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It is shown that, in the sense of certain procedures for successively approximating the quantum Liouville 
equation, the Boltzmann-Vlasov-Maxwell equations for the description of the fully ionized plasma are a 
natural first approximation. The nature of some of the approximations inherent in the use of such a descrip
tion of the plasma is indicated, but little attention is given to their quantitative evaluation. An H theorem 
for the particle-photon system is demonstrated. 

INTRODUCTION 

TH E purpose of this paper is to present, from one 
particular point of view, a summary of some pre

liminary investigations of particle and photon transport 
in fully ionized gases.1-3 The emphasis on a particular 
point of view is not intended to suggest that it is neces
sarily the best vantage point from which to inspect the 
subject, but rather that it is a seemingly simplifying 
and clarifying, and yet so far, a somewhat unexploited 
vantage point. There is, however, one practical con
sideration which militates in favor of the approach to 
the plasma problem discussed below. As will be seen, 
at a certain level of approximation, the kinetic equa
tions emerging naturally from the present treatment are 
the conventional Boltzmann-Vlasov equations for the 
particle distributions and Maxwell's equations for the 
electromagnetic fields. As these equations provide the 
basis for a large proportion of all attempts at a quanti-
tive analysis of plasma behavior, it seems desirable that 
the foundations of these equations be investigated. In 
fact, it is precisely this issue that provides the primary 
motivation for this study. Furthermore, this emphasis 
means that no attempt shall be made herein to review 
the many interesting and varied approaches to this 
problem that have been developed in the past few years.4 

Because recourse to experiment to test semi-intuitive 
models of the plasma is not often feasible, it seems neces
sary at the present time to investigate the validity (or 
range of approximate validity) of such models from 
strictly theoretical considerations. The accomplishment 
of such an objective requires, firstly, a comprehensive 
axiomatic statement of the problem (the axioms being 
reasonably widely agreed upon, of course), followed, 
secondly, by a deduction of descriptions of the plasma 
to which the various models purportedly correspond. 
Needless to say, no such ambitious program has yet 
been achieved. 

1 R. K. Osborn, University of Michigan Radiation Laboratory 
Report 02756-1-T, I960, AF 33 (616)-5585 (unpublished). 

2 R. K. Osborn and E. H. Klevans, Ann. Phys. (N. Y.) 15, 105 
(1961). 

3 R. K. Osborn, IRE Trans. Antennas Propagation 10, 8 (1962). 
Much of the content of the present article appears in this refer
ence in abbreviated form. Furthermore, the present article also 
draws heavily from the University of Michigan Radiation Labora
tory Technical Report No. 2764-8-T prepared by the author. 

4 For a considerable bibliography of investigations of the theory 
of plasmas consult, for example, J. Drummond, Plasma Physics 
(McGraw-Hill Book Company, Inc., New York, 1961). 

The present discussion is restricted to the delineation 
of an approach to the problem of determining the 
validity of Boltzmann-type equations for the descrip
tion of particle and photon balance in the fully ionized 
plasma. I t is admitted at the outset that this approach 
essentially fails with respect to both of the main points 
indicated above. In the first place the selection of 
axioms is hardly universally agreed upon, and in the 
second place the deduction of consequences from the 
chosen axioms is far less rigorous than is desirable. 
Nevertheless, the results seem suggestive and represent 
somewhat of a generalization of the results usually dis
cussed in the context of the present problem. Further
more, though the deductions herein proceed via many 
approximations (none of which have been investigated 
in detail) the steps required for their testing are usually 
discernible. 

The discussion is divided into several sections. Sec
tion I incorporates a statement of the axioms and some 
discussion thereof. Section I I is devoted to an approxi
mate deduction of a balance relation for the particles 
in the plasma and some consideration of Maxwell's 
equations. Section I I I presents a similar development 
of a transport equation for photons. In Sec. IV some of 
the implications of these balance relations for the ther
modynamic state of the plasma are examined. In par
ticular, an H theorem for the particle-photon system 
is sketched. 

I. THE AXIOMS 

The axioms required for the description of systems 
of the type presently under discussion are usually con
sidered to be of two kinds. The first of these is for the 
purpose of specifying the dynamics of the interactions 
between the particles that comprise the plasma, whereas 
the second is for the purpose of introducing statistical 
concepts into a description of a system characterized 
by a huge number of degrees of freedom. The dynamical 
axiom is conveniently expressed in terms of a Hamil-
tonian for the system; from which, according to the 
canonical equations, whether classically or quantum 
mechanically interpreted, all information may be de
duced. Since we are here concerned with electro
dynamics, we may expect that the dynamical axiom 
will be reasonably firm and noncontroversial at least 
within certain self-evident limitations such as, for ex
ample, nonrelativistic treatment of the particles. 
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The statistical axiom is usually introduced via the 
concept of ensembles of systems, in terms of which the 
probability of finding the given system in a given state 
at a given instant can be meaningfully formulated. 
Though usually considered necessary (whether the 
system be dealt with in classical or quantum terms), we 
avoid the explicit introduction of such concepts into the 
present discussion. I t is for this reason that our axioma-
tization of the system may be considered controversial, 
to say the least. Instead, we treat the system quantum 
mechanically and apparently rely solely upon the 
statistical concepts inherent in such a treatment. The 
equivocation is a recognition of the possibility that 
justification of some of the approximations to be in
voked subsequently may require the ensemble concept— 
but such a necessity is not evident at the moment. We 
note that all of the results of the conventional sta
tistical treatments of systems similar to the one con
sidered here are forthcoming from the present analysis. 

The dynamical axiom is stated in terms of an energy 
density for fields of interacting charged particles and 
photons, and the Schrodinger equation for the wave 
function which characterizes the states of such a system. 
The field-theoretic formalism is dictated by the desire 
to deal with photon transport on the same footing as 
one deals with particle transport, and so far there has 
been no indication that this is feasible in either the 
classical or semiclassical context.5 I t has the slight, 
further, formal advantage that the singlet densities 
whose equations we seek can be defined in terms of ex
pectation values. In nondegenerate plasmas it is not 
expected that quantum effects play a significant role 
in the description of particle transport. In view of these 
remarks we have6 

HV = ifid*/dt, (1) 

where 

H= J W(x)d*x (2) 

and 
1 ["/ eff e* \ "1 

3e(x)=-£ I ifw A Ae W 
<r 2nioL\ c c Jj J 

+ r 2 7 r c 2 P 2 + — ( V X A ) 2 ] + X ; eMoH* 
L 8TT J * 

+ E <Px • • . (3) 
*«' 2 J |x—x' | 

In Eq. (3), \(/ff is a wave operator for a field of par
ticles of the o-th kind, Ae and <$ are the vector and scalar 

5 For classical, microscopic treatments of radiation in plasmas, 
see A. Simon and E. Harris, Phys. Fluids 3, 245, 255 (1960). 

