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The phase representation which expresses an analytic function essentially in terms of its phase (not 
imaginary part) along the cuts is discussed. In particular, the precise conditions under which this phase 
representation is valid and also the asymptotic behavior of the phase representation are studied in detail. 
It is proved that the asymptotic behavior is essentially the same at infinity in all directions. The derivation 
of the high-energy behavior of scattering amplitudes and the N/D representation of the partial-wave 
amplitude are discussed as applications of the phase representation. Finally, the phase representation is 
used in determining the total numbers of zeros of the forward pion-nucleon scattering amplitudes* It is 
found that the charge nonexchange amplitude has either 2 or 4 zeros, depending upon the signs of the 5-wave 
scattering lengths, while the charge exchange amplitude has 11 zeros. 

T 
I. INTRODUCTION AND SUMMARY 

HE dispersion relation for a real analytic function 
has the general form 

M- -J 
7T J C u 

Im f(x+ie) 
dx+pole terms, (1) 

where the integral is along the cuts on the real axis and 
e is an infinitesimal positive number. The dispersion 
relation (1) expresses f(z) essentially in terms of its 
imaginary part along the cuts. 

The purpose of this paper is to discuss the properties 
and the uses of an alternative representation of f(z), 
which involves its (real) phase along the cuts. The phase 
8(x) is defined by 

f(x+ie) = ±\f(x+ie)\ei8 (x) 

This phase representation is expressed as 

Pi(z) (z r 8(x)dx 
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(3) 

where the integral is also along the cuts and P\(z) and 
Pi(z) are finite polynomials in z. The representation (3) 
was first worked out by Omnes and Muskhelishvili1 and 
used by many authors2 in discussing partial-wave ampli
tudes. The present authors3 also gave a proof of (3), 
together with a useful application. It was proved3 that 
(3) is valid under the conditions (a), (b), (c), and (d) 
listed in Sec. 2 of this paper. The extra conditions in 
reference 3 are shown, in fact, to be unnecessary in 
Sec. 2. To our knowledge, no one1,2 has observed the 
precise conditions (a), (b), (c), and (d) for (3) to be 
valid, or recognized that the phase representation has 

* Work supported by the National Science Foundation and in 
part by the U. S. Air Force and the U. S. Atomic Energy Com
mission. 

1 See, for example, the review by J. D. Jackson, in Dispersion 
Relations, edited by G. R. Screaton (Interscience Publishers, Inc., 
New York, 1961), p. 54. 

2 Extensive use of the phase representation has been made re
cently by G. Frye and R. L. Warnock, Phys. Rev. 130, (1963), 
which also gives references to virtually all previous work. 

3 M. Sugawara and A. Tubis, Phys. Rev. Letters 9, 355 (1962). 

the simple asymptotic form given by (9). This asymp
totic behavior is used in most of the applications of (3) 
presented in this paper. 

The phase 8(x) is not uniquely defined by (2), es
pecially at those points where fix) vanishes. The phase 
representation is valid, independently of the specific 
definition of 8(x). However, it appears most convenient 
to define 8(x) as follows: 8(x) is zero on the real axis 
where no cuts occur and has no discontinuities greater 
than or equal to x in magnitude. The ± sign in (2) is 
then uniquely defined. We assume the above definition 
throughout this paper. 

We show in Sec. 2 that the discontinuities in 8(x) are 
associated with branch points of the type given by (4) 
and/or (5) and do not cause any zeros or poles in the 
exponential function in (3) except at infinity. Thus, the 
polynomials Pi(z) and Pi{z) in (3) account for all the 
zeros and poles of f(z) except the one at infinity. The 
polynomial Pi{z) is finite because the number of poles 
of f(z) is finite according to the condition (a). The 
polynomial Pi(z) is also finite because the exponential 
function of (3) is bounded by a finite polynomial at 
infinity due to the condition (d). This means that f(z) 
has only a finite number of zeros under the conditions 
(a), (b), (c), and (d) of Sec. 2. 

We prove also in Sec. 2 that the phase representation 
is valid under the conditions (a), (b), (c), and that 
f(z) has only a finite number of zeros. In this case the 
condition (d) is implied by the finite number of zeros of 
f(z). Thus, the condition (d), is essentially equivalent 
to f(z) having a finite number of zeros. 

In Sec. 3, the phase representation is used to prove the 
theorem4 which states that the limit of f(z) at infinity 
is essentially the same in all directions in the z plane 
when f(z) satisfies the conditions (a), (b), (c), and (d). 

