarding energy and result in a distribution of 
scattered energies at a given angle, the features of this 
distribution reflecting the momentum distribution of the 
struck proton.3 The important interaction in this 
process, then, is that between an electron and a "free" 
proton, rather than that between an electron and the 
nucleus. 

Note that the previous discussion does not indicate 
whether the struck proton will be ejected from the 
nucleus or not. I t may take up all the momentum 
transferred and be ejected (disintegration) or it may 
"drag along" the rest of the nucleus (elastic scattering). 
Of course, the higher the momentum transfer, the more 
likely disintegration becomes. Note also that if the 
neutron is "near" the struck proton and instantaneously 
in a momentum state relative to the proton similar to an 
instantaneous state occurring in a deuteron while the 
electron is being scattered, the two-body collision may 
be electron deuteron rather than electron proton, that 
is, the scattering particle which is ejected in disintegra
tion could conceivably be a deuteron. 

If the disintegration proceeds via the electron-
deuteron scattering, the other fragment is obviously a 
proton. If, however, the electron interacts with a proton, 
the remainder of the nucleus in the final state could 
appear either as a deuteron or as a proton and neutron. 
The relative ratio of these two processes is determined 
by whether the relative momentum distribution of the 
neutron and proton is "nearer" a deuteron or free 
(interacting) particles. The phase-space factors are also 
different for the two processes. 

The portion of the cross section attributed to the 
three-fragment breakup should be essentially twice that 
for a single proton with the appropriate momentum 
distribution. The two-fragment reaction should contain 
scattering off a proton with a contribution due to the 
scattering off a deuteron. Of course, the deuteron will 
scatter less effectively due to its "softer" charge and in 
addition will contribute at a different scattered electron 
energy. In addition, these remarks presuppose that the 
two reactions are independent. This will be assumed 
throughout. 

The interaction between the recoiling, high-energy 
fragment which has performed as the scatterer and the 
remaining fragment or fragments should be small for 
large excitation energies as previously indicated. The 
most important correction will be that for the force be
tween the two remaining nucleons in the three-fragment 
breakup. These nucleons may have a small relative 
velocity and inclusion of their interaction could have a 
sizable effect on the three-fragment portion of the cross 
section. 

THE INTERACTION 

The electromagnetic interaction between the electron 
and the nucleons can be represented for our purposes 
by4 '5 

A f / ifi \ 
H'^eT, 4 [ l + r ( i ) 8 > ( r y , 0 - ( ) 

y=i I \2McJ 

( H \2 

XCM-f+r( i ) 3 M~>y[V y XA(r ,0] - i — ) 
\2McJ 

X{2[ M + +r (y )3 /x - ] - iC l+r ( i )3 ]}«( ry ,0} . (1) 

The vector ry is the position of the jth. nucleon measured 
from the laboratory system. $ and A are the Miller po
tentials produced by the scattered electron. The quan
tity r(j)% is the z component of the isotopic spin of the 
jth nucleon. Operating on a proton spin function it 
yields + 1 ; operating on a neutron spin function it 
yields — 1. The isotopic spin formalism will not actually 
be used here. Equation (1) has been written employing 
r(j)z for compactness. The quantities /<t+ and /x_ are 
defined by 

M+= (Mp+Mn)/2 

/j__= (nv—lxn)/2, 

where /Xp and ixn are the static magnetic moments of the 
proton and neutron, respectively. The Miller potentials 
may be taken to be 

<t>(xhi) = {uf\uz) 1 

A(rjyt) = (uf\a\u0)\ 

\ [ ? 2 - ( A £ / ^ ) 2 ] / 

where \UQ) and \uf) are the electron spinors in the 
initial and final states and the operator a is the Dirac 
current density. The momentum transfer fiq and the 
energy transfer AE are defined in terms of the initial 
electron momentum po and the final momentum p. For 
these high energies the rest mass of the electron may be 
neglected, so that we may write 

AE=E0-E=c(Po-p), 

ftq=po~p. 

If the initial and final nuclear states are designated 
10) and | / ) , respectively, the cross section for a transi
tion induced by B.' is proportional to | ( / | £ r | 0 ) | 2 

4 L. Durand III, Phys. Rev. 115, 1020 (1959). This is the inter
action used by V. Z. Jankus, Phys. Rev. 102, 1586 (1956) with the 
convection term dropped and the Darwin-Foldy term included. 
The former term is small in the neighborhood of the peak cross 
section; Durand has shown that the latter term may contribute 
substantially. 

