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The isovector charge and anomalous magnetic moment form factors of the nucleon are calculated assuming 
that the low-energy part of the spectral function is determined by the two-pion intermediate state and the 
high-energy part of the spectral function can be represented by a subtraction constant. The results are 
compared with experimental analysis in the form of a pole plus a subtraction constant for each form factor. 
The spectral function is given in_terms of the pion form factor (2TT —> 7) and the NN —> 2ir amplitudes. 
The phase of 2x —> 7 as well as NN —» 2TT are determined in terms of TT p-w&ve phase shift which is adjusted 
to fit thej)bserved p-resonance with a mass of 760 MeV and a full width of ^130 MeV. In the calculation 
of the NN —> 2TT amplitudes, the exchange of a nucleon and a (3-3) resonance are included as Regge poles. 
Two parameters are introduced in the Regge pole description. These parameters are adjusted to fit two 
constants a\ and ai obtained from the experimental analysis of the form factors. The effective mass of 
the two-pion state which results from the present calculation is approximately 600 to 650 MeV (well below 
the p mass), in good agreement with the experimental determination. 

I. INTRODUCTION 

EXPERIMENTS determining the isovector nucleon 
electromagnetic form factors have stimulated 

much theoretical work.1 In particular, the large value of 
the electromagnetic radius determined in these experi
ments led Frazer and Fulco2 to conjecture that the 
exchange of a pion-pion ^-wave resonance was the most 
important mechanism in producing the nucleon struc
ture. They predicted that the pion-pion resonance would 
have t, the total energy squared, in the range from 10 
to 16. (We employ units in which fi—c—ix^^ 1 through
out this paper.) Subsequent work by Bowcock, Cotting-
ham, and Lurie shifted this value to the neighborhood 
of 20.3 Both of these calculations had some ambiguities, 
particularly in their treatment of the amplitude 
NN —»7T7T which is needed to obtain the imaginary part 
of the form factors. 

The subsequent discovery of a pion-pion resonance 
at / = 29 seems to be a good confirmation of the theoret
ical prediction,4 but it leaves one important question 
unanswered; namely, does this resonance with a higher 
mass produce a nucleon form factor consistent with 
experiment as was originally conjectured by FF? I t 
is this question which this paper discusses. The fact 
that the pion-pion scattering amplitude is fairly well-
known in the neighborhood of the resonance gives us an 

* Work supported by the U. S. Atomic Energy Commission. 
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important advantage over F F ; namely, that no arbi
trary parameters need be introduced to describe the 
pion form factor in this region. In the present work, we 
introduce_two parameters to account for the uncertainty 
in the NN —» TTT amplitudes. I t is shown that these two 
parameters can be adjusted to fit the experimental 
isovector form factors. 

The experimental situation at this time is that the 
data can be represented by the following formulas: 

/ OL\ 
&'= 1-aH-

\ 1-t/h 

G2»=1.83(l-a2+-^—)(—) (1.1) 
\ \-tltJ\2m) 

where Gi° is the charge form factor and G2
V is the 

anomalous magnetic moment form factor. De Vries, 
Hofstadter, and Herman have given the following 
values to the parameters: a i~0.92, a2=1.15, h=t^lS.6 

The pole term in Eq. (1.1) is attributed as the contribu
tion from the pion-pion resonance while the constant 
term can be considered to be the contributions from 
higher mass intermediate states. I t is, then, the pole 
terms in Eq. (1.1) with which the calculated pion-pion 
contribution to the form factors should agree. 

Our procedure is as follows: Injthe next section we 
formulate the calculation of the NN —» 7r7r amplitude in 
terms of the TT-TT scattering amplitude and the most 
important states in low-energy pion-nucleon scattering; 
namely, the single nucleon pole and the "3-3" resonance. 
A cutoff procedure is introduced which is consistent 
with the "Regge" behavior of the particle and resonance 
states. The "Regge" behavior for each of these states is 
controlled by a single parameter. In the following 
section we discuss several different approximations to 
the pion-pion scattering amplitude all of which fit the 
experimentally observed resonance width and energy. 