In Sec. 4, we refer to the derivation of the high-energy 
behavior of the scattering amplitude by means of the 
phase representation, which was the subject matter of 
our previous note.3 

In Sec. 5, we briefly discuss the phase representation 
4 M. Sugawara and A. Kanazawa, Phys. Rev. 123, 1895 (1961). 

The proof in Sec. 3 was motivated by and was completed in 
collaboration with M. Froissart. 
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in the case of partial-wave amplitudes.2 The details 
regarding the N/D method and the inverse method 
have already been published.5 

In Sec. 6, the phase representation is used to locate 
all the zeros of the forward pion-nucleon scattering 
amplitudes in the entire energy plane. The number of 
zeros of the charge nonexchange amplitude is either 2 
when a i+2#3<0, or 4 when a i + 2 a 3 > 0 , where ar and a3 

are the 5-wave scattering lengths in the channels with 
the total isospin § and f, respectively. In both cases, 
two zeros occur on the imaginary axis and the other two, 
when they appear, on the gap along the real axis. The 
charge exchange amplitude is found to have 11 zeros, 
one of which occurs at the origin because of the odd 
symmetry. 

We conclude this section by making some remarks on 
the connection between the dispersion relation (1) and 
the phase representation (3). First, we note that any 
function which has the phase representation with finite 
5(=boo) satisfies the dispersion relation except for a 
certain number of subtractions. Moreover, since the 
phase representation satisfies the theorem of reference 4, 
the number of necessary subtractions is uniquely deter
mined by the behavior of f(z) as z approaches, say, the 
positive real infinity. This is, in fact, how we usually 
determine the number of subtractions. This general 
practice, therefore, becomes legitimate when we assume 
the phase representation. 

However, the converse of the statement at the be
ginning of the previous paragraph is not necessarily 
correct, because the phase does not have to be bounded 
at infinity when f(z) approaches zero at infinity.6 How
ever, if we add a real constant to f(z), the modified f(z) 
will have a bounded phase and consequently the phase 
representation. 

The major differences between the dispersion relation 
(1) and the phase representation (3) are as follows: 
First, the subtraction is hidden in the phase representa
tion in the sense that (3) does not depend in form on 
how f(z) behaves at infinity, while the subtraction 
affects the expression (1). Secondly, the zeros of f(z) are 
hidden in the dispersion relation, while they are explicit 
in Pi(z) of the phase representation (3). These differ
ences are responsible for the fact that some of the results 
which follow from the phase representation would have 
been very difficult to derive using only the dispersion 
relation. I t is likely that these two representations are 
generally complementary in the sense that one is likely 
to be practically useless when the other turns out to be 

5 M. Sugawara and A. Kanazawa, Phys. Rev. 126, 2251 (1962). 
6 Consider the function f(z) = £exp (1 -j-iy/z) — 1 ~\j (1 -j-iy/z), 

with a cut from 0 to -j- oo along the real axis. This function satis
fies the conditions (a), (b), (c), and approaches zero at infinity in 
all directions, therefore satisfying a no-subtraction dispersion 
relation. However, the phase of f(z) along the cut is not bounded 
at infinity; and therefore, f(z) has no phase representation. Also 
fiz) has an infinite number of zeros, as it should according to our 
argument. The above example is due to M. A. Ruderman (private 
communication). 

very useful. I t seems, however, worthwhile to try to 
exploit both representations to the maximum extent. 

2. PHASE REPRESENTATION 

We show in this section that the phase representation 
(3) is valid under the following conditions: 

(a) f(z) is analytic in z everywhere except for cuts 
which occur on the real axis and a finite number 
of poles, 

(b) f(z) is real in the sense that f*(z) = f(z*), 

(c) f(z) is bounded at (z | = oo by a finite polynominal 
in 0, 

(d) 8(x) has finite limits <5(± oo) as x —> ± GO. 

The proof of (3) in reference 3 applies to the case when 
f(z) is a scattering amplitude, and therefore satisfies, 
besides those conditions listed above, the additional 
ones that 8(x) is continuous in x and 8(x) = — 8(—x) 
because of crossing symmetry. 

We show in this section that these extra conditions 
are, in fact, unnecessary. For this, we show that the 
exponential function in (3), even without these extra 
conditions, continues to have no zeros or poles except at 
infinity and also remains bounded by a finite polynomial 
at infinity. I t is then straightforward to see that the 
proof of reference 3 holds without change. 