6 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com
pany, Inc., New York, 1955), 2nd ed. 

potentials of the "external fields," and A and P are 
the " transverse" magnetic and electric operators for the 
photon held. The external fields are presumed known 
and, hence, are unquantized, whereas the "internal 
fields" are described by operators which satisfy the 
commutation relations 

[ ^ , ( x ) , ^ t ( x 0 ] ± = ; 5 ^ , 5 ( x _ x 0 

and 

[ ^ ( x ) , i M x ) ] -

= ihbjib ( x - x ' ) - ihVjVl V (4) 
\ 4 7 r | x - x / | / 

all other quantities commuting or anticommuting. The 
particle field operators satisfy anticommutation or com
mutation rules depending upon whether they represent 
fermions or bosons. This distinction is expected to be 
of no importance for the nondegenerate plasma, but will 
be maintained for the sake of generality and because it 
introduces no appreciable complication. I t should be 
noted in passing that we are treating all particle field 
operators as scalars and, hence, are introducing an in
consistency in principle whenever anticommutation 
rules are presumed applicable (as, for example, they 
are for the electrons). Such a treatment is hardly 
necessary, but entails so little loss of generality in the 
nonrelativistic treatment of the plasma that it seems 
warranted by the slight calculational simplification 
that it provides. Thus, spin effects will be absent here, 
e.g., forces exerted on electrons due to coupling of 
electron spins with inhomogeneous magnetic fields,7 

and the spin dependence of cross sections for the scatter
ing of identical particles.6 

The so-called statistical axiom for the system is for
mulated in terms of the definitions of singlet densities 
for the particles and photons. Some difficulty (or at 
least deviousness) is to be anticipated here, since the 
classical concept of a distribution function implies 
arbitrarily precise localization of particles in phase 
space. A way out (and the one chosen here, as it has 
been many times elsewhere) is simply to give up the 
notion of "fine-grained meaningfulness" of the singlet 
densities. Alternatively, and somewhat equivalently, 
we may solely require of these singlet densities that 
they be suitable weight functions for the calculation of 
observable averages. 

As an analytical tool for the implementation of the 
notion of a "coarse-grained" density, we shall adopt 
Ono's method of quantization in cells.8,9 Since the 
details of this procedure have been extensively dis
cussed by Ono8 in his study of transport in neutral 

7 E. Ozizmir, Doctoral thesis, University of Michigan, 1962 
(unpublished). 

8 S. Ono^Progr. Theoret. Phys. (Kyoto) 12, 113 (1954). 
9 S. Ono, in Proceedings of the International Symposium on Trans

port Processes in Statistical Mechanics (Interscience Publishers, 
Inc., New York, 1959), p. 229. 
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gases, we shall merely sketch those aspects here which 
are necessary to the present application. 

We introduce a complete set of cell functions defined 
as 

<p(XyK,x) = L-*'2eiK-*E(X,x), (5) 
where 

E(X,x) = n£(Xy,*y) , (6) 

and 

E(Xj,xj)=l, for XJ-L/KXJKXJ+L/2, 

= §, for Xj=Xj±L/2, (7) 

= 0, otherwise. 

Evidently X is a point centered in a cube of volume D, 
and we shall assume that all space has been subdivided 
into a regular, nonoverlapping array of such cubes. The 
variable K is also discretely distributed and is per
mitted the values stemming from the requirement that 
the exponential function be periodic on the boundaries 
of the cube, i.e., 

Kj= lirfij/L, »y = 0, ± 1, • • •. (8) 

An arbitrary, measurable function denned over the 
domain of x may now be represented by a series of 
these functions as 

G(x)=Eg(X)K)^(X,K)x), (9) 
X,K 

where the coefficients in the expansion are determined by 

g(X,K) = fd*x *>*(X,K,x)G(x). (10) 

The function set is orthonormal, 

[i*% ^ * ( X , K , X ) ^ ( X ' , K / , X ) = 5XX'«KK', (11) 

and complete, 

E ^ (X,K j X )^ (X,K, X ' ) = 5 ( X - X ' ) . (12) 
X,K 

Consider the expansion of the field operator, ^ff(x) 
in terms of these functions, i.e., 

*< r (x )=£ < a X , K M X , K , x ) , 
X 'K (13) 

^ ( x ) = L a,t(X,K)P*(X,K,x). 
X,K 

The coefficients, aJ(XyK) and aff(X,K), are the creation 
and destruction operators for particles of kind a having 
momentum fiK in the cube centered at X, respectively. 
They satisfy the usual commutation rules, e.g., 

[a.(X,K),a a t(X / ,K0]±=5xx^KK'. (14) 

The number operator for these particles is given by 

Pa(X,K) = afft(x,KK(X,K). (15) 

We then define a distribution function for particles of 
the o-th kind by 

MX,K,t) = L-°TiPAX,K)D(t), (16) 

where D(t) is the density matrix for the system and 
satisfies the equation 

dD/dt= (i/ti)[D,Hj (17) 

The factor, L~3, was included in the definition of fa so 
that it would have the meaning of a volume average 
of the expected number of particles of kind a having 
momentum ftK in the cube centered at X at time t. 

The distribution function for the photons is defined 
in a wholly analogous fashion.10 Let a\+(X,k) and 
ax(X,k) be the creation and destruction operators for 
photons of polarization A having momentum fik in the 
cube about X. Then 

px(X,K)=ax t(X,K)ax(X,K) (18) 

is the number operator for these photons, and 

/x(X,K,0 = i-3Trpx(X )K)Z?(0 (19) 

is the definition of the corresponding distribution func
tion. Of course, the creation and destruction operators 
for the photons obey boson commutation rules. 