5 C . de Vries, R. Hofstadter, and R. Herman, Phys. Rev 
Letters 8, 381 (1962). 
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In Sec. IV, the form factors are calculated and the 
parameters of the cutoff are adjusted to fit ai and a% The 
resulting form factors are then shown to have an effec
tive mass (h and /2) substantially smaller than the mass 
of the p-resonance, consistent with the fit to experi
mental data of the type given in Eq. (1.1). These results 
are insensitive to the details of different TT-T amplitudes 
employed. 

II. THE NN -> TZTZ AMPLITUDE 

The relation between the NN —> TTTT amplitude and 
the nucleon electromagnetic structure can be seen from 
the following spectral representations which give the 
two-pion contribution to the isovector nucleon form 
factors: 

6V = - / , G 2 ' = - / . (2.1) 

TJA t ' - t TTJA t'—t 

The spectral functions gip are given by2 

gS^-etft-MFSifiTiV); i= 1, 2, (2.2) 
where the T/s are the two J+1 odd-parity scattering 
amplitudes for NN —> TTTT defined by FF, FT is the pion 
form factor, and q= (2/4—1)1/2 is the pion momentum. 
The fact that F* is peaked in the neighborhood of the 
pion-pion resonance means that any attempt to calcu
late the nucleon form factors must include an approxi
mation for the NN —> TTTT amplitudes which is reliable 
in the region of the pion-pion resonance. 

The unitarity condition on the NN —> TIT amplitudes 
requires Ti to have the phase of W-TT scattering in the 
region 4 < 2 < 1 6 ; we will assume that the effects of 
inelastic scattering are small so that this phase condition 
will continue to be approximately valid at higher 
energies. In addition to the right-hand singularities 
given by the unitary conditions, the functions Ti will 
have left-hand cuts which are related to the physical 
singularities of pion-nucleon scattering. If we define TiB 

to be the result obtained by carrying out the integration 
over the left-hand cuts of I\-, we can write the following 
solutions for the T's which will satisfy the appropriate 
phase condition for 2>4 : 

1 rdt'N(t')TiB(t')/t'-4:\1/2 

Ti(t) = Ti*(t)+—r ( — - ) , ( 2 . 3 ) 
irD(t)Ji t'-t \ t' I 

where N/D is the following function of the TT-T />-wave 
phase shift 8T: 

t \ 1 / 2 -u sin^Tr e*' (2.4) 

The function 1/D has the phase of pion-pion scattering 
while N is regular for / > 4 . For 2<4, 1/D is regular. 
Using these facts and expressing the integral in Eq. (2.3) 
as a principal value integral plus an imaginary part it 

FIG. 1. Diagrams 
representing the ex
change of a nucleon 
and an excited nu
cleon (3-3 resonance). 

is easily seen that the T's have the phase dT for 2>4. 
The left-hand singularities are obviously correct as D 
is regular for / < 4 and the singularities of the TB's are 
identical to those of the T's by definition. 