The fact that the exponential function in (3) has no 
poles or zeros except at infinity is due to our definition 
of the phase 8(x). According to our definition, the dis
continuities in 8(x) are smaller in magnitude than w. 
Suppose 8(x) has discontinuities of ai at x—x^ i=0, 1, 
2, • • •, along the cut which extends from Xo to + oo, and 
of bj at x=y3-, j=0,1, 2, • • •, along the cut which extends 
from yo to — oo. We may assume without loss of gen
erality that f(z) has only the cuts just mentioned. Let 
us define a continuous phase 8'(x) which is to remain 
zero on the gap, by shifting the phase by constants a^ bj 
at x=Xi, y3; respectively. The exponential function in 
(3) can then be factored into the exponential function 
with the continuous phase 5'(a;) in the integrands and 
factors of the type 

fz r°° didx \ / \xA \ailir 

e x p ( - / — — W , (4) 
\7T J Xi X\X— Z)J \Xi—ZJ 

and/or 
(z ryt —bjdx\ /z—yj\~b3/r 

<L^)'U • <5) 
depending upon the locations of the discontinuities. 
None of these factors have zeros or poles except at 
infinity as long as the discontinuities ai and b0 are smaller 
than x in magnitude. 

We then split the integrals of the exponential function 
in (3) with the continuous phase 8'{x) in the integrands 
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as follows: 

7T \Xo—zJ T \\yo\ ' 

+ - f ( \5'(x)-5'(+™)ldx 
7T J XQ \X—Z X-\-Z/ 

— [ ( )[«'(*)-«'(+»)> 
•K J ,„ \X X+Z/ 

+- [ ( W(-x)-S'(-» )]<**. (6) 

The logarithmic terms in (6) are the integrals with 
5'(x) replaced by <5'(+<x>) and 5'(— oo)? respectively. 
We now combine the last two integrals into a single 
infinite integral and some finite integrals, by shifting 
the lower integration limits. These finite integrals ap
proach finite numbers asymptotically, and the rest of 
(6) is then, precisely of the form of Eq. (2) of reference 3, 
even in the absence of the symmetry of 5(x). Therefore, 
the arguments of reference 3 apply to (6). In particular, 
only when the integral 

/

CO 

{l8/(x)~d\+oo)2-ld,(-x)~8\-oo)2dx/x (7) 

converges, do the integrals in (6) remain finite as 
| z | —> oo. The exponential function in (3) then ap

proaches, as | z | —> oo y a simple power form 

( _ z ) - « ( + o o ) / T ( z ) 8 ( - o o ) / i r ( g ) 

except for a real constant factor. In obtaining (8) we 
have used the identities that 5 (+ oo) = 5'(+ <*> ) + £ « a% 
and 8(— oo) = 5'(— co) — Yljbj. If the integral (7) does 
not converge, (8) is modified by a factor which behaves, 
as | z | —» oo ? only logarithmically. Therefore, we see that 
the exponential function in (3) is bounded by a finite 
polynomial at infinity as long as 8 ( ± oo) are finite.7 We 
note that the discontinuities are completely irrelevant 
in the asymptotic form (8). 

The asymptotic behavior of the phase representation 
(3) is summarized as follows: As |z|—•> oo, (3) ap
proaches a simple power form 

%n~mf ( S ) -5(+oo) / 7 r / , ^5(-oo) /7r fQ\ 

except for a real constant factor, only when the integral 
(7) converges. The integers n and m in (9) are the orders 
of polynomials Pi(z) and P2C3) in (3) and, therefore, the 
total numbers of zeros and poles of f(z), respectively. 

7 It may appear offhand that only S(+ 00)— 5(— 00) need be 
finite, but not necessarily both 8 (±00). However, we assume in 
(6) that both 5 ( ± 00) are finite. Otherwise, we do not know how 
we could prove the boundedness of the exponential function in (3). 
This is why we assume in the condition (d) that both 5(±co) 
are finite. 

If the integral (7) diverges, (9) must be modified by a 
factor which depends only logarithmically on z as 
\z\-*co. 