II. BALANCE RELATIONS FOR THE PARTICLES 

Our prime concern in this section shall be for the 
deduction of a Boltzmann-type equation for the par
ticle singlet density defined by Eq. (16). I t is an implica
tion of such an equation that the interactions between 
the particles of interest and the internal and external 
fields be treated in the sense of certain approximations 
in two extreme ways. On the one hand, the particles 
are thought of as being smoothly accelerated by the 
external fields and some suitable portion of the internal 
fields; and the effect of such a description of the inter
actions is to introduce the Vlasov-type terms into the 
equation for the time rate of change for the singlet 
density. The internal fields are dealt with self-con-
sistently in that they are presumed governed by 
Maxwell's equations with internal currents and charge 
densities (calculable from the /</s) as sources. Thus, in 
some sense, this portion of the equation emphasizes 
collective behavior. On the other hand, the particles are 
also thought of as experiencing occasional impulsive 
forces from the remainder of the internal fields. This 
portion of these fields is dealt with in particulate terms 
(they are nearby charged particles in the case of the 
Coulomb field and photons in the case of the transverse 
electromagnetic fields), and the sense of the binary 

10 E. H. Klevans, Doctoral thesis, University of Michigan, 1962 
(unpublished). 
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interaction limit give rise to the collision terms in the 
balance equation for /„.. Thus, this conception of the 
interactions emphasizes individual particle behavior. 
Self-consistency in this latter instance requires knowl
edge of distribution functions for all kinds of particles 
and for the photons. 

Of course, such a subdivision of the interaction is 
artificial; nevertheless, it is intuitively pleasing in that 
it seems to provide a framework within which opposing 
extremes are simultaneously accounted for. I t is hoped 

Here we have divided the vector potential of the in
ternal electromagnetic field into two parts of "fast" 
and "slow" variation respectively, i.e., 

A = A ' + A S (23) 

and then introduced 

R = A S + A e . (24) 

Thus, R is a superposition of that portion of the in
ternal electromagnetic field generated by collective 
particle behavior and the external field. Crudely, As is 
of slow variation in the sense that it does not vary 
appreciably in space over dimensions of order L. The 
electric and magnetic fields associated with R give rise 
to the forces producing smooth accelerations of the 
particles under observation, whereas A ' is the part of 
the internal field to be treated as a photon field. The 
terms in the Hamiltonian representing the kinetic and 
Coulomb energies of the particles have been expanded 

that the description is adequate between the extremes 
as well. Certainly the expenditure of a great deal of 
effort in the past several years has been predicated 
upon that hope. I t is for this reason that the present 
viewpoint is being explored, i.e., the present approach 
to the problem lends itself naturally to the conception 
of self-consistent fields vs collisions at a certain order 
of approximation in the description of the singlet 
densities. To accommodate this notion, we display the 
Hamiltonian as 

into the basis vectors (5) and pieces assigned variously 
to Tp and Vp. The clue to the assignment lies in the 
fact that Tp is intended (in lowest order) to describe 
temporal variations of the density due to transport and 
smooth forces whereas Vp is intended to describe the 
influence of collisions. Thus, R appears mainly in Tp 

as does that part of the Coulomb energy arising from 
the Coulomb interactions between particles in a given 
cell with other particles outside that cell. Conversely, 
Af appears mainly in Vp along with the Coulomb 
energy associated with particles in the same cell. Note 
that that part of the kinetic energy which is propor
tional to p<r(X,K) is incorporated into Vp. This is be
cause in the present treatment these terms give rise to 
no time variation of fa but rather define the energies of 
the states between which particles jump during collisions. 

A word of caution here. No attempt should be made 
to give a physical interpretation to the various terms 
arising from the expansion of parts of the Hamiltonian 

H=Tp+Vp, (20) 
where 

ft2 r 
Tp=L~* £ a.+ (X,KK(X' ,K ' ) / i%% e*-<*'"*> 

crXKX'K' 2ma J 

X p £ ( X , , x ) K / - v £ ( X , x ) - ^ ( X , x ) K - v £ ( X ' , x ) + v £ ( X , x ) - v £ ( X ' , x ) ] 

ifiea 

+E [d*x R - i M v i M - i ; - ^ — [d*x R2^J^+i: eff l&xfy.ty, 
J c 2mac

2J * J 

+Z— Y. E a f f
t ( X , K ) a „ ( X , K ' " ) ^ t ( X ' , K ' ) ^ ( X ' , K " ) / ' - ^ - ^ - ^ ( X , K ; x ) ¥ 3 ( X , K ' " , x ) 

GO' 2 K K ' K ' T " XX';X+X' J [ X — x ' | 

X**(X',K' ,x)*(X' ,K",x ') , (21) 
and 

fi2K2 ifie C e2 C 
F P = E E • P , ( X , K ) + E — / <Px A ' - ^ + v i M - i : -JL- / <Px (A'- R + R - A W * , 

" X ,K 2m, " m„cJ « 2mj?J 

+2Z - ^ — [<Px A'- A ' M M - / d*x | 2xc 2 P 2 H—(VX A ) 2 | 
o- 2mcc

iJ J L 8TT J 

p p i c d°oc d oc* 
+ £ — E a , t (X,K)<vt(X,K')<v(X,K"K(X,K'") / v * ( X , R » * ( X , K " ' , x ) 

<rc' 2 X K K ' K " K ' " J | x — x ' | 
X?*(X,K' ,x ' )?(X,K",x ' ) . (22) 
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in terms of the cell functions. This expansion should be 
regarded as a purely formal procedure employed solely 
for the purpose of facilitating subsequent calculations. 