6 L. van Hove and K. W. McVoy (unpublished). 
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averaged over initial electron and nucleon spins and 
summed over final spins. The electron spin sums can be 
performed at once. If the results of this operation are 
denoted by (| JEr'/o|2)a, then we find that 

( | H / / o | 2 ) a = i l 2 j | e l 2 c o s 2 0 / 2 ) + | S | 2 s i n 2 ( ^ / 2 ) 

+ - ^ - [ ( S * - P o ) ( S . p ) + ( S * . p ) ( S . p 0 ) ] 
2E0E 

+—[£0(e*S.p+QS*.p) 
2E0E 

+£(e*s.Po+es*.p)]J, (4) 
where 

cos0=po-p/(£<#), 

XC2(m.+ r ( i ) ^ . ) - J ( 1 + ^ ( i ) » ) ] } i (S) 
S = E i { [ - W2Mc)(^+r(j)^)-] 

XayXq</ | ^ - r ' [ 0>} , 
and 

16TTV 

[ # 2 - (AE/hc)2J 

The time factor in the definitions of Q and S has been 
omitted since it will ultimately cancel against a time 
factor from the nuclear wave functions. 

The quantity in Eq. (4) will not only be averaged over 
nucleon spins but also over directions of nucleon mo
menta, that is, only the vector q will survive. For that 
reason, we may replace (4) by the expression5-6 

( | H ' / o | 2 ) a - > i l a c o ^ ( t f / 2 ) J | e | 2 - ( — ) 

X C G g - S * + e ^ - S ] + | [ 2 t a n 2 ( ^ / 2 ) + l ] l S | 2 

-§["2 t a n 2 ( 0 / 2 ) - l + 3 ( — \ 1 

X [ ( g - S * ) ( £ . S ) - i | S | 2 j , (6) 

where q is a unit vector in the direction of the mo
mentum transfer. The terms containing g-S are zero, 
and if we neglect [AE/'(ficq)']2 compared to one, we 
obtain 

( | ^ / 0 | 2 ) a = ^2COS2(^/2) 

X { | Q | 2 + J [ 2 t a n 2 ( ^ / 2 ) + l ] | S | 2 } , (7) 

which is the form we shall use for subsequent calcula
tions. 

•R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956). 

DISINTEGRATION OF H3 

The H3 nucleus can break up into a proton and two 
neutrons or a neutron and a deuteron. The two processes 
will be regarded as independent. The wave functions for 
H3 and H2 are taken as Gaussians in the nucleon separa
tions. At first, the fragments in the final state are 
treated as independent. Corrections for the final-state 
interactions are made later in the paper. 

The initial state of the H3 nucleus can be represented 
in the form 

^ ( l [ 2 , 3 ] ) = ^>o(l{2,3})X1/2-(l[2,3]), (8) 

where 1 represents the proton, 2 and 3 the neutrons, 
enclosure in square brackets denotes antisymmetry in 
exchange, and enclosure in curly brackets denotes sym
metry in exchange. 0O depends only on the space 
coordinates of the nucleons. Xi/2m is the total spin 
function consisting of the two neutrons in a singlet 
state and the proton coupled to a total spin 1/2. 

2n-p REACTION 

This process may proceed with the neutrons coming 
off in either a singlet or triplet spin state. The wave 
functions in these two cases may be written as 

^im ' ( lC2,3])=(2)-W[B(l)a;(2>3) 
+,(1)W(3,2)]X8^;(1[2,3]) ) (9) 

and 

- 8( l )w(3,2)]X ( , - / ( l{2,3}) . 

Here, v(l) describes the motion of the proton, w(2,3) 
that of the neutrons. Xs§

m> represents the singlet state 
for the two neutrons coupled to the proton spin for a 
total spin of 1/2. Xtj

m* is the triplet two-neutron state 
coupled to the proton state for a total spin j= 1/2 or 
3/2. Note that the time dependence of these wave 
functions has not been included. As previously re
marked, this time dependence will combine with the 
time dependence in the M oiler potentials to produce a 
delta function in the energy. 

72-H2 REACTION 

The wave function for the deuteron is represented by 
^H(1 ,2 )X 1

T O (1 ,2 ) where ^ H is a Gaussian in | ri— r2 | . The 
final-state wave function for this process then has the 
form. 

