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The analytic behavior of a certain kind of nonlocal separable potentials previously considered by one of us 
(ANM) is studied in the complex angular momentum plane. The amplitude derived from such potentials 
has cuts only in the locations expected for the Mandelstam representation, including one corresponding to 
the crossed channel. The spectral functions are explicitly evaluated. A study of the singularities in the 
complex I plane of the partial wave amplitudes shows that there is only one Regge trajectory to the right 
of the Re/ = —3/2, and that its behavior is that of the principal Regge trajectory corresponding to a Yukawa 
potential. This is confirmed through the evaluation of the high-energy limit of the total amplitude in the 
crossed channel. 

1. INTRODUCTION 

AMONG the successes of the Regge formalism, 
perhaps the most important from the physical 

point of view is the role of the "trajectories" in the 
interpretation of various resonances and high-energy 
cross sections. The extrapolation to the relativistic 
domain of the ideas derived from potential scattering 
has been proposed in detail by Chew,1-2 Frautschi,1-3 

Gell-Mann,3 and Gribov and Pomeranchuk.4 Since, 
however, these ideas in the relativistic domain cannot 
easily be "proved" by conventional techniques of, say, 
field theory, faith in these has to be sustained, apart 
from general physical considerations, by the validity of 
the Regge formalism in potential scattering. 

From the mathematical point of view, the most 
important success of the Regge formalism is the facility 
with which it is now possible to study the analyticity 
properties of amplitudes simultaneously in the energy 
(s) and momentum transfer (t) variables. The assump­
tion of bounded behavior as t —» °o? which was needed 
for proofs of the Mandelstam representation5 before 
the complex I plane was available, strongly points to 
the advantages of the Regge formalism. The techniques 
of complex angular momentum have vastly extended the 
mathematical tools for handling potentials more compli­
cated than the Yukawa type, so as to examine what 
kind of analytic properties obtain for the amplitudes 
from such potentials. 

These techniques are being increasingly used for 
studying not only the amplitudes arising from scattering 
by specific types of potentials, but those from suitable 
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truncation schemes in field theory. Thus, Lee and 
Sawyer6 have found that the solution of the ladder ap­
proximation to the so-called Bethe-Salpeter equation 
for scattering of two spinless particles admits of Regge 
poles in a fashion strongly reminiscent of the cor­
responding behavior of the scattering amplitude from a 
Yukawa potential. For a more impressive example of 
the appearance of Regge trajectory in field theory, 
Frautschi,7 and Levy8 independently, have shown by 
considering a suitable set of diagrams that the high-
energy cross section for electron scattering with radia­
tive corrections to all orders has exactly the same form 
as demanded by Regge on the basis of potential scat­
tering alone. 

Further generalizations for potential scattering are 
also under way. Cornwall and Ruderman9 have shown 
the validity of the Mandelstam representation as well 
as the "correct" behavior of Regge trajectories for a 
class of energy-dependent, Yukawa-type potentials, 
signifying nonlocality in time, but not in space. On the 
other hand, Barut and Calogero10 have found by 
studying certain types of soluble potentials (square-well 
and centrifugal types) that it is possible for a scattering 
amplitude to be meromorphic in the entire I plane 
without satisfying the Mandelstam representation. 
For such cases, those authors have found that the 
analytic continuation is not unique. Unless, therefore, 
such examples are ruled out on deeper physical grounds, 
e.g., crossing relations, they might well prove a stumb­
ling block to the general acceptance of the Mandelstam 
representation which may remain an open question for 
some time before further discriminating criteria are 
established. 

In this paper, we have been motivated by a desire to 
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study the analytic properties of amplitudes from a 
certain class of spatially nonlocal potentials—the so-
called separable potentials—with which we have been 
associated for some time.11-13 It appears to us that such 
potentials have a very natural place in the "Regge 
scheme" in which the basic complex variables are s 
and I, in much the same way as a local potential of the 
Charap-Fubini type14 has a place in the "Mandelstam 
scheme" which works directly with the complex vari­
ables s and t. Therefore, insofar as the Regge formalism 
permits a study of the analytic behavior of amplitudes 
in s and t via the (s,l) scheme without the usual restric­
tion to the Lehmann ellipse, it was thought worthwhile 
to study this question for certain types of separable 
potentials which can be defined for general I values so 
as to fit in within the Regge framework. In a sense, the 
present work may be regarded as a direct continuation 
of an earlier paper11 where a class of separable potentials 
was found to satisfy the various partial wave dispersion 
relations (as well as correct threshold behavior), but 
the analytic properties in s and / of the complete ampli­
tude were not investigated for them. The present work 
now seeks to fill this gap as well as to study the predic­
tions of such potentials with regard to the 5-matrix 
poles. 

We would like to suggest that our purpose in studying 
such potentials for the analytic properties of amplitudes 
is not entirely academic. It has been shown elsewhere12,13 

that such potentials can be profitably used for solving 
problems involving three-body systems, and obtaining 
structures for the explicit three-particle amplitudes. 
Now a three-body system seems to be too general an 
entity to be studied in an entirely kinematical fashion, 
so that if the analytic properties of such systems in all 
the relevant variables have to be understood in greater 
details, additional input information, preferably of 
dynamical origin, must be supplied in advance. This 
last requirement can be met, e.g., by allowing a three-
particle system to satisfy the formal Schrodinger equa­
tion whose solution (if it can be expressed in a simple 
form) would explicitly incorporate many of the analyti­
cal properties of the former which might otherwise be 
hard to discover. This use of separable potentials in 
effecting the solution of such a Schrodinger equation has 
been already discussed in references 12 and 13. It may, 
therefore, be of interest to study the analytic properties 
of three-body systems with separable potentials which 
have been so devised as to reproduce certain "known" 
features of two-particle amplitudes. For example, if 
(as is generally believed) a two-particle amplitude 
satisfies the Mandelstam representation, then a separ­
able potential devised to satisfy this crietrion can be 
used to construct an "exact" three-particle amplitude. 
It is likely that the analytic properties of such an ampli-

11 A. N. Mitra, Phys. Rev. 123, 1892 (1961). 
12 A. N. Mitra, Nucl. Phys. 32, 529 (1962). 
13 A. N. Mitra, Phys. Rev. 127, 1342 (1962). 
14 J. Charap and S. Fubini, Nuovo Cimento 14, 540 (1959). 

tude in all the relevant variables would be specified in 
much greater details than might be afforded with the 
mere input information of Mandelstam representation 
and unitarity for the two-particle amplitudes. In any 
case it may be of some interest to compare the knowledge 
of cuts and singularities of a three-particle amplitude 
obtained in this manner with a corresponding knowledge 
derived from alternative methods, e.g., the Landau-
Cutkosky15 techniques. 