Now consider 

/ , ( X , K, t+s) = L-*TrP(r(XJK)D(t+s), (25) 

where ' V is some small, but finite (thus, we are 
"coarse-graining" in time also) time interval. The 
bounds on this time interval will be at least partially 
illuminated below, but at the moment we may surmise 
that it is small compared to the time required for a 
typical particle described by fa to cross a cell and large 
compared to collision times. By virtue of Eq. (17) we 
have 

D(t+s)=U(s)D(t)W(s), (26) 

where U is a unitary transformation defined by the 
equation 

ifidU/dt=HU (27) 

and the boundary condition, 

U(0) = I. (28) 

In line with the above remarks on the separation of the 
temporal variation of fa into parts arising from col
lective and individual particle behavior, we set 

tf=rr, (29) 
where f is defined by 

im/dt=Tn, f(0) = / . (30) 

Then according to (27) 

ifidT/dt=pVp{T 

and according to (28), 

r (0) = 7 (32) 

also. Both f and T are unitary. Equation (25) may now 
be written as 

f.(X,K,t+s) 
= L~* Trp(s)p9(X,K)Us)T(s)D(t)Ti(s). (33) 

If the external fields were not time-dependent we 
would have 

S(s)=e-iaTpi*. (34) 

Since, in general, they are, the solution (34) is only 
approximate, but will be a good approximation if they 
do not vary appreciably over time intervals of the order 
of "s." That this is the case will be assumed in the 
following. The factor ffp<rf is expanded in a power 
series in ' V and only the zeroth- and first-order terms 
retained, yielding 

f.(X,K,t+s) 
~ L ~ 3 Tr(W*)lTpMX,K)lT(s)D(t)Ti(s) + ( 

+L-» TrPff(X,K)T(s)D(t)THs). (35) 

Because of (32), the first term on the right-hand side 
may be further approximated by neglecting the s de

pendence of F. We then have 

/„(X, K, t+s)-Ir* T r ( « / f t ) [ r * p,(X,K)]Z>(0 
~ L - 3 TrPff(XJK)T(s)D(t)T^(s). (36) 

In a representation which diagonalizes the operator 
Pa, the right-hand side of Eq. (36) becomes 

Ir* TrpJOT1" 

= L~z X) P<mn | V nnr \ 2Dnn>+ (terms proportional 
nn' 

to off-diagonal elements of D). (37) 

We will ignore the contribution of the terms involving 
the off-diagonal elements of the density matrix. In such 
an event Eq. (37) becomes 

L~3 T rpJOTt—L- 3 £ w p , n n |T n n \*D n n 

P<rnn \ A nn' | * I W , (38) 
nn' 

where the prime on the sum symbol implies that terms 
for which nr = n are to be omitted from the sum. By 
virtue of the unitarity of V we have 

11 nn I ~ 1 2s n' \*-n'n\ > iy^) 

so that (38) may again be rewritten as 

L~ 3 TrpJ7) r t~ / f f (X ,K,0 

+ £~ 3 Z(p*n>n>-P<rnn) \ Tnn'\*Dnn. (40) 

/^ j \ Entering (40) into (36) and dividing by s, we obtain 

/,(X,K,^)-/.(X,K,0 i 
L -8 T r - [ r ^ , p , ( X , K ) p ( 0 

s fi 

'^•L* 2s\P<rn'nr 

nn' 
~Pann) •*• n'n^nn^ v**-) 

where we have defined 

-* n'n^^ \)-l$) I A n'n j • (42) 

The evaluation to be presented here of the com
mutator in Eq. (41) is quite straightforward, though 
tedious and subject to several approximations. Hence, 
we shall merely give the result and discuss the approxi
mations. With the identification of the first term on the 
left-hand side of (41) as the partial time derivative of 
the density, we obtain 

df, fPi e9 \dj. 

dt \ma mac /dXj 

d(Rt) e2 d(R)2 8$ dv \dfa ny d<$> dv \dj<r 
6a Co I" 

0 dXj dXj/dPj \mac SXj 2mac
2 dXj 

~L 2s\Pon'n' PannJin'nDnn. (43) 
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Here we have introduced the momentum, I*=nK and (43) equal to zero. Finally, we have further approxi-
the symbol, v, to represent the electrostatic potential in mated here by the assumption that the fields, R, <3>, and 
the cell about X due to all charged particles outside of v are all sufficiently slowly varying in space that within 
that cell, i.e., a given cell they may be Taylor expanded about the 

center of the cell and only the first two terms retained. 
f d x 'Pkig a s s u m p t i o n has also been made with respect to 

" ( ) = ?eVh^Xi[ ( ' X ) ] the density itself. 
XTn£ *(x)\l/ (x)D (44) ^ e r eduction of the right-hand side of Eq. (43) to 

more or less familiar terms requires first of all a calcula-
Because of the gradients appearing in the expression tion of the elements of the matrix, T. The analysis re-
for Tp, one finds contributions to Eq. (43) which are quired to this end is summarized in Eqs. (42), (32), 
roughly interpretable as describing a flow of particles (31), (22), and (21). A desirable first step is the re-
between cells accompanied by momentum changes writing of Eq. (22) in more immediately useful and 
which are independent of the forces acting on the par- directly interpretable terms. Introducing the decom-
ticles. More accurately, these terms arise as a conse- position, F=Pf+Ps, and the expansions, 
quence of the localization of the particles in regions of 
dimension L, which introduces an uncertainty in their Af v^ / Trne\ ^ / V 1 \ y +/v i \ SAZ\ 
momentum of order n/L. These terms have been lg- X k X \ £ / 
nored, and, therefore, Eq. (43) is valid only for those 
densities representing particles with momenta large V-i^f—) ^(X,k> X)Cx-(X,k), (45b) 
compared to n/L, i.e., particles with De Broglie wave- xkx\87rc/ 
lengths small compared to L. Another approximation 
implicit in Eq. (43) is the replacement of products of one finds that after considerable rearrangement (22) 
averages by averages of products. This approximation is becomes 
standard in the derivation of the Vlasov equation, which Vp = 8+ T^+ Vc+ £T+S+ 9C, (46) 
indeed is what we have if we set the right-hand side of where 

nek rfi2K2 irhe2 i 2^ 
8= E — + E *dfepx(X,k)+ E + E — 

* 

2 

xkx 2 xk\ «rXKL2w(r xk macLzkA o-xxk mffe
2k2Ld 

nc 

P „(X,K)+ E {nek) p,(X)Px(X,k), (47a) 

'c r 
—J d*x ^(X )k,x)¥ 5(X',k '>x){CA(X,x)X<x+(X )k)]-Ck'XCv+(X', - k ' ) ] 

xkxx'k'x' 4(kk'y 

- C k X < x + ( X , k ) H A ( X ' , x ) X < x ' + ( X ' , -k ' ) ]+ [A(X, X )X?x + (X ,k ) ] -CA(X ' ,x )XCv + (X ' , - k ' ) ] } , (47b) 

F c = L E !±^ , t (X,K)a^ t (X,K ' )a . ' (X > K")« , (X,K '" ) 
(rcr'X K K ' K " K ' " 2 