In principle, the discontinuities across the left-hand 
singularities can be calculated from the pion-nucleon 
scattering amplitudes by using the crossing relations. 
In practice, the difficulty in the calculation of these 
discontinuities is that, while the energy variable s is in 
the physical region for w—N scattering, / is outside of 
its physical region; hence, experimental information on 
T—N scattering cannot be used directly. However, as 
long as the polynomial expansion for the ir—N scatter
ing amplitudes converges, this expansion may be used 
to continue the ir—N amplitudes to the desired values 
of t. FF have shown that this procedure allows the 
calculation of the discontinuities for t> — 26 provided 
the complete partial wave expansion were known. The 
fact that low-energy pion-nucleon scattering is domi
nated by the 3-3 resonance means that the nearby 
portion of the left-hand cut has discontinuities approxi
mately given in terms of the 3-3 amplitude in addition 
to the nucleon pole contribution. I t is the uncertainty 
about the rest of the left-hand singularities that makes 
the calculation of TB ambiguous in the region 2>4. 
However, we still expect the nucleon pole and the 3-3 
amplitude to be the dominant terms in the low-/ region. 
For large values of t, the nucleon and the 3-3 resonance 
contributions may still dominate the TB amplitude 
provided they are treated as Regge poles rather than 
the usual poles in fixed angular momentum amplitudes 
for TTN scattering.6 Due to the lack of detailed knowl
edge of the behavior of Regge poles in TN scattering, 
we introduce two parameters in modifying the nucleon 
pole and the 3-3 resonance term to fit the asymptotic 
behavior given by the Regge pole hypothesis. First, we 
calculate the two pole terms shown in Fig. 1, treating 
the iV* as a single particle with mass W33 and spin 3/2 
(If the T's are calculated from these terms, the same 
result is obtained as would be obtained by first calcu
lating the left-hand discontinuity including only the 
nucleon pole and the 3-3 state but assuming that the 
polynomial expansion is valid for all t and then inte
grating over the left-hand cut). Then we multiply the 
nucleon term which is a pole at s—m2 by the factor 
exp[Cjv(s—m2) In(2/4)] and the 3-3 term, a pole at 

6 For a discussion of Regge poles see, for example, G. F. Chew 
and S. C. Frautschi, Phys. Rev. Letters 7, 394 (1961). 
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FIG. 2. The effect of the "Regge" cutoff for the nucleon pole 
term TiB<NK The solid curve is T^W for CN = 0.001, while the 
dashed curve is for CV=0. 

s=fnZs2, by exp[C33^-^332) ln(tf/4)]. Here, s is the 
energy variable for w—N scattering. The two param
eters CN and C33 are positive as implied by the conver
gent behavior of Regge poles. These exponential factors 
become unity when evaluated at the appropriate pole 
in the wN channel as well as at / = 4 where the ordinary 
pole terms are expected to give a good approximation 
for VB. Having obtained the modified pole terms, we 
carry out the partial-wave projection in the channel 
NN—+TTT. The resulting expressions for the P ^ s are 
as follows: 

r i * « = 
12wp2 

.+1 dz 

(m2~s) 

XC(^+3m2)P2(Z)-^]Q 
t\ CN(s—m2) 

273 dz 

3p2qJ-i (m^2—s) 
{ i » # H ( / ) P i ( 2 ) - k 

XL(p2+3m2)P2(z)-p22F(t)} 
K Czz(s~m33

2; 

(2.5) 

+1 

r*»(0= , 
Swp2J-i (m2-s) Mi) 
+-

733 

3pq 

r+l dz r 
/ A-H(t)Px{z) 

y_i (w332-^)L 

mq 
+—F(t)P2(z) 

t\ CSd(s-

(2.6) 

where 

H(t)= (m 3 3-w)(E 3 3 +w) 2 +f(w 3 3+w)(2^ 3 3 2 +0 J 

F(t) = - (En+m)2+U2hz2+t), 

and ^ is the following function of z 

s=m2-\-l \-2pqz. 
2 

The quantities p and q are the center-of-mass momen
tum for the nucleon and pion, respectively, in the 
NN —»7T7T channel. The nucleon energy and center-of-
mass momentum at the 3-3 resonance are denoted by 
E3 3 and £33- Here, gr is the rationalized pion-nucleon 
coupling constant 

SrV47T=14, 

and 733 is the effective coupling constant for the 3-3 
resonance, with a value of 733=0.06 which is obtained 
from the width of the 3-3 resonance assuming the width 
to be narrow. 

I t should be pointed out that the "Regge"-type 
modification we have introduced has no effect on the 
left-hand cut for t>0. For t<0, the discontinuity begins 
to deviate slowly from that given by crossing and has 
an oscillatory nature. For the present calculation, we 
need not concern ourselves with the left-hand region 
since we can evaluate TB explicitly for / > 4 . 