In this paper we confine ourselves to a study of 
separable potentials in the context of two-particle 
amplitudes only. Study of three-particle amplitudes 
will be the subject of a subsequent publication. 

In Sec. 2, the analytic behavior of the scattering 
amplitude f(s,t) is studied by a generalization of the 
results of reference 11 to the complex / plane. It is 
found that f(s,t) has cuts only in the locations expected 
for the "Mandelstam representation," with a "crossed-
channel" cut in addition to the conventional one in 
Yukawa-potential scattering.5 In Sec. 3, the properties 
of the partial wave amplitude Ai(s) in the complex 
I plane as well as the high-energy behavior of f(s,t) are 
investigated. The results are very similar to those ob­
tainable from Yukawa-type potentials. 

In Sec. 4 a comparison is made of the present ap­
proach with some contemporary ones, and a general 
procedure for constructing separable potentials from 
arbitrary amplitudes is suggested. 

2. DOUBLE DISPERSION REPRESENTATION 

We start by summarizing the main results obtained 
in reference 11 which is referred to as A in the following. 
The "potential" under consideration is defined by 

{v\V\v')=-(\/M)Y,{2l+l)vl(p)vl{p')Pl(p-p^ (2.1) 
i 

where 
*<*(#) = (Vp2)Qi(l+m-2). (2.2) 

The scattering amplitude from such a potential is 
given by 

/ ( ^ ) = E I ( 2 / + 1 M I W P I ( 1 + / / & ) (2.3) 
where 

s=k\ s=cos0, t=-2k2(l-z), (2.4) 

Al(s)^Nl(s)/Dl(s), (2.5) 

Nt(s)= (47r2AA)ez(l+/32/2s), (2.6) 
and 
Di(s)=l-4*\[ ds' s'-1'*Ql(l+$0*s'-1)/(s'-s). (2.7) 

Jo 

As was shown in A, the amplitudes At(s) defined by 
(2.5) satisfy the standard partial wave dispersion rela­
tions expected of them, with the left-hand cut in 5 
being over — coo<J— f/?2, the possible poles in 
— l(32<s<0, and the physical cut in 0 < s < oo. Further, 

15 L. D. Landau, Nucl. Phys. 13, 181 (1960); see also, R. E. 
Cutkosky, J. Math. Phys. 1, 429 (1960). 
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the Born approximation amplitude fs (t) was shown to 
be exactly the same as given by the Yukawa potential, 

V(r) = - (4*K*k/rM)<r*r. (2.8) 

Finally, we remark that the series (2.3) is convergent 
within the Lehmann ellipse. This is shown in Appendix 
A. Thus, our separable potential (2.2) gives at least the 
the same domain of analyticity over t as found for an 
ordinary Yukawa potential of range (3, corresponding 
to positive energies (s>0). In addition, the results of 
Appendix A show that it is possible with our potential 
to establish the convergence of the series (2.3) even for 
negative s, as long as 0</</3 2 . This fact will be of use 
later in this section in establishing the analytic behavior 
of f(s,t) over a larger (s,t) domain, via complex angular 
momentum techniques. 

We now turn to the investigation of further properties 
of the amplitude (2.3) within the Regge formalism. 

Before converting (2.3) into a Regge integral, it is 
convenient to extract its Born approximation part 
explicitly. This is done by writing 

Al(s) = Nl(s)+Bl(s)) (2.9) 
where 

Bl(s) = NlIl/Dl (2.10) 
and 

Il(s)=l-Dl(s). (2.11) 

The sum in (2.3) due to the part Ni(s) in (2.9) is found 
in the standard way to be 

fB(t) = S^\(^-t)~\ (2.12) 

The part of (2.3) due to Bi(s) is now converted into the 
Watson-Sommerfeld integral representation: 

/ (* , / )=/*( / )+** &(2l+l)dlBi(s)Pi(-z)/sionrl, (2.13) 

where the contour C encloses the poles Z=0, 1, 2, 
on the real axis by going round it in the clockwise 
direction. Shifting the contour to the line Re/= —§ leads 
to the formula 

X ( 2 H - l ) 5 , ( s ) p / - 1 ) /marl 

+ L (2«;+ m (s)P«l-1 - (;/2*)]/sinxay(*), (2.14) 
3 

where l=ctj(s) is the jth Regge pole and fij(s) is the 
residue of ~-wBi(s) at 1—a.f. 

lim U-c*j(s)lBi(s)(-*)=Pj(s)- (2.15) 
l—><Xj 

The justification of the step from (2.13) to (2.14), as is 

now well known, depends essentially on the inequality16 

| 'Pi(-s)/sinirf | ^ | x / ( 2 / + l ) sinAl1'2 

X e x p [ ( f e + i ) | f c | - ( i r - J ^ | ) | / i | ] , (2.16) 

( 0 = 0 E + * 0 I , 1=IR+UI) 

so that for the integral in (2.14) to be convergent, one 
no longer needs the limitations %=6i<a [as in (A9), 
Appendix A for integral / ] , but the trivial condition 
TT—\6R\>0. AS a matter of fact, even for the most 
unfavorable case IR— — \ and ir=0R, the convergence of 
the integral term in (2.14) is assured for R e s > 0 if the 
amplitude Bi (s) goes to zero at least as fast as (21+l)-3/2. 
That this is indeed the case for our amplitude defined by 
(2.10) is clear from Eqs. (A4) and (A5) of Appendix A. 
[Convergence over the infinite semicircle in the I plane 
follows in the conventional manner, using (2.16) and 
(AS).] 