^cPxcPx1 

/

ft X (L X 

- ^ (X ,K , x ) ^ (X ,K ' , x ' ) ^ (X ) K" ,x ' ) ^ (X ) K" ' ) x) , (47c) 
x— x' 

ne (2whc)1/2 

* = - E — K ' - C x + ( X , k K t ( X , K ) a , ( X , K 0 5 ( K ' - K - k ) , (47d) 
<rxxkKK' mackll2L%12 

irnc 2 

S= E E '- Cx+(X,k)-Cv+(X, - k O a / ( X , k ) a , ( X , k ' ) « ( K ' - K - k + k ' ) , (47e) 
crXVX kk'KK';k=t=k' m<rCL?(kk')m 

irflB 2 

X= £ - ex (k ) - ex ( -k ) [ ax t (X ,k )a x t (X , - k ) + a x ( X , - k ) a x ( X , k ) > , ( X ) 
aXkx m„ckLz 

i1ie,{2Trtic)lli 

a/(X,K)a,(X,K')Cx+(X,k)- ftPx A(X,x)e*-<*'-*-» + Z 
»xxkKK' m,ckmLm 

+ 1 — fdhe ( A ' - R + R - A O M M - fer27rc2{P/-Ps+Ps-P/+(P5)2} 
<r 2mac

2J 

+ — { ( V X A 0 - ( V X A « ) + ( V X A S ) - ( V X A 0 + ( V X A S ) 2 } 1. (47f) 
8TT J 
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In these expressions we have introduced 

<x ± (X > k)=ax t (X ,k )«x(k )±ox(X J -k )e x ( -k ) , (48a) 

„„(X)=EP.(X,K), (48b) 
K 

and 

Ai(X,x) = 2 [ 5 f e - X i + J L ) - 5 f e - X i - i L ) ] . (48c) 

The z\$ are the unit, orthogonal polarization vectors 
of the photon field. 

The first term in the decompositon of Vp consists of 
the infinite zero-point energy of the photon field (which 
will henceforth be ignored), the energy of the photons 
which is proportional to the photon density only, the 
energy of the particles (including a self-energy due to 
interaction with the radiation field which will also be 
ignored) which is proportional to the particle density 
only, and an energy proportional to both the particle 
and photon densities—but only the spatial density of 
the particles. This last term is perhaps most conveni
ently incorporated into the energy of the "free" photons 
with consequences to be touched on later and discussed 
elsewhere.2,10 In the calculation of the right-hand side 
of Eq. (43) we shall employ a representation which 
diagonalizes the particle and photon densities; thus, the 
term S in Vp defines the energies of the states between 
which particles undergo transitions during collisions. 
The second term in Vp (i.e., Ty) consists of that part 
of the energy of the photon field which is associated 
with photon flow between cells as will be seen in a later 
section. The term Vc describes the Coulomb inter
action between charged particles in the same cell. 
One-photon emission and absorption processes are ac-

where C, 5 , Te, and Ta are essentially the transition 
probabilities per unit time per unit volume for elastic 
charged particle scattering, the scattering of charged 
particles by photons, the scattering of charged particles 
with photon emissions, and scattering with photon 
absorption, respectively. The latter two processes have 
been somewhat specialized in that we have accounted 
only for photon emission and absorption by electrons 

counted for by the term 3, whereas the term $ figures 
in the calculation of photon-particle scattering. The 
last term (9C) consists of the remainder of Vp, and to 
the level of approximation to be considered herein will 
be ignored henceforth. 

If, in Eq. (31), we set f = / and in accordance with 
the above remarks ignore the terms in Vp which contain 
the explicitly time-dependent external fields, we find 
that 

T(s) = e-isVP!\ (49) 

The effect of these approximations is to remove en
vironmental influences upon closely associated particles 
during intervals in which their interaction is to be 
described in terms of collisions, and, in the present 
discussion, we will accept the approximations inherent 
in (49). 

In such an event, the transition probability per unit 
time (42) is conveniently approximated by 

r „ / ^ ( 2 V * ) « ( ^ - £ » ) j | F n ' n < 7 | ? + | S n ' » | 2 

*Jn'n"* n"n I v n'n" <Jnffn\ 

+ Z . (50) 
U" En—En» | j 

Abbreviating the left-hand side of Eq. (43) as Lafa, 
one finds after considerable manipulation that 

when the electrons are scattered by ions. This specializa
tion is not necessary but was made to simplify the 
balance relation. Actually these inelastic processes make 
a negligible contribution to the balance relations for the 
particles when compared to the elastic scattering, but 
were at least partially included to enable the develop
ment of a subsequent H theorem for the system of 
particles plus photons. The transition probabilities 

crK.cr'Ki 
L(Tf<T(X,K,t)= 2 CcrK2,c7'K3 S [^'XK3^<rXK2(l=l=:^<rXK:) ( l ± ^ < r ' X K i ) — ^ ' X K I ^ < T X K ( 1 ± ^ < T X K 2 ) ( l ± ^ ' X K 3 ) P n W 

cr'KiK2K3 ' n 

K,Xk 
+ S ^Ki.X'k ' 2 [^<rXKi^X'Xk'( l=b^<rXK)(l + ^ \ X k ) — ̂ <rXK^XXk(ldz^ f fXKi) ( l + ^ X ' X k O ] A * n 

KiXkX'k' n 

<rK,<r'Ki <rK,<r'Ki 
+ E (i-*«0{[ E (i+»xXk)r.(Xk,ffK'),r,.,'K,+»xxkr.(Xk,<rKO,KI.,.Kj 

(r'KiKzKan XkK' 
(either a or a' =e) 

(rK2,o-/K3 

X [ ( l — ^ < r X K ) ( l ± ^ < r ' X K i > < r X K # < r ' X K 3 ] - [ E ( l + ^ X X k ^ ^ A k ^ K O ^ K ^ ' K i 
XkK' 

ffK2,0'/K3 
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represented by C and S are symmetric, i.e., t ides in final states to be significant in the nondegener-
<rK,<7'K3 <rKi,<r'K2

 a t e plasma (a system in which the number of available 
C<rKi a'K2

==^<rK o-'K3 > states greatly exceeds the number of particles). 
- - - (52) 