^ " ' ( l [ 2 , 3 ] ) = ( 2 ) - ^ H ( 1 , 2 > ( 3 ) X / " ' ( 1 , 2 , 3 ) 

-^H(l,3)D(2)Xy-'(l,3,2)], (10) 

where X/1*' (1,2,3) stands for particles 1 and 2 coupled to 
spin 1 and then coupled to the spin 1/2 of particle 3 to a 
total spin j . 

THE FORM OF THE CROSS SECTIONS 

The differential cross section for an electron to be 
scattered into an element of solid angle dQp and an 
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energy interval dE while the nucleus disintegrates into 
N fragments is 

f j ^ \ =i0-i(2T/h)(—)[(\H', 
\dEd2p/N \cdQ,pJ J 

Xf>(k1)dElP(k2)dE2' • • 

X • • -p(kN-i)dEN-i d(energy). (11) 

p(p) is the density of final electron states and 70 is the 
incident flux of electrons, equal to c/v where v is the 
volume of normalization (chosen here as unity). If the 
motion of the nuclear fragments is referred to the center 
of mass of the nucleus, there will be N— 1 independent 
momenta for N fragments. The center of mass of the 
nucleus will recoil with momentum fiqy the momentum 
transfer specified by choice of p and dQp. The subscript 
A on the square of the matrix element denotes an aver
age over the electron and nucleon spins. The integral 
sign implies integration over all differential quantities to 
the right. Integration over dE\ (for instance) yields 
conservation of energy. The energy balance obtained 
can be written in the following form: 

EQ=E+(2AM)-1(po2+p2-2prp)+EB 

+ ^ I 2 / ( 2 M I ) + ^ 2 2 / ( 2 M 2 ) + • • 

where E0 and E are the initial and final electrons ener
gies, respectively. The second term on the right-hand 
side of (12) is the recoil energy of the nucleus. The mass 
of the nucleus has been written as AM, where A is the 
atomic weight and M is the mass of a proton (the mass 
of the neutron is taken equal to M also). pi, p2, • • • are 
the reduced masses of the fragments in the final state. 
EB is the binding energy absorbed in the disintegration. 

The density of electron states p(p) is (including the 
recoil of the nucleus) 

>(p)= 

where 
(lirfiY 

2E0 

AMc2 
•sin2 (6/'2) T(-) 

J \AMc2/ 

(13) 

W=[A2M2<?+hVq>1 1/2 

If the recoil energy of the nucleus is small, W/AMc2 

c^l. Using this approximation and factoring out 
A2 cos2(6/2) [see Eq. (7)], the expression for the cross 
section may be written 

( —) ^<rM flA~2 cos~2{d/2){\H'f,\
2)A~] 

\dEdQp/n J 

Xp(ki)P(k2)d£2- • .p(ktf-i)<LEiv-i, (14) 

where aM is the Mott cross section for scattering off a 
point charge 

e2 \2 cos2 (0/'2) f e* y cos^ 
<TM=[ I 

\2EJ sin4 

1-
2E0 

sin2 (0/2) 
(6/2)1 AMc2 

and the integration on dE\ has been performed. 

(15) 

The result in Eq. (14) is still perfectly general and 
applicable to any multifragment disintegration. We may 
specialize it now to our particular choice of spin de
pendence without yet being committed to a specific 
spatial behavior. Equations (8), (9), and (10) will be 
used to calculate the nucleon-deuteron and three-
nuclear cross sections for both H3 and He3. The He3 wave 
functions may be obtained from those for H3 by re
versing the labeling of protons and neutrons. These 
cross sections may be written together in the following 
manner: 

For the three-fragment reaction, 

d2< 

\dEdtiJs 

*MiZFp+(A-Z)Fn-] / pftpQOdEi 
p' 3 

X / " H 1 ) M 2 , 3 ) V ^ o ( l , 2 , 3 ) < f r 

and for the two-fragment reaction, 

(16) 

<i2> ( ^ 1 H " H H / * H * ( I ' 2 ) v(sy 

X (e<«-I1+ei«-r!'M>(l,2,3y7-

+ [ ( Z - l ) F „ + ( 4 - Z - l ) F n ] 

X /p (k ) | * H *( l , 2>(3 )* 

Xe'i- r^0(l ,2,3)a!r | (17) 

where 

F p = 1 + Qiq/2Mcm^ tan2(0/2)+ ( M p -1 )*] , 

Fn= (hq/2Mc)W(2 t an 2 (0 /2)+ l ) , 

FK= {1+ (fiq/2Mcf(2 tan2(0/2)+1) 

XCffe+^+ife-^)2]}. 