We prove in the following that the phase representa
tion (3) is valid under the conditions (a), (b), (c), and 
that f(z) has a finite number of zeros. Now, since f(z) 
has finite numbers of zeros and poles, it can be written 
as /(z) = [Pi(z)/P2(*)](Ks), w h e r e Pi(z) and P2(z) are 
finite polynomials and Q(z) has no zeros or poles except 
at infinity. We then observe that ln.Q(z) is analytic in z 
everywhere except for the cuts of f(z) and is bounded by 
a logarithmic function at infinity. Therefore, hiQ(z) 
satisfies a once-subtracted dispersion relation, the spec
tral function of which is 

(l/2i)llnQ(x+ie)-lnQ(x-ie)-] 

1 /Q(x+ie)\ 1 /f(x+ie)\ 
= - l n ( - - H - l n f - - ) = «(*), (10) 

2i \Q(x-ie)J 2i \f(x-ie)/ 

according to our definition of the phase 8(x). This dis
persion relation for ln.Q(z) now represents the exponen
tial function in (3) except for a trivial constant factor. 
Therefore, f(z) satisfies the phase representation (3). 
When f(z) has a finite number of zeros, the exponential 
function in (3) must be bounded by a finite polynomial 
at infinity. This implies7 that 5(db 00) are finite. There
fore, the condition (d) is essentially equivalent to f(z) 
having a finite number of zeros. 

3. THEOREM CONCERNING THE 
LIMIT AT INFINITY 

It was proved4 that a function f(z) which satisfies the 
conditions (a), (b), and (c) of Sec. 2 behaves in a simple 
manner at infinity. If f(z) has finite limits / ( + c o ± e i ) 
as s - ^ + o o ± t e along the cut extending to + ° ° and 
f(z) approaches definite limits8 (not necessarily finite) as 
z—> — 00 zbie when there is the second cut extending to 
— 00, then f(z) approaches at infinity either / ( + 00 -\-ie) 
or / (+°°—ie) in all directions in the upper or lower 
half-plane, respectively. 

The condition that f(z) approaches definite limits8 at 
the end of the second cut is due to the fact that 
f(—co zkie) are treated throughout the proof of refer
ence 4 as definite complex numbers. In order for 
f(— oodbie) to be definite complex numbers, it is neces
sary for the phase 8(x) to have a finite limit 6(— 00) as 
x __> _ 00, unless /(— 00 rfcie) happen to vanish. We can 
avoid the case when /(—oo±ie) and also / ( + G 0 ± i e ) 
happen to vanish, by adding to f(z) an arbitrary real 

8 If these are the finite limits, the theorem becomes that of 
Phragmen and Lindelof; cf. E. C. Titchmarsh, The Theory of 
Functions (Oxford University Press, New York, 1939), 2nd ed., 
p. 176. The term infinite limit is often used in mathematics to mean 
that the inverse has a zero limit, regardless of how the function 
behaves in this limit. It was meant in reference 4 that /(z) ap
proaches definite complex numbers which, however, do not have to be 
finite. These comments are due to M. Froissart (private com
munication). 
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constant. This modification does not affect the condi
tions (a), (b), (c), and also makes the condition (d) 
satisfied. Moreover, if we prove the above theorem for 
this modified function, we then prove the theorem for 
the original function. 

In fact, we can show that the above theorem is valid 
as long as f(z) satisfies the conditions (a), (b), (c), and 
(d), without any further assumption regarding the be
havior of f(z) at the infinite end of the second cut. We 
should remark that the conditions are now weaker than 
those assumed in reference 4. 

The proof of the above version of the theorem is 
quite simple. Since f(z) satisfies the conditions (a), 
(b), (c), and (d), f(z) has the phase representation (3). 
Suppose f(z) approaches finite limits /(+<*> i i e ) as 
z —> + oo ztie. We may assume without loss of generality 
that the limits /(+oo±ie) are not zero. According to 
the argument in Sec. 2, this means that the integral 
(7) converges and also the sum of the powers must 
vanish in the asymptotic form (9) of the phase repre
sentation (3). It is then a simple matter to check that 
the asymptotic form (9) is independent of the phase of 
2, but depends only on whether z goes to infinity in the 
upper or lower half-plane. This completes the proof of 
the above theorem. 