The direct, formal evaluation of the occupation 
K,\k Ki.X'k' . i - i 

5 K x'k'=='5,KXk > number sums appearing in (51) leads to the introduc
tion of higher order densities (higher order than the 

whereas the photon emission and absorption transition singlet density, e.g., doublet, triplet, and quartet 
probabilities are related by densities) into the balance relation. To circumvent this 

(rK.a'Ki complication at this point, we resort again to the ap-
X, TQ(XK}aK/)ffK2asK, — Ta(X^\(TK,a/Ki')(TK2,(T,Kz) proximation of replacing averages of products by 

products of averages—bearing in mind tha t the average 
= y T (\k Kr)aK2,(T'Kz °^ a n U(TXK ( o r a n ^*Xk) w i t h respect to the density 

K, e ' ^^K.a'Ki matrix D is just the singlet density for particles of 
— T OJd K 'K * K fK) (W) ^nc^ a n a v m 8 momentum fiK (or for photons of po-

2' 3 ' ' 1 ' larization A and momentum fik) multiplied by the cell 
The choice of sign in the factors ( 1 ± » ) depends upon volume, L3. If we further assume that the wavelengths 
whether the particles whose number is represented by of the particles and photons described by the various 
n are bosons or fermions. These factors appear in our distribution functions are very small compared to Z, 
balance relation because of the dependence of reaction we may go to the continuum in momentum space ae
rates upon the densities of particles or photons in the cording to 
final states. In particular, if the particles are fermions ^ fa(XJK,t) = Fff(XyKJt)d"K=Fa(X,F,t)d"P (54) 
(e.g., electrons) so that the factors are of the form K^&K 
(\ — n) and the only allowed values of n are 0 and 1, 
we see that transitions to occupied states are forbidden an(* ^ ,„ , . , y , A , , , 0 

as must be the case because of the exclusion principle. ^^M^k,t) -1< ^XXVdkdil 
However, as indicated earlier, we should not expect this 
dependence of reaction rates upon the density of par- We then find that Eq. (51) may be written as 
L'F,(X,P,0 = E f d*P!d'P*l*Pz C(<rP2><r'P8; (rP,or'Pi) 

a' ./P1P2P3 

X{F<r(X,P2,0i?,'(X)P3,0C(2^)-3±F,(X,P,/)]C(2^)-3±^'(X)P1)0] 
-^(X)P,0F,'(X,P1,0C(27r^)-8±F,(X,P2,0]C(2^)-8d=F(,-(X,P3)0]} 

+ E f d*PdkdOdVd& 5,(PiA'k'; P\k) - E f i 
XX' J P i , k , k ' 

X{F,(X,P1,0Fx-(X,k')0C(2^)-3±^,(X,P1,0][ft'2(27r)-8+Fv(X,k',0]} 

+ E (l-Sw)/" fflPid'P&Ptl [ dkda {\p(2T)r*+Fx(Z,k,t)] 
<r'X 7PlP2P3 L J k 

(either a or a' —e) 

X2,.(Xk|<rP^'Pi;<rP^'P,)+Fx(X>k>0r„(Xk|(rP>ff'Pi;<rP,,<r'P,)}{[(2«ft)-»-F„(X,P,0] 

x [ ( 2 ^ ) - 3 ± ^ ( X , P 1 , 0 ] ^ ( X , P 2 , 0 ^ ( X , P 3 , 0 } - / ' ^ n 

X {[*J(2x)-H-Fx(X,k>*)]2,.(XkI <rP2)(/P3; «rP,«r'Pi)+i'x(X,k,Or.(Xk | <rP,,<r'P,; crP^'PO} 

X{[(2»*)-»-i?,(X,P%0]C(2ir*)-»±F..(X>P,>0]F,(X,P,0F.>(X>Pi>0> |. (55) } 
The transition probability for particle-photon scattering makes the approximation 
is given by r 
$ . < ? * ' * ; PXk) 2 2 2 L->jd*Xe-*-W"+K'-K">E(X,x) 

= ( 2 * W — \ — |ex(k)-ev(k')|2 / ^ ,r 

\mJkV X —£(X,x+R)e-«-<K'-K») 
X 8 ( £ p + £ » - £ p , - £ * ' ) « ( P i + * k ' - P - * k ) . (56) ^ K ^ 

The transition probabilities for elastic and inelastic c~5 (K-K ' "+K ' -K" ) / £(X,R)«-*-<K'-*"> 
charged-particle scattering are not so conveniently J K 

expressed in the present instance. However, if one =S(K—K'"+K'—K")^(K'—K"), (57) 

file:///mJkV
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formulas for these probabilities may be exhibited as tions. The charged-particle elastic scattering frequency 
r( v 'P P 'P ^ is not quite conventional in that it does not contain the 

\a 2,0- 3,0" ,<?" l) usual Rutherford cross section because of the restric-
= (27r)4&2(eaev)2l UiV-V^zLb^UiV-P3)|

2
 t i o n s o n t h e integrals indicated in Eq. (57). The same 

X8(Ep+EPl—Ep2—£p3)6(P+Pi—P2— P3), (58a) remark applies to the inelastic scattering frequency 
i (58b) which, if the indicated restriction is removed and 

2̂ c4 a nondegenerate system is assumed, is the usual non-
re(Xk|a-P2,o-/P3; crP,cr/Pi) = (27r^)3 relativistic, Born approximation to the bremsstrahlung 

k frequency. 
2 Finally, it is convenient and conventional to express 

Y( 6e \ (~\\ UCP — P ^I^CP-f-P — P — P — fik) t^ie ^ a n c e relation (55) in terms of the independent 
\m c2/ \fic) X l 3 variable V instead of P. We introduce the velocity 

variable according to the identification 
|P2-£X(k){l»(27r^)3/^(P2+^k)} 

X V= [ P - («,A)<R>]/W (59) 
Effp-jrE(Tfp1—E<T'Pz—E(rp2+fik 

P-ex(k){l-(2**)V?.(P-ftk)) 

Effp2~{- Ea> p3—EC' px—Etrp-i hk 

We further identify the electric and magnetic fields 
responsible for the smooth accelerations of the par
ticles by 

d<£ dv Id 
Xb{Eap+E,,p-Eap-Ea,pz-Eh). (58b) E>= " ^ 7 ^ ~ Jt

{Rj)> ( 6 0 a ) 