To see the analytic properties of f(s,t) defined by 
(2.14), we start by examining the physical region s>0 
and / < 0 . Now it has been shown in Sec. 3 that there is 
only one Regge pole to the right of I— —3/2 for our 
potential, and that it has only the right-hand cut in s. 
Using this result in (2.14), we find that in the physical 
region ( s>0 , t<0), f(s,t) is analytic except for the cut 
along the positive real axis in s. For the unphysical 
regions in t (t>0), the definition of f(s,t) must be 
specified by analytic continuation. This is done in the 
conventional way by writing for Res>0 , 

Pii-l-ltsr1) 

^-T^smwlf dtf ( ^ - ^ ^ / ( l + i ^ " 1 ) , (2.17) 
Jo 

which shows that f(s,t) has a cut in t along the positive 
real axis,17 and that it is analytic in / for R e / < 0 and 
Res>0 . 

To extend this statement to negative values of s— 
and this is compatible with the definition (2.17)—the 
convergence of the Regge integral in (2.14) for negative 
s must first be examined. Now we have seen that the 
Regge form, viz. Eq. (2.14), overlaps with the series 
form (2.3) for 0<t<{P and Res>0 . However, the re­
sults of Appendix A show that (2.3) is convergent also 
for Res<0 . Using the same techniques as of Appendix 
A for I— — %+ip, it is easy to show that the Regge form 
(2.14) certainly converges for s=s'+ie, sf<—%(32, with 
0</</3 2 , and that this limit on s' can be pushed further 
to the right by a more economical manipulation of 
certain inequalities. Thus, we find that at least for 
Res< —1|82 and 0</</32 , the series and Regge forms are 
analytic and equivalent. By analytic continuation (cf., 
e.g., Blankenbecler et at., reference 5, p . 71) therefore, 
the validity of (2.14) for negative s is established, and 

16 See reference 10 for a very complete discussion of the asymp­
totic behavior of Pi{z). 

17 Actually the cut starts only from /=/32, since it has been shown 
in Appendix A that the series for (2.3) is convergent, and hence 
analytic in t, for /</32, in which region the forms (2.3) and (2.13) 
are completely equivalent representations of f(s,t), 
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Eq. (2.17) can now be used for analytic continuation of 
Pi(—l — t/2s) for negative s. 

The spectral representation of f(s,t) in the t variable 
is now deduced by writing 

f(s,t) = r* dt'A(s,t')/(t'-t), (2.18) 

and using (2.17) to obtain (apart from subtractions) 

A(s,t) = (2x)3XS(/32-0 

-j+t'oo 

dl (2l+\)Bl{s)Pl{l+lts^) 

- ( 2 a + l ) / 3 ( j ) P « ( l + i ^ 1 ) , . (2.19) 

the last term representing the contribution of the Regge 
pole to the ^-spectral function A (s,i).ls 

To examine the analytic behavior of f(s,t) in the s 
variable, it is once again convenient to look at Eq. (2.3) 
which is valid for Q<t</32. For this range of /, the dis­
continuities of f(s,t) defined by (2.3)-(2.12) across the 
real axis in the s plane are seen to be the following: 

^+M=E(2/+i)Pz(i+|^-1)^1/2MzWI2, 
( J > 0 ) ; (2.20) 

^ - f e O = Z ( 2 / + l ) P z ( l + ^ - 1 ) C z W , (*<0), (2.21) 
o 

where 

Cl(s)=(2^X/s)Il(s)Dl-'(s) 

XPi(l+h(Psri)0(-ll?-s), (2.22) 

6 being the usual step function. In deriving (2.20) and 
(2.21), use has been made of the following relations 

Bl(s+ie)-Bl(s-ie) 

= 2isl^NHs)/Dl(s+ie)Dl(s-ie) 
= 2is^\Al(s)\*, ( ^ 0 ) ; (2.23) 

Qi(x+ie) — Qi(x—ie) 

= - « r P , ( * ) , ( - 1 ^ 1 ) ; (2.24) 

= 2isimrlQi(-x), ( - <x><x<- l ) . (2.25) 

Thus, apart from possible subtractions, f(s,t) satisfies 
the s-spectral representation 

f(s,i 
8TT2X r B+(s',t) r~ip B-(s'J) 

-,0 = - + / dsf + / ds' . ( 2 . 2 6 ) 
/ 3 2 — t Jo S' — S J-a S' — S 

I t is, therefore, seen that in contrast with the s-
spectral representation for a Yukawa potential,5 our 

18 It has been shown by Cheng (to be published) that A (s,t) is 
not analytic in t. This however, does not affect the analyticity of 
f(s,t), for which it is enough that A (s,t) be denned along the line 
Q<t< oo, according to (2.18). 

potential gives, not only the usual right-hand (unitarity) 
cut in the s variable, but a left-hand cut as well.19 To 
extend the spectral functions B± beyond 0</</3 2 , one 
must again use Regge integrals like (2.14) for (2.20) 
and (2.21), and obtain, apart from a Regge pole con­
tribution to B+(s,t), 

/

—§-Hoo 

dl 
-5—i<x> 

Pil-l-(t/2s)l 
X ( 2 / + l > 1 / 2 M z W | 2 (2.27) 

sinx/ 

B-(s,t) = ii dl 
J —%—ico 

X (2l+l)Ci(s)Pl-l- (//2s)]/sinirf. (2.28) 

Convergence of (2.27) and (2.28) is again established 
as before, through the use of (2.16) and the techniques 
of Appendix A. Using now the representation (2.17) 
for Pi(—z), the last two expressions for B±(s,i) are 
seen to be quite consistent with the representation (2.18) 
and (2.19). This completes the discussion of simultane­
ous analyticity of f(s,t) in the two variables s and t, 
viz., f(s,t) is an analytic function except for the cuts: 

(1) t>t3*,s>0; (2) t>t3\s<-it3\ (2.29) 

I t may be mentioned that (2.27) tacitly assumes the 
validity of the unitarity condition for complex /. This 
condition is, in the language of Fivel,20 

S*(ZV / 2)S(Z/ / 2) = 1, (2.30) 

S(l}s^) = l+2is1f2Al(s), (Res>0). (3.21) 

Now using the definition of Di(s) given by (2.7) which 
is valid for Re/> — 3/2, it is seen that 