In Fig. 2 we show the effect of this cutoff procedure 
by comparing TiB(N\ the contribution to TiB from the 
nucleon pole, with CN—0 and CN—0.001, a typical 
value obtained by fitting the form factors. The cutoff 
has very little effect on T2

Bm until / becomes much 
larger than the resonance value. In Figs. 3 and 4, 
ri,2B(33), the TV* contribution to r i , 2

B , is shown for 
C33=0 and C33=0.01, a typical value for this parameter. 

III. THE PION-PION SCATTERING AMPLITUDE 

In our treatment of the pion-pion scattering ampli
tude, we assume that the resonance is an elastic p-w&ve 
resonance. The possibility that small inelastic effects 
are present in this angular momentum state will not 
alter our results substantially. Since two parameters are 
determined experimentally (the position and width of 
the resonance),4 we use a two-parameter phenomen-
ological 7r-7r solution, which is consistent with the 
unitary and analyticity requirements. This solution is 
obtained by solving the ^-wave pion-pion N/D equa-
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FIG. 3. The effect of the "Regge cutoff" for the 3-3 resonance 
term iy<M>. The solid curve is T^3 3) for C33 = 0.01, while the 
dashed curve is for C33=0. 
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TABLE I. Values of parameters for three acceptable fits 
to experimental form factors. 

Parameters 

At 
A2 
Vi 

V2 

CN 
C33 

I 

0.051 
0 
50000 

0.00085 
0.008 

Solutions 
II 

0.072 
0.032 
5000 
4.4 
0.0012 
0.011 

III 

0.204 
0.175 
200 
25 
0.0018 
0.02 

tions assuming that the N function can be represented 
by a single pole. The position and residue of this pole 
are, then, adjusted to fit the observed position and width 
of the resonance. The resulting expressions for the pion-
pion TV and D functions are as follows: 

A 7 = 
V\. Av 

V+Vl 

D=\-vviAK(v,vi), 

2 1 
K(v,Vl) = lL(vi)-L(-v)l; v=\t-\, 

L(z) 

IT V~\-Vi 

-£)" ln[s"*+(8-l)1 '*], (3.1) 

-.005 

-.01 
nB(3,3) 
'2 

-.015 

-.020 

-.025 

-

_....!._. 1 ! 1 1 I I 1 

t 

FIG. 4. The effect of the "Regge cutoff" for the 3-3 resonance 
term i y w . The solid curve is T2

B^ for CM = 0.01, while the 
dashed curve is for C33=0. 

and the relation of N and D to the pion-pion scattering 
amplitude is that given in Eq. (2.4). We find z>i= 5X104 

and .4 = 0.051 for a p resonance at 760 MeV with a 
half-width of 65 MeV.7 

To investigate the dependence of the form factors on 
details of the pion-pion scattering amplitude other than 
width and position of the resonance, we also use a 
"two-pole" 7T-7T solution. This solution is obtained by 
using a two-pole formula for the N function. The result
ing solution depends on four parameters, two of which 
are adjusted to fit experiment; a third parameter is 

7 We fit the shape of the resonance on the low-energy side of the 
maximum. The reason for this procedure is that our resonance 
formula is expected to be less reliable on the high-energy side of 
the peak. 

FIG. 5. The effect of unitarity in the NN —-> irir reaction. The 
dashed curve is TiB which produces DTi represented by the solid 
curve. 

eliminated by using a symmetry requirement on the 
pion-pion scattering amplitude. This method is based 
on the fact that the £-wave scattering amplitude for 
small negative t should be given by the fixed-/ dispersion 
relation for pion-pion scattering in the channel in which 
s is the energy variable. The dependence of the form 
factors on the remaining parameter was investigated. 
The form of the two-pole solutions is as follows: 

N=i—\_(—( 
wiAi\ /W2A2 

D=1 — V[_VIAIK(V,VI) — V2A2K(V,V2)']L. (3.2) 

where —yh — v% are the positions of the two poles and 
A1 and A 2 determine the residues. We considered two 
solutions of this type: one with poles at 5000 and 4.4 
with A i=0.072 and 4̂ 2= 0.032; the other had poles at 
200 and 25, with ^!=0.204 and ^2=0.175. 