The photon-particle scattering frequency consists of the JJ «. VxX (R). (60b) 
Thomson cross section (as is readily demonstrated by 
averaging over photon polarization states) and appro- Recalling the definition of the operator Lc, we find that 
priate energy and momentum-conserving delta func- the balance relation becomes 

dFff dF* ea dF<r ec dFa 
+ V, +—Ej + (VXH), 

dt dXj ma dVj mac dV3-

n u ±F-(v,fF-(v)F-(v,)iy ± F H I U
 ±F-m 

+ E ftPVidkdOdk'dQ'S.CP^'k'; PAkjIVcVOFyCk')! f r r ^ ±F„(V)} j ^ - H - T ^ k ) 

-F.(y)Fx(M)\(—) ± ^ ( V i ) } 1 - + F v ( k ' ) } ] + E ( l - 8 ^ ) [<PVi<PV*PVt 

xl fdkdufl -+i?x(k)jr.(Xk|<rP><r'Pi;ffP,,ff'P,)+i7x(k)r„(XkkP,«r'Pi;<rP,,a'P,)) 

x(,.(V,),.,(v,,{(^),^.(v,}j(^)*±F..(V,,[)-/^ 

x ( j -+Fx(k)J2,.(Xk|irP,,(r'P,;<rP,«r'P1)+Fx(k)ro(Xk|ffPs,<r'P,;irP,ir'Pi)) 

The fields E and H appearing in (61) are a superposition scattering of particles by photons and the inelastic 
of the externally applied and a portion of the internally scattering of particles by particles, and take the classical 
generated electric and magnetic fields. If we ignore the limit of the terms describing the elastic scattering of 
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particles by particles, we find that Eq. (61) is just the 
conventional Boltzmann equation with self-consistent 
fields. However, as developed here, this equation seems 
somewhat hedged by restrictions, which perhaps should 
be reviewed at this point. 

In the present context, these restrictions stem at least 
partially from the seeming necessity for the operations 
of spatial and temporal coarse graining. The operation 
of spatial coarse graining requires that the distribution 
functions for the particles and the fields E and H be 
essentially constant over an appropriately chosen vol
ume V. Thus, given V, this puts an obvious limitation 
on the space rates of change of the fields, whereas given 
the inhomogeneities of the fields, an upper bound on the 
dimensions of V is immediately indicated. Furthermore, 
the distribution functions are expected to represent the 
average number of particles in the volume V (hence, 
the particles must be presumed to be localized within 
V); thus, the least linear dimension of this volume 
must be large compared to the De Broglie wavelength 
of the majority of particles of interest. I t should be 
noted that the collision description of the interaction 
of closely associated particles also requires that 
their De Broglie wavelengths (actually their relative 
De Broglie wavelengths) be small compared to any linear 
measure of V. Thus, rapid field variations require a fine
grained average, whereas systems of low-mean-energy 
particles require a coarse-grained average and in some 
systems these opposing demands may not be met. This 
is unlikely, however, in the fully ionized plasma. A 
serious complication is introduced by the presence of 
strong magnetic fields, even if homogeneous. Evidently, 
in such a circumstance, it is required that the dimensions 
of the quantization volume must be small compared to 
the radius of gyration of the lightest particle of interest 
in the system. Otherwise, the employment of the plane 
wave representation for the particles in V would be 
unsuitable. Finally, the assumption of the localizability 
of photons in the volume of quantization implies that 
its least linear dimension be large compared to the 
wavelengths of such photons. 

The equations governing the behavior of E and H 
remain to be developed in the present context. As they 
represent superpositions of internally generated and ex
ternally applied field, and. as the external fields are 
presumed known, it suffices to consider only the por
tions of E and H which arise from charges and currents 
within the plasma. If we designate these portions by £ 
and 3C, respectively, then by Eq. (44) we have 

d /^3*[l-E(X,x)] 

dX 

) re 

0 * J x - X | 

XTW(x>/v(x)Z)(0, (62) 

field. For the transverse part of this field we have 

1 d 
8jT(x,t)= TrA-(x)D(t)J (63) 

C dt 

whereas for the self-consistent magnetic field, we have 

3e i(x,0 = Tr{vXA«(x)}/D(0. (64) 

Evidently 5C is divergenceless; and furthermore, from 
(63), it is seen that 

I d 
V X £ T = -Tr{vXA s}£> 

cdt 

l d 
= 3C. 

c dt 
(65) 

The relations (63), (64), and (65) are essentially iden
tities and enable the calculation of the transverse part 
of the self-consistent electric field given the correspond
ing magnetic field. However, the equation relating the 
fields to the currents in the system does not emerge so 
readily. The difficulty here seems to stem from the 
necessity of calculating explicitly operators represent
ing the time derivatives of As, i.e., of calculating com
mutators of As with the Hamiltonian. But such calcula
tions have here been complicated by the fact that A8 

represents only the "low-frequency" part of the vector 
potential generated by charges and currents in the 
plasma. A semi-intuitive circumvention of this difficulty 
is accomplished by considering an equation satisfied by 
the exact fields in the plasma, i.e., the fields which have 
not been decomposed into parts of the "fast" and "slow" 
variation. Labeling these "complete" fields by £' and 
3C' one finds (as shown elsewhere)1 that they satisfy 
the equation, 

1 d 4TT 
VX3C' £' = — TrJ 0 pP, 

c dt c 
(66) 

where 

Jop 2L 
'ifiea 

•2m„ mac } -Atf.ty, . (67) 

This is the anticipated relation between the exact 
fields and the exact currents in the plasma. However, 
it is desirable to translate the above description of the 
current to the conventional macroscopic description of 
plasma currents, i.e., 

?-/ YFjPV. (68) 

This is readily accomplished, for 

/YP--<A>WP 
<r J * mff, 

for the longitudinal part of the self-consistent electric 
= £ — / W 3 K - X ; — <A><*.ty.>, (69) 

o maJ a mgc 
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where here of course, A is interpreted as the total vector 
potential in the plasma. A little calculation reveals that 
the first term on the right-hand side of Eq. (69) is the 
same as the average of the first term on the right-hand 
side of Eq. (67); so that 

•ir J0piy== \ J0p/==: Jmacro 

+Z—C(A)(^V.)-(A^V.)]. (70) 
cr mac 

Entering this relation into Eq. (66), and decomposing 
8' and JC' into parts of "fast" and "slow" variation we 
obtain 