Dl(s+ie)-Di(s-ie)=-2is1f2Ni(s), (2.32) 

so that (2.31) is re-expressible as 

S(l,s1l2) = Dl(s-ie)/Dl(s+ie), (2.33) 

thus explicitly verifying (2.30). 
19 In order to ensure that the left-hand cut indeed exists, and 

that there are no fortuitous cancellations in the series (2.21) so 
as to make B_{s,t) identically zero, it is enough to show that B_(s,t) 
does not vanish over at least a certain region of ^ and for a small 
value of X, such that terms of order (X3) are negligible. To order X2, 
(2.21) and (2.22) reduce to 

where 

ids>Qi{\+p/2s') 
(s')ll2(s'-s) ' 

This series is convergent for 0</<j82, according to the results of 
Appendix A. If we now take a large and negative value of s 
(|s|^>i/32), it is immediately seen that each term of this series is 
a positive quantity [[since Pz(l) = + 1 and Qi(x) for x>l and in­
tegral /, has no zerosj, so that the series as a whole is a nonzero 
positive quantity. Therefore, B_(s,t) for s < —1/32 is not identically 
zero, showing that the left-hand s cut in f(s,i) represents a genuine 
feature of our model. 

20 D. Fivel, Phys. Rev. 125, 1085 (1962). 
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The additional cut over the region / > 0 , s<0 for the 
case of our potential has a simple meaning in terms of 
the third variable u defined by u~ — 2s(l+cos0), i.e., 

w+;+4?=0. (2.34) 
Thus, / > 0 , s<0 corresponds to t>0, u<0 which just 
stands for the cut region in the so-called "crossed 
channel'' in the field-theoretical Mandelstam represen­
tation. Curiously, it does not represent any conventional 
"exchange potential" effects (s>0, u>0). In any case, 
the representation deduced for our potential does have 
a place in the field-theoretical Mandelstam representa­
tion, though it is somewhat wider than the one for a 
purely Yukawa amplitude. 

This result may not be unexpected in view of the fact 
that our potential is highly nonlocal. Now it is recog­
nized21 that interactions of finite range in field theory 
produce scattering amplitudes whose properties are 
partly analogous to those of single partial wave ampli­
tudes with suitable nonlocal potentials of the same 
range. I t is, therefore, likely that the amplitudes Ai(s) 
derived from (2.2) might equally well arise from suitable 
truncation schemes in a field theory, and to that extent 
incorporate some residual effects of the latter, of the 
type exhibited above. 

3. REGGE POLES—THRESHOLD AND 
HIGH-ENERGY BEHAVIOR 

In this section we shall examine the amplitude (2.5)-
(2.7) for singularities in the complex I plane. 

We note first that the denominator function Di(s) 
defined by (2.7) can be analytically continued to 
R e ^ - 3 / 2 + e ( e > 0 ) , since near J = 0 , <2z(l+/32/2s) 
~sl+1. The form (2.7) is especially convenient for large 
s. For small s on the other hand, it is more convenient 
(for purposes of explicit evaluation) to express (2.7) in 
an alternative form based on the representation (valid 
for R e s X ) and l i m = 0 ) 

Qitt+m-^^f ^rz~ia2-2^+i)-1/2, (3.1) 

^=%+(%2-\yi\ x=l+^2s~\ (3.2) 

Substituting (3.1) in (2.7) and interchanging the order 
of £ and s' integrations, it is easy to deduce 

DI(S) = 1-4TT2\[ ^ r ^ 1 ^ - ^ ^ - ! ) 2 ] " 1 7 2 . (3.3) 

Equation (3.3) shows, like Eq. (2.7), that Di(s) is an 
analytic function of s, with a cut only for real and posi­
tive s, and the discontinuity in (3.3) works out as 

Di(s+ie)-Di(s-ie) 

JSo 
= -2isimi(s)} (3.4) 

21 M. Ruderman and S. Gasiorowicz, Nuovo Cimento 8, 861 
(1958). 

according to (2.6) and (3.1). Thus, (2.7) and (3.3) are 
equivalent representations of Dt(s) within their common 
domain of analyticity in the / plane, viz., Re /> — 1. 
Now the position of the Regge pole for a given s is the 
solution of the equation 

so that (2.7) or (3.3) shows that l=a(s) is an analytic 
function of s for Res<0 , and that it has a right-hand 
cut along the line Res^O, lm.j=0. 

To find the position of the Regge pole near threshold, 
the integration in (3.3) when s~»0 is immediately 
performed to give 

ZM0)= 1 - 4 T T 2 X / 3 - 1 ( / + | ) - 1 . (3.4a) 

Thus, the Regge pole at threshold is given by 

l=a(G)=-i+a, o-=47r2\/U (3.5) 

Further, it is shown in Appendix B that the Di function 
near threshold has the form 

xr(H-i)r(|-0]/(/+i). (3.6) 
The zeros of (3.6) would, therefore, give the positions 
of the Regge poles near threshold. For this purpose one 
sets in (3.6) 

*=«(*) = _£+,+,/(*) (3.7) 
where, according to (3.5), rj(s) is expected to be small. 
Thus, rj(s) is a solution of the equation 

v+(-s/p2y^aw-V2T(l-<j-v)T(i+r)+<T) = 0. (3.7a) 

For (7>0, this gives a solution consistent with the small-
ness of rf2: 

V(s) = -g(<r)(s/(?y, (3.8) 

£(«,)= _ x - i /Vr ( l -<r ) r (A+<7) . (3.8a) 

This formula, however, does not hold if a is a positive 
integer, and one has to turn to Eq. (3.7a) for a solution 
in such a case. That is, if a= 1, Eq. (3.7a) is expressible 
as 

^ = l r - i / 2 ( - V ^ ) i + T ( l - , ) r ( | + ) 7 ) , (3.9) 

whence one has the solution (for a— 1) 

„(s)«-(-V2/32)1/2+i(-V/32) 
X [ l n ( - V / 3 2 ) + 2 + ^ ( | ) - ^ ( l ) ] . (3.10) 

where 
d 

$(x) = —\nT(x). (3.10a) 
dx 

As would be expected, Eqs. (3.8) and (3.10) show 
l=a(s) as an analytic function of s with a right-hand 
cut starting at s = 0 . In addition, as the origin is ap­
proached from the negative real axis of s, rj(s), while 

22 It may be noted that the solution (3.8) is not consistent for 
<r<0, since r\ then becomes infinite for small s. 
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remaining real, increases towards zero. Finally, for 
R e s > 0 and 0 O ^ 1, TJ(S) acquires a positive imaginary 
part according to the replacement s=k?+ie, in (3.8) 
or (3.10).23 For the case 0<cr< 1, the real and imaginary 
parts of rj(s) above threshold are given, according to 
(3.8), by 

Rer)(k)=-g(a) cos™ (*//?)", 

Imrj(k) = g((T) sin™ (k/pf*. 