4. HIGH-ENERGY BEHAVIOR OF 
SCATTERING AMPLITUDE 

Consider an elastic scattering amplitude A(s,t) as a 
function of s, the invariant total-energy squared, and t, 
the invariant momentum-transfer squared. According to 
Mandelstam, A (syt) is analytic in s, in a region of t near 
t=0, in the sense that the conditions (a), (b), and (c) of 
Sec. 2 are satisfied. The optical theorem implies that the 
condition (d) is also satisfied for A(s,t) in a region of t 
near /=0. Thus, A(s,t) has a phase representation (3). 
The asymptotic form (9) must, therefore, be the high-
energy behavior of A(s,t) in a region of t near /=0. The 
details of pion-pion and pion-nucleon scattering ampli
tudes have already been published.3 

We add a few remarks. Our derivation of this power 
form of s for A (s,t) when s —> oo, strongly suggests that 
the power behavior is actually the case in all elastic 
scattering, since the condition that the integral (7) con
verges is sufficiently weak. An interesting point here is 
that the power behavior itself does not necessarily 
imply any specific assumptions in the complex angular-
momentum plane, but is more or less a direct conse
quence of the usual analyticity assumption. Another re
mark is that the dependence of the power of s on t in 
this power behavior is a separate question which requires 
further investigation,9 because we have exploited in our 
derivation the analyticity of A(s,t) in $, but not the 
one in /. 

9 This question has been extensively discussed by Y. Nambu 
and M. Sugawara (to be published), which includes the two-
dimensional generalization of the phase representation (3). 

5. PARTIAL-WAVE AMPLITUDES 

Suppose f(z) is a partial-wave amplitude. Then the 
phase 8(x) along the physical cut is by definition the real 
part of the physical phase shift of this partial-wave 
amplitude. This is why the phase representaion (3) has 
been discussed1 and used2 by many authors in connec
tion with partial-wave amplitudes. 

We note here that the N/D representation is nothing 
but the phase representation (3) in which the exponential 
function is split into two factors, one involving the 
integral along the physical cut and the other including 
the other integrals. The inverse of the former factor is 
the D function, while the latter is the N function, aside 
from a trivial ambiguity in assigning the polynomials 
in (3) to D or N. 

We add the following remarks. First, the N/D repre
sentation is always possible as long as f(z) satisfies the 
conditions (a), (b), (c), and (d) of Sec. 2. Conversely, 
the phase representation (3) exists when the N/D repre
sentation exists because the latter requires that 5(± oo) 
are finite individually. Secondly, the N/D representa
tion is unique except for finite polynomials, whose orders 
are also uniquely defined if the numbers of zeros and 
poles are given. Finally, both D and N functions satisfy 
dispersion relations the numbers of subtractions being 
uniquely determined by 5(±oo) and the numbers of 
zeros and poles. In other words, the zeros of these func
tions can be determined by <5(± oo ) and the dispersion 
relations which include the information regarding the 
subtractions and the poles. The details of how to deter
mine the zeros of the D function and also of the inverse 
function are discussed in reference 5. 

6. ZEROS OF FORWARD PION-NUCLEON 
SCATTERING AMPLITUDES 

The phase representation is used in this section to 
locate all the zeros of the forward pion-nucleon scatter
ing amplitudes. This is possible because the asymptotic 
form (9) implies that n is determined if we know 5(db oo) 
and the dispersion relation which involves m and the 
over-all asymptotic behavior. 

Let T±(co) be the + or — combination of the forward 
pw~ and pw+ amplitudes as functions of co, the lab inci
dent pion energy. We normalize T±(cc) in such a way 
that 

Imr±(a)) = fe/2)[«rpir-(«)d=(7pir+(«)l (H) 

where <rpir* (co) are the total cross sections for pirT colli
sions and g is the lab incident pion momentum. It then 
follows that 

T+(/u) = 47r[l + (Ae/Ar)](a1+2a3)/3, (12) 

r_G0 = 4TT[1+fo/JO](ai- *8)/3, 

where M and \i are the nucleon and pion masses, re
spectively, and a\ and a3 are the S-wave scattering 
lengths in the channels with the total isospin \ and f, 
respectively. 
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I t is known that T±(u>) are analytic in co in the sense 
that the conditions (a), (b), and (c) of Sec. 2 are satisfied. 
The singularities are the two cuts, ±/x to ± oo, and the 
two poles at zhfx2/2M, Crossing symmetry T±*(a>) 
= dtr±(—co), expressed for real co approached from 
above the real axis, implies that the phases satisfy 
d±(o)) = — d±(—co). Because of the optical theorem (11), 
5+(co) is bounded between 0 and IT in magnitude, but 
5_(co) does not have to be bounded because &_(co) is 
allowed to increase its magnitude whenever o-pT~(u>) 
— arpir

+(o)) vanishes. In fact, this difference of the cross 
sections is known to vanish 4 times up to the highest 
available energy. However, it would be extremely un
likely that this difference vanishes an infinite number of 
times as co - ^ co. As a matter of fact, the experimental 
data suggest strongly that the difference in question no 
longer vanishes beyond the highest presently available 
energy. Therefore, we assume that 5_(co) is also bounded 
at co = co. This means that the condition (d) is satisfied 
for both ^(co) and, therefore, both T^co) have the phase 
representation (3). 