(18) 

These equations result from discarding several small 
terms in (4) and all interference terms, that is, cross 
terms between the scattering from different fragments. 
The largest value of such terms are less than 0 . 1 % of the 
maximum value of the terms retained in the present 
calculation. This result has already been anticipated in 
the qualitative discussion. I t should be noted that for 
smaller momentum transfers these terms must be re
tained. (For 0=60°, £o=100 MeV, the scattering is 
strongly coherent.) A rule of thumb would be: if the 
elastic cross section is large compared to the peak 
electrodisintegration cross section, the interference 
terms are large; in the opposite case, these terms are 
small. 
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THE WAVE FUNCTIONS 

The space parts of the wave functions in Eqs. (8), (9), 
and (10) will now be written down. Let R be the coordi
nate of the center of mass of the nucleus relative to the 
lab system, rx the coordinate of the dissimilar nucleon, 
t% and tz the coordinates of the similar nucleons meas
ured from the nuclear center of mass. Then, with the 
definitions 

(19) 
0 = r i - r 2 , 

r=fr8 , 

the wave functions will be written 

0o(l,2,3) = AToe-^^2+^, 

^(l,2)^(3) = ^2e-^^2 )^k- re^-R , (20) 

v(l)w(2,3) = Nzeik'Te^-R exp(tl- Q). 

No, N2, and iV3 are normalization constants, defined to 
normalize the functions in (16) for integration over 
dg-dt'dR. 

The parameters p and pf can be related to the mean 
square charge radii of H3 and H2 in the following way: 

The values6-7 

/^((KH3)2))-1, 

«r(H3)2))1/2=2.26Xl0-13 cm, 

«r(H2)2))1/2=2.86Xl0-13 cm, 

(21) 

(22) 

have been used in these calculations, corrected for the 
finite size of the proton with a radius of 0.77X 10~13 cm.8 

THE CROSS SECTIONS EVALUATED 

Substituting the wave functions in (20) into Eqs. (16) 
and (17) the cross sections for the two processes may be 
evaluated in a straightforward fashion. The densities 
p(l) and p(k) are free-particle densities as quoted by 
SchifF with one provision: Since 1 is the wave number 
for the relative motion of two identical particles, an 
additional factor of 1/2 must be put into p (1) to insure 
that the momentum states are not counted twice.10 

Conservation of energy yields the following relations 
for the two processes: In the case of the two-fragment 
disintegration, 

Eo=E+Wq2/(2AM)+Es+Wk2/(2fxk), /**=|Af; 

and for the three-fragment breakup, 

EQ=E+¥q2/(2AM)+EB+fi2k2/(2fxk)+¥l2/(2fjil)J 

7 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics 
(John Wiley & Sons, Inc., New York, 1952), p. 204. 

8 R. Hofstadter, High Energy Electron Scattering Tables (Stan
ford University Press, Stanford, California, 1960), p. 62. 

9 L. I. SchifF, Quantum Mechanics (McGraw-Hill Book Com
pany, Inc., 1955), 2nd ed., p. 200. 

10 The author is indebted to William F. Ford for pointing out 
this factor. 

where Es is the separation energy of the ejected nucleon 
and EB is the binding energy of the nucleus. Note that 
in performing the integral on dEi in (16) it must be 
remembered that k is a function of I as expressed above. 
The integral is performed at constant E. 

The expressions for the cross sections become 

) = <TMZZFP+ (A -Z)Fn~] ) 

where 

\ ¥q2P t 

Xe-«2l%-^?lJ-t4f(E)/3jA}, (23) 

Mrffl& m2~] Mr 

AM M J h2L 

h2q2 -1 

2AMA 
(24) 

and 

d2a 
( =*Mt(Z-l)Fp+(A-Z~l)Fn] 
\dEdQ,p/2 

f/33 / 2X4\/ pp'*'2 \ 
X ( ]( L-[*2/3+/(i?)/fl 

l\ »V /\(/3+^)3/ 

Xsinh(-l4g(E)/321/2) 

+<TMFJ( V 

X<rsW sinl/—[4g(£)/3;p J 

e-qVW 

where 

«(£)= 
Mr3m2 

¥ 4 M J 

M\ 
AE-E»-

h2q2 -1 

2AMJ 

(25) 

(26) 

Ez is the binding energy for complete disintegration, 
while E2 is the separation energy for one nucleon. For 
purposes of curve plotting, the values of £3 and E2 for 
both nuclei will be averaged and this average value used 
in both g(E) and f(E). In that case g(E) = f(E) and we 
are neglecting the "average deuteron binding energy," 
a small correction at the energies of interest. I2 is 
modified Bessel function of the first kind of order two 
and arises directly from the integration. 