Both these functions have cusp behavior at k = 0 for 

l i m l V ^ H 0 0 , (*<§). (3.12) 
Jc-+0 

The physical meaning of the case v—\ [which inci­
dentally makes a(0) —0 in (3.5)], is linked directly 
with the condition of bound state formation for s 
waves. This fact may also be checked through the old-
fashioned effective-range formulas which can be deduced 
exactly from (2.2) for various partial waves. In particu­
lar, for s and p waves the relevant formulas are11 

kcot80=RzD0(k
2)/No(k2) 

= (W/frftl-patr1 tan-1(2Vi^)]/ 

Qo(l+^2k~2) (3.13) 

k* cot8!=k2 ReZM*2)/#i(*2) 

k*r $<J( £ 2 \ /2k\ /3V-1 / 
= - 1 ( l + — tan-1 ( - + — / 

pal k\ 2k2J \pj k2J/ 

Qi(l+ilPlr*), (3.14) 

from which the conditions of s- and p-w&ve bound state 
formation are, respectively, deducible as 

«r> 1/2, a>3/2. (3.15) 

I t can be verified from (3.13) that if <r< J, i.e., an s-wave 
bound state does not occur, then the numerator of 
(3.13) does not vanish for k>0 (no s-wave resonance). 
On the other hand, if 3 /2> a> 1/2, then an examination 
of (3.14) shows that a £-wave resonance is possible. 
Precisely the same conclusion is indicated in terms of 
the Regge trajectories: The curve for Rer; versus k 
moves up (no cusp) or bends down (cusp) at threshold 
according as <r> or < J , respectively. Thus, the tra­
jectory (3.11) follows a pattern expected of any reason­
able kind of potential. 

Recently, Desai and Newton24 have shown that the 
threshold behavior of a partial wave amplitude is con­
nected with the existence of an infinite number of Regge 
trajectories that arrive at / = — \ as s —> 0. We would like 
to point out that the amplitude considered here admits 
of these Desai-Newton poles. For this it is necessary to 

23 This is, of course, the expected behavior for a Regge pole, and 
the sign ambiguity in 17 in going from (3.9) to (3.10) was resolved 
by this criterion. 

24 B. Desai and R. G. Newton (to be published). 

examine the zeros of (3.6) near 1= — J, so that setting 
H-2 — ^ the poles near V=0 are given by 

l - « ( O ( - * W = 0 , (3.16) 

where the function g(x) is denned as in (3.8a), and 
g(0)= l.25 From (3.16) one shows by proceeding exactly 
as in reference 24 that the Desai-Newton poles are 
given, for s = 0 + , by 

l'~mr(Trarl+i)/a, (3.17) 

and for s=0—, by 

V = Tn(i-iA2mra~2)/a, (3.18) 
where 

a = l n | / 5 2 / y | » l , (3.19) 

and n is a positive integer such that n<£a. The quantity 
A in (3.18) is defined, as in reference 24, by 
g - 1 (Z , )~ l+ -^ ' , so tha t 

4 = - g , ( 0 ) = ^ ( l ) - ^ ( i ) - < r - 1 = l n 2 + l - c r - 1 . (3.20) 

The significance of n as a positive integer is that for the 
poles (3.17) and (3.18) to exist, one should have R e / ' ^ 0, 
to allow a zero to develop in the left-hand side of (3.16) 
as 5 —» 0. Thus, these poles exist only on the right half 
of the /' plane. On the other hand, if ReZ'<0, Eq. (3.16) 
cannot be satisfied unless g(l') = 0, and this does not 
occur in the present case, as may be seen from (3.8a). 
Thus, the "threshold poles" of Desai and Newton are 
not present on the left-hand half of the /' plane in our 
model. 

Finally, for the high-energy behavior of the principal 
Regge trajectory according to our potential, we turn 
once again to the definitions (2.7) and (3.3) of Di(s). 
Equation (3.3) shows that for large \s\ the integral 
term is of order s~1/2, except for / = — 1 when the integral 
diverges at the upper limit. ["The s a m e conclusion also 
follows, less directly, from (2.7).J At high energies one, 
therefore, expects the pole to shift near Z= — 1 . For a 
more precise location one writes I— — 1+J>, where 
I v|<Cl, a n d makes use of the following approximation 
deducible from Erdelyi26: 

Q-1+V(x)~v-1-Ini(x-1)-Qo(x)+O(v). (3.21) 

Using (3.21) in (2.7), elementary integrations are en­
countered to deduce (for Res<0) 

+ ^ ( - 5 ) - 1 / 2 l n { ^ + 2 ( - ^ ) 1 / 2 ] / ( - 4 ^ ) } . (3.22) 

The motion of the principal Regge pole for large | s | is 
then given by 

/ S a ( j ) = - l + J , « - . l + ^ ( - J ) - l / 2 { l - i 5 c r ( - . j ) - l / 2 

X l n [ - 4 V ^ + 2 ( - ^ ) 1 / 2 ) ] } - 1 , (3.23) 

25 Our notation differs from that of reference 24 in the replace­
ments X -> V and C (X) -> g (/'). 

26 Bateman Manuscript Project; Higher Transcendental Functions, 
edited by A. Erdelyi (McGraw-Hill Book Company, Inc., New 
York, 1953), Vol. I. 
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whose analytic continuation for s=k2+ie is27 

+cr(3k-1 tan-1(2V/5)+^cr^-1 

Xln[/?(^2+4^)1 /2 /4^2]}-1 . (3.24) 

Equations (3.23) and (3.24) show indeed that a (s) tends 
to —1 as |s|—> oo. 

I t has by now become intuitively obvious that for the 
potential (2.2) we are considering, there is only one 
Regge pole to the right of the line ReJ=— 3/2, for a 
given value of the coupling constant. In particular, it 
is the principal pole whose high-energy end is described 
by Eqs. (3.23)-(3.24), and whose threshold behavior is 
governed by Eqs. (3.8)-(3.11). This pole is, of course, 
distinct from the Desai-Newton poles given by (3.17) 
and (3.18). As for the other Regge poles, lying to the 
left of the line Re/= — 3/2, we are not entitled to discuss 
them on the basis of the representations (2.5)-(2.7) or 
(3.3). 