Both of these two solutions are very similar to the one 
pole solution in the resonance region with the important 
difference being the behavior for large positive t. It can 
be seen from Eq. (3.1) and (3.2) that A" behaves as a 
linearly increasing function until / is of the order of 
magnitude of 4^x. The D function also behaves linearly 
for /<4*>i. The fact that these solutions have widely 
differing values of v\ means that the high-/ contributions 

FIG. 6. The effect of unitarity of IV The dashed curve is r 2
s 

which produces DY2 represented by the solid curve. 
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FIG. 7. The charge form factor. The dashed curve is our result 
for solution I. The solid curve is the fit to experiment (reference 5) 
given by Eq. (1.1) with ai = 0.92, ^ = 18. 

from the integrals in Eqs. (2.1) and (2.3) are substan
tially different in each case. However, as we will see 
below, the result for the form factor calculation has 
little dependence on which TT-TT solution we use. In 
Figs. 5 and 6 we show the effect of /-channel unitarity 
by comparing I \ B with I>I\; i= 1, 2, which are obtained 
from Eqs. (2.3) and (2.5). 

01 , I I I I I I I 1 1 8 1 
0 - 5 -10 -15 -20 -25 -30 -35 - 4 0 - 4 5 -50 

t 

FIG. 8. The anomalous magnetic moment form factor. The solid 
curve is our result for solution I. The dashed curves are two of the 
solutions given by De Vries, Hofstadter, and Herman, (reference 
5) the lower one being the solution with a2—1.15, /2 = 18 while the 
upper is the solution with 02=0.96, t2=15. 

IV. THE CALCULATION OF THE FORM FACTORS 

The calculation of Tj8, Tiy and form factors described 
in Sec. I I were performed with the aid of the CDC 1604 
computer of the University of California at San Diego. 
For each pion-pion solution used the values of the 
parameters CN and C33 were adjusted to fit Gip(0) = \&\C 
and G2 '(0) = 1.83fl2(e/2w) as given in Eq. (1.1). The 
resulting values of CN and C33 for different TT-TT solutions 
are given in Table I. I t was found that in each case it 
was possible to find reasonable values of CN and C33 
(small and positive) which produced the required values 
for Gip(0) and G2p(0). Furthermore, the form factors 
produced by each of the TT-TT solutions had a slope corre
sponding to t\ and h in the neighborhood of 20, a 
substantial shift from the resonance position of 29 used 
in the calculation. In Fig. 7 and Fig. 8, the calculated 
form factors are plotted together with the analytic fits 
to the form factors given in Eq. (1.1). To make this 
comparison, we use the one-subtraction formulas for 
the total isovector form factors: 

G I ' ( 0 = [ £ * - G I ' ( O ) + G I ' ( * ) ] , 

G2^t) = lhS3(e/2m)~G2p(0)+G2
p(t)J (4.1) 

V. CONCLUSION 

In the present work, there are two factors which 
contribute to the shifting of the effective p mass in the 
form factor calculation. First, the pion form factor has 
a peak at ^ 2 5 while the TT-TT cross section is peaked 
at 29. This is due to the broad width of the p resonance. 
Second, the smooth functions DTi give a much heavier 
weight to the low-/ part of the spectral function than 
that of the high-/ spectral function. This gives an addi
tional shift from 25 to ^ 2 0 . We believe that these are 
general features of the two pion contribution to the 
form factors. The shifting of the effective p mass will 
not be altered substantially in a more sophisticated 
treatment of the TT-TT amplitude and the NN —> TTTT 
amplitudes. 

At the level of our present calculation, we have em
ployed two phenomenological parameters in the treat
ment of the NN —> TTTT amplitudes and determined these 
parameters to fit the form factors. We believe that the 
NN-+TTTT amplitudes so obtained can be used in 
connection with other problems provided they are used 
only in the / > 4 region; for example, in the calculation 
of left-hand discontinuities for wN and NN scattering.8 

8 A. Scotti and D. Y. Wong (to be published). 