DISCUSSION OF THE UNCORRECTED 
CROSS SECTIONS 

Insight can be gained into the form of the cross 
sections by evaluating the integral 

Kl)M2,3)V<^o(l ,2,3)Jr , 



E L E C T R O D I S I N T E G R A T I O N OF H3 AND He 3 2085 

which appears in Eq. (15). Using the functions in (20), 
this quantity is found to be proportional to 

e-Z2 /(2/S)e-3(k-fq)2 /(8/3)4 

This quantity is large when k=fq and I is small. 
Reference to the definition of k and 1 is (20) and con
sideration of the kinematics involved show that this 
corresponds to one nuclear taking off all the momentum 
transfered. Therefore, the cross section will be a maxi
mum near the electron energy corresponding to scat
tering off a free nucleon (corrected for the binding 
energy of the nucleus and the excitative energy involved 
in the relative motion of the other two fragments). Note 
that it cannot be zero since this would yield a zero 
density of final states. 

In the two-fragment breakup, there will be a peak 
near the position of the free nucleon recoil and another 
peak at the free deuteron position. This latter peak will 
be small because of the relative "softness" of the 
deuteron's charge and current distributions. 

The information thus gathered about either process 
may be summarized as follows: The cross section will be 
equal to the sum of the cross section for elastic scat
tering by the various fragments multiplied by a function 
characteristic of the nucleon momentum distribution in 
the ground state. 

The cross sections for H3 are shown in Fig. 1. The 
contributions to the cross section due to the two possible 
reactions are shown, together with their sum. These are 
displayed for £0=400 MeV, 0=60°, and g=1.83XH)13 

E0 = 400MeV 
0 =60° 
Elastic peak 385 MeV 
Free proton peak—•—— 

£ 1.0 

(O 

E0 = 400MeV 
9 =60° 
Elastic Peak 385 MeV 
Free proton peak——-

in 

300 320 340 360 
Scattered Electron Energy (MeV) 

FIG. 1. H3 cross section (uncorrected). 

300 320 340 360 

Scattered Electron Energy (MeV) 

FIG. 2. He3 cross section (uncorrected). 

cm"1. A similar plot for He3 using the same scale for the 
cross section is given in Fig. 2. Although the momentum 
transfer ftq varies as a function of E, it has been evalu
ated at the peak of the cross section and treated as a 
constant. Its variation is only about 5% across the peak 
so that this is a good approximation. 

The ordinates for all the graphs are plotted in the 
same (arbitrary) units. The normalization was chosen 
for convenience. 

FINAL-STATE CORRECTIONS 

The cross sections in the previous section have been 
calculated assuming the fragments do not interact in 
the final state. An estimate of the actual situation will 
now be made for £0=400 MeV and 0= 60°. The results 
obtained should be applicable as long as the peak cross 
section occurs for a reasonably large nuclear excitation 
energy. 

The peak cross section in this case occurs for an ex
citation energy [jftf{E)/M~] of about 50 MeV. In the 
three-fragment breakup, this energy is shared unequally 
between the nucleons: One takes a great deal of the 
energy, the other two only a small amount. [The cor
rection made here will be constructed on the basis of the 
situation in the neighborhood of the peak cross section. 
It will not be accurate on the high (electron) energy tail 
of the peak. However, the correction has been directed 
to giving the peak height accurately so this restriction 
will be ignored.] To estimate the effects of interactions, 
we shall assume that only the latter two nucleons 
interact. Then the final-state motion can be characterized 
by a plane wave times a function describing the inter
action two-nucleon motion. To the extent that the 
interaction of these two nucleons with the fast nucleon 
can be ignored, it will not be necessary to correct the 
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2.0 

§ 1.5h 

Uncorrected 

1• ^r ^V 

- / 

[ 7=5 

1 ^^"^^^ 
^ — ' y = / / 2 ^ ^ 

1 i i i 

E0 = 400 MeV 

0 = 60° 

i... - J , TI_™r**ral 
300 320 340 360 

Scattered Electron Energy (MeV) 

FIG. 3. He3, corrected three-fragment cross section. 

two-fragment breakup at all. Ignoring the correlation 
between the fast nucleon and the two remaining nucleons 
in either case should not strongly affect the relative 
proportion of the two reactions. This proportion should 
be most strongly altered by the correction which will be 
made. 