For the sake of completeness we may record the high-
energy limit of the amplitude defined by (2.14). For 
this purpose the line integral is shifted to the left up to 
the line ReZ=—3/2+e, according to Mandelstam's28 

prescription (cf., reference 6), viz., 

Pl(— Z) CSC7r/=7T_1 CSC7I-/ 

XQii-z)-*-1 sec7r/<2-j-i(-2), (3.25) 

and the full amplitude (without now separating the Born 
term) is deduced as 

f(s,t) = ~¥ / dl {21+ 1)AI(S)/T COSTTZ 
J —f—loo 

- T - 1 f (-l)"-i2nA(s,n-i)Qn^(z) 

+ ( 2 a + l ) sec i rae^ . i ( -2 ; ) / a ( j ) , (3.26) 
where 

fa(s) = \Nl(s)/-Di(s)] . (3.27) 

In the limit of high-momentum transfer ( |Z | )>>1) , the 
amplitude (3.26) reduces in the standard way to its 
last term. For algebraic simplicity we consider only the 
case 

s=k2+ie, [ * A | » 1 , and | V 0 2 | » 1 . (3.28) 

In this limit it is easily verified that the following results 
hold: 

« ( * ) = - 1 + ^ - 1 + i / f c r r - 1 ' 2 ; (3.29) 

Qail+iPs-^^-D^s)] ~v-i~-is^/(3a; (3.30) 

e _ , ( - l - i f a - 1 ) « 2 ( - / A ) - 1 + ' . (3.31) 
27 Note again that a(k2-\-ie) has a positive imaginary part, as 

required by theory. 
28 S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962). 

Substitution of these results in (3.26) gives in this 
limit 

f(s,t)« - 2/3<rr1 ( - t/s)V-112. (3.32) 

Changing s to t and vice versa in (3.32) we obtain for 
the high-energy amplitude f(s,t) in the crossed channel 

j t o ) « 7 ( f l * ° ( , ) , (3-33) 

where, consistently with (3.29), 

a ( 0 = - l + i 0 c r r 1 ' 8 (3.34) 
and 

7 ( / ) = _20o-(-*)~**rr"1/1 (3.35) 

» - 2 / 3 c r [ l - ^ r 1 ' 2 l n ( - 0 + • • • ] (3.36) 

for small a. 
These results are completely in accord with the ex­

pected behavior of the high-energy amplitudes from 
Yukawa-type potentials [see reference 6] . 

4. DISCUSSION 

We are now in a position to give a detailed assessment 
of our results in relation to Yukawa potential scattering. 
I t is clear that our potential has many properties analog­
ous to a Yukawa potential of range /3 -1 . The Regge 
trajectories as well as the high-energy behavior of the 
scattering amplitude follow closely the Yukawa pattern. 
The complete amplitude f(s,t) is analytic in both / and s, 
having a bounded behavior as t —> <*>, and exhibiting 
cuts for (1) t>p\ s>0 and (2) t>/P, s<-%p2. This 
second cut, however, has no analog in pure Yukawa 
potential scattering, and corresponds to the so-called 
"crossed channel" (t, u variables). The amplitude thus 
seems to exhibit some features characteristic of "field-
theoretical" amplitudes. I t has come to the authors' 
notice that a similar conclusion about the existence of a 
cut t>to, s<—so using a different type of separable 
potential was reached by Cushing.29 

A closer comparison of our results with the "Mandel­
stam representation" for Yukawa potential scattering, 
however, reveals the following points of dissimilarity 
with the Yukawa case. The Yukawa amplitude has 
additional branch cuts starting successively at the 
points t=n2(32 (n=2, 3, 4, • • •), and the discontinuities 
across these successive cuts are given by the standard 
prescription of analyticity and unitarity.5,20 This im­
portant manifestation of the Mandelstam representa­
tion is not present in our model given by Eqs. (2.2) and 
(2.3). Thus our amplitude does not show the points 
t—n2$2 as thresholds of any fresh discontinuities, the 
discontinuity functions at these points being merely 
the continuation of the one starting at t—$2. We would 
like to point out however, that the absence of the above 
feature is just a consequence of the very special kind of 
potential chosen, viz., one which gives a left-hand cut in 
A i(s) corresponding to the^-s / Born approximation for 

29 J. T. Cushing, Ph.D. thesis, Iowa State University, 1963 
(unpublished). 
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Ni in the N/D solution. On the other hand, the succes­
sively higher cuts at / = n2(32 (w= 2,3, 4, • • •) in a Yukawa 
amplitude can be most easily understood in terms of 
the higher Born approximations to the amplitude, the 
nth Born approximation showing for the first time the 
branch point at t—n2f$2 (see reference 5). Since, however, 
the effects of these successive Born approximations are 
absent in our model, the /-discontinuity function of our 
model falls short of the corresponding function in a 
Yukawa amplitude by roughly the contributions from 
(1) the second Born approximation in the interval 
4/32^/^9/32, (2) the second and third Born approxima­
tions in 9(32^.t^ 16/32, and so on. 

From these considerations, a possible way of extend­
ing our potential so as to incorporate the additional 
branch points at t=n2/32 is suggested on the following 
lines. In Eq. (2.5) of reference 1 a prescription was 
given for writing down an "equivalent separable po­
tential' ' which would give the same first Born amplitude 
as the actual potential in question. In a similar way, a 
separable potential could be written down so as to in­
clude the contribution of the second Born Yukawa 
amplitude in its definition, viz., 

v?(p)= (ST^X)-1 /dto Pi(cos6)f2){k2, costf), (4.1) 