The limit tV(°°) is ±71-/2 if we assume that T+(u) 
becomes pure imaginary as co —» co. The sign ± depends 
upon the sign of TV(JU) and, therefore, of ai+2a3

1 0 ac-
according to (12). The limit 5_(°°) may be inferred from 
the numerical work of Hohler and Ebel.11 They com
puted Rer_(co) using the unsubtracted dispersion rela
tion for T_(co) and then plotted the complex vector 
JT_(CO) in the ImT_(co) versus RejP_(co) plane as a func
tion of co up to 1.8 BeV. Their drawing clearly indicates 
that 5_(co) keeps on increasing whenever ImT_(co) 
vanishes. This means that 5_(co) should lie between 47r 
and 5T, provided that ImjT_(co) no longer vanishes 
beyond co=1.8 BeV. Their drawing, in fact, suggests 
thatS_(co) = 47r+7r/2. 

I t is by now established that 2+(co) satisfies a once-
subtracted dispersion relation, while r_(co) an unsub
tracted one. These dispersion relations are consistent 
with the boundary conditions4 

r+(co)/co, T_(co) —> finite limits. (13) 
0)->oo 

These boundary conditions should now be compared 
with the asymptotic form (9). By setting the corre-

10 (<Zi-f-2<z3)/3 is +0.0013, according to J. Hamilton and W. S. 
Woolcock, Phys. Rev. 118, 291 (1960), but -0.0027±0.0023, 
according to W. S. Woolcock, in Proceedings of the Aix-en-Provence 
International Conference on Elementary Particles, 1961 (Centre 
d'Etudes Nucleaires de Saclay, Seine et Oise, 1961), Vol. 1, p. 459. 

11 G. Hohler and G. Ebel (unpublished), Institute for Theo
retical Nuclear Physics, Institute of Technology Karlsruhe, 
Germany (1962). 

sponding powers equal, we obtain, since m=2, 

rc+=3+2cV(oo)/7r. (14) 

^_==2 + 25_(00)/7T, 

where n+ and n- are the total numbers of zeros of T±(oo). 
We should add here that n+ and ti-., are respectively, an 
even and odd integer, corresponding to even and odd 
symmetry of T±(a>). 

I t follows from (14) that n+=2 when 5+(oo) = —TT/2 
and w+=4 when 5+(OO) = TT/2. Since ti-. must be an odd 
integer, (14) now requires that 5_(oo) = 47r+7r/2 when 
5_(oo) is somewhere between 4T and 5w. Then (14) 
determines n- to be 11. 

A simple numerical check on the once-subtracted 
dispersion relation indicates that J T + ( 0 ) > 0 . I t then 
follows that 7V(co) must have at least two zeros on the 
imaginary axis and at least two more zeros on the gap if 
?V(M) :>0 . In summary, T+(co) has two zeros on the 
imaginary axis if a i+2a3<0 , it has two zeros on the 
imaginary axis and two more zeros on the gap if 
<zH-2a3>0.12 

We now consider the 11 zeros of T_(co). One of them 
occurs at co = 0 because of the odd symmetry of r_(co). 
Since the complex zeros must occur in pairs of 4, there 
could be up to two sets of complex zeros and at least one 
pair of imaginary zeros. Since we have found the total 
number of zeros, it is now possible to find their locations 
from the unsubtracted dispersion relation. 

Our final remark concerns the significance of the limit 
5_(oo) = 47r+7r/2. This means that r_(co) also becomes 
pure imaginary in the limit of infinite energy. This is 
not at all trivial because T_(co) is the charge exchange 
scattering amplitude. Since both finite limits in (13) 
must be pure imaginary because of crossing symmetry 
of r±(co)4, it is now likely that the finite limits in (13) 
are nonzero limits. This means that av^co) approach 
nonzero finite limits as co—> oo? and also that crp7r-(co) 
— o':p7r

+(co) approaches zero like 1/co as co —> <*>. The above 
behavior of this difference is not at all trivial. 
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