The three-fragment cross sections for the two nuclei 
can be written in the following form: 

d2a 
( ) = — ( — W / <ff JV-[/c*>-w 
\dEd£lJz 7T4 \¥ql Jo 

Xsinh^C/CE)-/2]^}1/2) 

xjC(2-Z)F,+ (Z-l)Fn] 

+2Z(Z-l)Fp+(2-Z)Fn-] 

-3! 
X 

1 

+- ts*(p)e-^>d9 

fa describes the singlet motion of the interacting 
nucleons, ^t the triplet. The definitions made in Eq. (19) 
have been used here. The form of Eq. (20) can be 
described as follows: Consider the bombardment of H 3 

for which Z = 1. If the scattering is off the proton (the 
Fp term), the neutrons are left in the singlet state. If the 
scattering is off either neutron, the proton and remaining 
neutron come out in a weighted mixture of the singlet 
and triplet states. 

The effective range theory for \f/s and \pt will be used, 
wherein 

sin(/p+5s) 
fa - > e~i8s , 

where 

and 

b 
sin (lp+81) 

lp 

8t= cot^CV (Iat)~rtl/2J 

(28) 

The values of the scattering lengths and effective ranges 
are those quoted by Evans.11 Only the s waves have been 
included. This is the only angular momentum state 
which contributes since the final-state wave functions 
are multiplied by an s wave in every case. 

The wave functions in (28) both possess a singularity 
at p = 0 which is nonphysical and may contribute 
significantly. This is removed by multiplying \f/s and $t 

by a factor (l — e-yp). 
Computation of the integralsjn (27) were done using 

a Burroughs 220 computer for 7 = 1/2, 1, 2, 5, and 50 
[in units of (2/3)1'2 where (2/3)1/2=0.943Xl013 cm-1] . 
The results for H 3 and He3 are shown in Figs. 3 and 4. 
The curves for 7 = 5 0 were omitted since they are 
essentially the same as those for 7 = 5 . The curves for 

Uncorrected 

E0 = 400 MeV 

6 = 60° 

• (27) u 

300 320 340 360 
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FIG. 4. H3, total corrected cross section. 

11 R. D. Evans, The Atomic Nucleus (McGraw-Hill Book Com
pany, Inc., New York, 1955), p. 329. 
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7 = 2 were omitted to keep the plots simple. The mo
mentum transfer was assumed constant at the value 
previously quoted. 

The total corrected cross sections for the two nuclei 
are shown in Figs. 4 and 5 labeled by the various y 
values. These curves are the sum of the corrected three 
fragment cross sections and the uncorrected two-
particle cross sections. Note that with 5S=5*=0 and 
Y= °°, the expression in (27) reduces to that given 
in (23). 

RESULTS OF THE CORRECTIONS 

The effects of including the final-state interactions are 
substantial as can be seen in Figs. 3 and 6 and, hence, 
must be included to gain an accurate estimate of the 
electrodisintegration cross section. 

The most striking feature is the large reduction of the 
He3 three-particle cross section relative to that for H 3 

when 7 = 5 . [Since the results for 7 = 5 and 7 = 5 0 are 
essentially the same for each nucleus, we may conclude 
that for 7 = 5 the exponential correction factor in (29) 
is effectively zero.] This result is attributable to the fact 
that the triplet interaction, which is present in a large 
proportion in the case of He3, reduces the cross section 
much more strongly than does the singlet interaction 
which dominates for H3. (Note that there is no a priori 
reason to choose the same 7 value to characterize the 
small separation behavior of the singlet and triplet 
states. This has been done for simplicity only. Also, the 
energy dependence of 7 has been neglected.) 