where / ( 2 ) is the Yukawa amplitude up to the second 
Born approximation and (4.1) replaces (2.3). This 
separable potential is not quite "equivalent" to the 
Yukawa potential in the above sense of reproducing the 
second Born amplitude up to 0(X2), since a X2 contribu­
tion from the first-order N/D solution would also be 
included in the result. However, (4.1), from its very 
definition, would now include the effect of the additional 
t cut for t^ 4/32. The additional discontinuity across this 
cut would be automatically incorporated in the formal­
ism described in Sec. 2, since unitarity for each partial 
wave is explicitly built into this formalism. However, 
the mathematical structure of the amplitude would not 
be amenable to a "prescription" of the type discussed 
by Blankenbecler et al.,5 wherein the discontinuity 
function is built up in successively larger regions 
t>n2fi2 through a knowledge of this function for t<n2j32. 
A similar extension to include the t cuts for 9/32, 16/52, 
etc., could be made on the lines of Eq. (4.1) though the 
procedure would fast get extremely cumbrous. I t does, 
however, give some indication of the type of contribu­
tions that are missing from the potential (2.3) compared 
with the Yukawa potential, and the type of terms 
needed to compensate for them. Later in this section we 
shall give a more exact (but formal) definition of the 
"equivalent separable potential" than is provided by 
Eq. (2.5) of reference 11, or Eq. (4.1) of this section. 

A somewhat different insight into the meaning of our 
separable potential (2.2) and (2.3) comes from a com­
parison of the amplitude Ai(s) with the so-called 
Fredholm solutions to the Yukawa amplitudes for 

each partial wave which have been given recently by 
Lee and Sawyer.30 I t is immediately seen that Ai(s) 
is just the amplitude corresponding to a truncation to 
first order in X in both the numerator and denominator 
of the Fredholm solution. This feature is not unexpected 
since a separable potential automatically leads to solu­
tions in which the Fredholm denominator terminates 
at a finite integral power \n (in the present case, n~ 1). 
However, this correspondence of our result with the 
first-order truncated Fredholm amplitude gives a clue 
to the appearance of the left-hand s cut in our f(s,t). 
The qualitative reasoning is roughly as follows. Since 
we know from earlier work5 that the exact Yukawa 
amplitude / r ( s , 0 does not have a left-hand s cut, it is 
clear that the same must be true when the complete 
Fredholm amplitude is considered. Our result of Sec. 
2 indicates, on the other hand, that a truncated Fred­
holm amplitude can show a residual left-hand cut. These 
two statements can be quite consistent with each other 
when we recognize the possibility of "cancellations" 
within a Fredholm amplitude of a certain order of 
truncation. Thus, for small values of X, the first-order 
Fredholm truncation shows a left-hand cut of order 
(X2), as well as a right-hand cut of order X2. However, in 
a higher order of truncation say the nth, it is more likely 
that the left-hand cut is (for small X) of order Xn+1, 
while the right-hand cut still remains of order X2. I t is 
just fortuitous that for our case of n= 1, the left- and 
right-hand cuts appear to be of the same order of magni­
tude, but the difference between them must show up in 
successively higher orders of truncation in order that 
in the limit of n-^co, the left-hand cut may vanish 
altogether. 

Finally it may be of some interest to compare our 
amplitude (2.5) with one obtained by taking only the 
Born approximation to the left-hand cut in the various 
partial wave amplitudes.5 These amplitudes fi(s) are 
defined for the present case by the equation 

Ms) = Ni(s)+f ds's'^lMsOWis's), (4.2) 
Jo 

where Ni(s) is given by (2.6). The amplitude fi(s)y by 
its very definition, leads only to the right-hand cut in 5 
in the full amplitude fi(s,f). This is seen by summing 
over all the partial amplitudes according to (2.3) and 
noting that the first term in (4.1) gives just the term 
(2.12). The integral term in (4.2), on the other hand, 
has only a right-hand cut in the s variable. In the nota­
tion of Eq. (2.26), the amplitude fi(s,t) has the 
representation 

/ i M = &raX(l8«-/)-1+ f ds'B+'(s',t)/(s'-s), (4.3) 
Jo 

where B+'(s,t) is given by (2.27) with A i(s) replaced by 
fi(s), and the corresponding BJ(s,t) is zero in (4.2). 

30 B. W. Lee and R. F. Sawyer, Ann. Phys. (to be published). 
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In a formal way, it is possible to modify the potential 
(2.2) so as to lead only to a representation like (4.3). 
One could always write the solution of (4.2) in the form 

fl(s) = N/(s)/Dl'(s), (4.4) 

with N/(s) and D/(s) having only left-hand and right-
hand cuts, respectively,31 and then define a new separable 
potential v/(p) through an equation of the form [cf., 
(2.2)] 

^ / 2(^)=(27r2X)-Wz /(^). (4.5) 

This definition is of course a highly implicit one insofar 
as N/(s) and D/(s) satisfy two coupled integral equa­
tions. However, a formal definition like (4.5) of the 
" equivalent separable potential" is quite unambiguous 
and works equally well for any given amplitude [not 
necessarily (4.2)], expressed in an N/D form. For a 
two-body system, a separable potential defined in the 
above manner—starting from a given amplitude A (s,t) 
and projecting out its various partial waves fi(s)—is in 
some sense equivalent to the generalized two-body 
potential of Chew and Frautschi32 for the same amplitude 
A (s,t) [ the connecting link being provided by the com­
mon amplitude A ($,£)]. For a three-particle system, 
on the other hand, the predictions may be different for 
the two cases, and as has been pointed out already in 
Sec. 1, separable potentials have at least a computa­
tional advantage for a three-particle system. 
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APPENDIX A 

For all % outside — O O < 2 < 1 and Re^—1/2, the 

asymptotic form of Qi(z) for large | Z| is 

Qt(z)« ( T T / 2 ) - 1 / 2 ( S 2 - l ) " 1 ' 4 ^ - ( 3 2 - l)i/2]H-i 

xr(z+i)/r(H-t). (Ai) 
In particular, this formula holds for positive in­
tegral I. Substituting (Al) in (2.7) and making the 
transformation 

1 + (&/2s') = c o s h p y (21+1)], 

one finds for C2>1 (positive integer) 

/ 7T \ 3 / 2 r00 / y \ 1 / 2 / 
l-Z>z«4X( / dy(3e~n 2 coth ) / 

\2l+lJ Jo V 21+1/ I 

U2-4^ sinh2( -?— )1 (A2) 
L \2/+l/J 

31 H. P. Noyes and D. Y. Wong, Phys. Rev. Letters 3, 191 
(1959). 

32 G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961). 

Since most of the contribution to the integral comes 
from y<\ [due to the presence of exp(—y)~], it is pos­
sible to neglect y/(2l+\) compared with unity, so that 
for s not too large, (A2) is evaluated asymptotically to 
yield 

l - J9 ,«&r a \ 8 - 1 (2Z+l ) - 1 

X { l + 0 [ ( 2 / + l ) - 1 , ^ - 2 (2Z+ l )~ i ]} . (A3) 