At higher bombarding energies, the final-state inter
actions should become less important. The maximum 
contribution to the dl integral in (27) will come at 
successively higher values of L As I becomes larger, the 
phase shift gets smaller, reducing the effects of its 
presence. 
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FIG. 5. He3, total corrected cross section. 
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FIG. 6. H3, corrected three-fragment cross section. 

At lower bombarding energies the corrections should 
become larger, and the interaction in the final state 
should result in the domination of the cross section by 
the two-fragment breakup. 

DISCUSSION OF THE APPROXIMATIONS 

I t is somewhat difficult to summarize the approxima
tions made in order to provide bounds on the usefulness 
of the formulas obtained here. For the calculations of 
the uncorrected cross sections, the region where 300 
M e V < £ 0 < 5 0 0 MeV, 3O°<0<9O° should be well repre
sented. (These limits are imposed by the assumptions 
regarding the form of the interaction.) The final-state 
corrections should be appropriate for large excitation 
energies, as previously noted. The treatment given here 
should not be expected to reproduce the high-energy 
tail in any case. 

The He3 three-particle reaction yielded an uncor
rected cross section which was essentially two times the 
one-proton cross section (neglecting the neutron spin 
scattering). This will hold for q values such that 
interference is small. For 0=60°, £ 0 = 1 0 0 MeV, the 
interference is large and the result is essentially four 
times the one-proton cross section (again neglecting the 
neutron). Hence, except for very high energies, the three-
fragment cross section will not have the relatively simple 
form quoted here. 

One reservation to be attached to the results herein, 
stems from regarding the two disintegration modes as 
independent. The author hopes to clarify the impor
tance, if any, of coupling between the processes in a 
subsequent publication. 
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CONCLUSIONS 

We have established here, to the extent that all the 
approximations made are justifiable, that the complete 
disintegration may contribute significantly to the 
electrodisintegration cross section for H 3 or He3 using 
electron energies on the order of 400 MeV. I t has also 
beeli shown that the final-state interactions in this 
multifragment reaction essentially control the amount 
of this contribution, especially the small separation 
behavior of the wave function of the two low-energy 
fragments. This wave function has been approximated 
rather crudely here for explorative purposes, with a 
parameter 7 specifying its behavior within the range of 
the interaction. As can be seen from Figs. 4 and 5, the 
cross sections depend rather strongly on y and hence we 
should try to indicate the value of 7 most appropriate 
to the actual behavior of the two-nucleon system. 

We may obtain an estimate of 7 by equating the wave 
function used here to the solution of the appropriate 
square-well potential, both evaluated at zero separation. 
This will ensure that our wave function will start at 
p = 0 with the same value as the solution to the square 
well and will also have the same asymptotic form. This, 
of course, will yield 7 as a function of the energy of 
relative motion of the two nucleons. If we evaluate this 
for small energies, the appropriate values of 7 become 
~ 1 . 0 for the singlet state and ~ 1 . 5 for the triplet state 
[in units of (2/3)1/2]. 

The corrected curves for these 7 values could now be 
plotted but in view of the crudity of the estimate, we 
only note that we have obtained an idea of the limits 
within which we could expect to find the cross section. 
I t should be emphasized that 7 has no simple physical 
significance but was introduced as a convenient means 
to determine the importance of the shape of the wave 
function for the low-energy nucleons within the range of 
the interaction. Since small values of this parameter are 
indicated by the estimate above (and, therefore, sub

stantial corrections to the cross sections), a more accu
rate version of this wave function should be used, but it 
is doubtful if this is justified until experimental data on 
the disintegration cross sections are available. Pre
sumably such detailed calculations could yield a means 
for quantitative investigation of the ground states of 
H3 and He3. 

The calculations of Muto and Sebe1 indicated the 
possibility of a "bump" on the high-energy tail of the 
inelastic continuum for He4 due to scattering off the 
heavy fragments, in agreement with the tentative report 
of such structure by Hofstadter.12 I t is interesting to 
note that such a feature is present in the curves in 4 and 
5. More recent experiments on He4 have failed to display 
this structure.13 If the multifragment processes in He4 do 
not "swamp" the reactions resulting in He 3+w or 
H 3 + ^ then such a structure is indicated by the results 
of this investigation. Note. Shortly after this manuscript 
was completed, the author was informed by R. 
Hofstadter that his measurements on the He3 cross 
section were completed and that experiments on H 3 

were under way. The author hopes to utilize these re
sults in a detailed calculation in the near future. 
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