Thus, for I sufficiently large, one has Z)z~l, so that 
Ai^Ni. Further, by setting for s=k2+ie (e>0) , 

1 + d32/2s) = cosh(a~ie,)f (a>0), (A4) 

(Al) can be expressed as 

Qi(l+P/2s)~[ir/(2l+i) sinna]1 '2 

X e x p [ - ( a - z Y ) ( H h i ) ] , (A5) 

where e '>0, by virtue of (A4). On the other hand, the 
asymptotic behavior, for large \l\ (1=IR+UI), of 
Pi(l+t/2s) occurring in (2.3) is given by10 

Pl{\+t/2s)~[ir(2l+\) sinhf]-1/2 

X [ V ' + ^ ± ^ - < ^ a (A6) 
where 

z= 1 + (t/2s) = cosh(f) = cosh(H-«7), £^ 0, (A7) 

and the d= signs in (A6) correspond, respectively, to 
Im2> or < 0 . Thus 

Pi(l+t/2s)< \TT(21+1) sinhf I"1'2 

X e x p { ± [ J ( W - i W r ] } , (A8) 

the upper or lower signs being taken according to the 
criterion of a positive exponent. For positive integral 
/ (Zr=0), substitution of (A5) and (A8) in (2.3) leads, 
therefore, to the condition of convergence as 

* < « , (A9) 

which is just the Lehmann ellipse and corresponds, for 
€' = ?7=0,tO 

0 < / < / 3 2 . (A10) 

I t may be that the series (2.3) is also convergent for s 
on the real axis (negative side) of the s plane. Indeed, 
In Eq. (A4), if s = -k? (real), where kx2< (1/4)/?, one 
has 

- * = l - ( / 3 8 / 2 f t i 2 ) = - c o s h a i , « i > 0 . (Al l ) 

Further, since for integral I, 

& ( - * ) = ( - 1 ) « - W * ) , (A12) 

Eq. (Al) can now be used to evaluate Qi(—x), via 
(A12). For ^ lying on the real axis between 0 and 
— (l/4)/32, the Qi function in (2.3), therefore, yields a 
convergent exponential factor as in (A5). Thus, follow­
ing the steps from (A5) to (A 10), one again arrives (for 
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/ real and positive) at precisely the condition (A 10), 
as long as &i2<//4, i.e., s> —t/4. On the other hand, for 
j<—*/4 , (A7) gives £=0 , implying from (A6) that 
Pi(l+t/2s) has only an oscillatory behavior in I 
(exponent purely imaginary). Thus the convergence of 
the series (2.3) is assured for negative real s up to 
—02/4. For values of s with Res<— 02/4, even the Qi 
function in (2.3) has an oscillatory exponential factor, 
since now 1 + (ft2/2s) is numerically less than unity (for 
lm^=0) . The convergence of the series in this case is 
facilitated by separating out from A i (s) its Born approxi­
mation part Ni(s), according to Eqs. (2.9)—(2.11) of 
the text, so that from (A3) the quantity Bi(s) of (2.9) 
picks an additional factor (2 /+1) - 1 compared with 
Ai(s). The convergence of the series 

Zi(2l+l)Bl(s)Pl(z), (A13) 

now follows for s——k£ (real) and 0<t<(32, where 
&22>j#2/4, in the same way as before. I t may be noted 
that as a function of s, Pi(l+t/2s) has no cuts for 
s<—/32 /4<—//4. However, since the Qi function that 
appears in Bi(s) has cuts on the negative real axis for 
s< — /32/4, one must use s=—k£zLie in its argument, 
to ensure proper analytic behavior in s. By this pro­
cedure one has 

l + ^ 2 ( - ^ 2 2 ± z e ) = cosh(e2
::F^2), (A14) 

where €2>0 and 0<772<7r. Eq. (A5) should now be re­
placed by 

C £ l + (£ 2 / 2* )> [7 r / (2 /+ l ) sinh(et=Fm)J» 
Xexp[-(/+i)(€2=Fw72)]. (A15) 

Explicitly, 

€ 2 ~ (et32/2k2
4) csc??2, and CSCT?2= l-/32/2&2

2. (A16) 

APPENDIX B 

Consider the integral 

Ii(s)=l-Di(s) = *0 [ ^ r [ £ 2 £ - * ( £ - l ) 2 ] - 1 / 2 (Bl) 
Jo 

in the region of real s<0, s being small. Setting s= — yP2, 
where 0<^<3Cl, (Bl) can be divided into the regions 

In region (1), y(l~ £)2~ y, so that 

J ^ W d$? (£+y) - 1 / 2 

= ayl+* / d£ ? z (£+l)- 1 / 2 (changing f to fey). (B3) 

This integral is convergent as long as Re/> — 1. In 
region (2), 

Ii(2) = al d^U+y(l-02J/2 

' y J y 

=*f dts^-fi+il 2Vrn(i-*)2wl 

The integration can now be performed by observing 
that the contribution of the upper limit in all the terms 
of the n summation vanishes, and that in the lower 
limit (y), (1 — £)2 is well approximated by unity (since 
;y<<Cl). This gives, after a slight rearrangement, 

/,»)«/—+£/~*V2!—1 (B4) 
Ll+h o \ n Jn-l-hJ 

Using the identity 

00 

E d ) — 7 = / ^rM(i+£-1/2 

o \ n Jn—l—\ Jo i rffi'tt+l)-1'*, (B5) 

( l ) O ^ ^ y ; ( 2 ) y ^ l . (B2) 

valid for R e K - 1 / 2 , one finds from (B3)-(B5) 

~4~(m)-i+y+J/' ^{,tt+D-i/,l (B6) 

=<r(/+|)-1ci-x-1/y+^r(/+i)r(i-0]J (B7) 
noting the relation 

f ^^«+i)-1/2=r(/+i)r(-/-§)/r(j). (BS) 
J 0 