1 d 
VX3C £-

cdt 

4TT 1 d 
— Jmaoro+VXSe' & 

c c dt 

4TT e 2 

— Z —[<A'><*,ty,>-<A'*.ty,>]=0. 
c o mac 

(71) 

Note that Af only enters into the "correlation term" 
in (71), since we have already employed assumptions 
equivalent to the statement that 

<A')<*,ty,)-(AV,ty.> = 0. (72) 

I t is at least intuitively reasonable to argue at this 
point that the macroscopic current Jmacro contributes 
only to the slowly varying fields 8 and GfC, whereas the 
"correlation current" contributes only to the rapidly 
varying component of the internal fields. The latter, 
however, have already presumably been adequately 
accounted for in terms of photon distributions; hence, 
the only relevant part of Eq. (71) is 

1 d 
VX3C 8= 

cdt 

4TT 
(73) 

dFx dFx 
t-ctij 

dt dXi 

We now assert that Eqs. (62), (65), and (73) provide 
an appropriate description of the self-consistent fields 
appearing in the particle transport Eq. (61). 

III. THE BALANCE RELATIONS FOR THE 
PHOTON DISTRIBUTIONS 

In order to complete our description of the plasma, 
we require the equations governing the photon dis
tributions, F\. The deduction of these equations for 
nondispersive media treating spatial coarse-graining in 
a semi-intuitive fashion has been detailed elsewhere.2 

Furthermore, a derivation of the photon balance rela
tion in dispersive media employing Ono's method of 
quantization in cells has also been presented.10 Thus, 
here we concern ourselves mainly with a sketch of the 
results for the fully ionized plasma in order to facilitate 
the development of an H theorem in the following 
section. 

The argument here proceeds along lines entirely 
similar to those outlined above for the particles. Bearing 
in mind that it is not Ty [Eq. (47b)3 that governs the 
transport process, we find in analogy to Eq. (41) that 

MX,k,t+s)-MX,k,t) i 

s h 

~ £ ~ 3 Z {p\n>n>-p\nn)Tn'nDnn. (74) 
nn' 

In this expression, 7V» is again suitably approximated 
by Eq. (50), noting that Vn

fnc will be zero for states 
differing in their photon occupation numbers, as is 
indeed the case in the right-hand side of (74). After 
considerable straightforward calculation, the intro
duction of various approximations similar to those 
outlined for the particle case, and making the transi
tion to the continuum-in-momentum space [Eq. (54)^] 
one finds that 

= £ [<PVd*Vidk'd& S,(PiX'k'; P X k ) r ^ ( V i ) F v ( k o | (—) d=^(V) 11 + F x ( k ) 
ax' J L I \2irfiJ J I (2TT)3 

-F- ( W ( t ) l l_.;± F / m a V If*'2 11 (l-««0 f (V-)ilw+F>'<k')!J+5^i,','"i'M'^F: 

xr.(XkkP^P,;.F^P0[{^.R(k)}F.W,(yJ{^),-ftm}{^),
±i-,(T0}] 

fdWdWidW&V, Ta (Xk I <7P2,<7'P3; <rtytjFx (k)F. (Y)F, (VO { ( — ) - F, (V2)} 
(1-S..0 

x O * ^ " ( M } <75> 

file:///2irfiJ
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This equation is substantially the same as the portions 
of Eq. (47) in reference 2 which are relevant to the 
fully ionized plasma, except for the absence here of the 
influence of cyclotron radiation on the photon dis
tribution. This deficiency arises because of the difficulty 
of using anything but momentum states for the par
ticles in the context of the cell quantization procedure. 
Though one surmises that the difficulty could be cir
cumvented (at least in a useful, approximate sense) by 
the employment of arguments similar to those advanced 
in reference 2, the attempt to do so will not be presented 
here. Thus, the issue of developing a consistent treat
ment of particle and photon transport taking account 
of collisions in the presence of strong magnetic fields 
will be left unresolved for the time being. Note also that 
the present discussion takes no account of the dispersive 
effects of the medium on photon transport. These 
effects have been studied extensively in reference 10. 

IV. THERMODYNAMICS OF THE FULLY 
IONIZED PLASMA 

The present description of the plasma is complete, 
irreversible (in the sense of the many and varied ap
proximations that have been introduced into its de
velopment), and consistent. It is complete in the sense 
that we have as many equations as we have unknown 
functions described by them, and these equations in
volve functional parameters (scattering frequencies, 
emission and absorption probabilities, etc.) whose 
analytical representations have been specified. It is ir
reversible in the sense that the whole set is not in
variant under the transformation 

(V,k,H,0->(-V,-k,-H>-0. 
Thus, this description of the plasma should contain 
the important implication that, under certain circum
stances at least, the system progresses irreversibly to a 
unique state referred to as the thermodynamic state; 
and that in that state the system variables assume 
specified forms. It is consistent in the sense that the 
equations explicitly describe the full effect of any given 
interaction upon all distributions to the same level of 

approximation. It was to achieve consistency in this 
sense that led to the inclusion of the effects of inelastic 
charged particle scattering in the particle balance rela
tions. The quantitative significance of these inter
actions for the description of the fully ionized plasma 
is most probably negligible. But to achieve a proper 
qualitative appreciation of the approach to equi
librium, the influence of these kinds of interaction 
between particles and photons on the particle distribu
tions cannot be ignored. 

We now undertake the task of proving an H theorem 
for systems that are not exposed to external fields, that 
have already become spatially homogeneous, that ex
hibit neither internal electric currents nor space charge, 
but that are still temporally varying. To this end we 
define a function S according to11 

S=-KJ: hPV / « F,(V) lnF„(V)±r, lnr, 

=F[r,±F.(V)]ln[r,±F,(V)] 

- / c £ fdkdQ JFx(k) lnFx(k)+rx Inn 

-[rx+Fx(k)]ln[fx+Fx(k)]l . (76) 

It is then readily shown that 

dS 

dt —?/ dWln 
F.(V) 

r.±F.<y) 

dF„ 

dt 

r f Fx(k) IdFx 
- K £ dkdQ\n\ , (77) 

x J lrx+Fx(k)J dt 

In these equations we have introduced, for compactness, 
the symbols, r„— (m<,/2irh)'i and r\—k2/(2ir)z. Employ
ing Eqs. (61) and (75) to eliminate the derivatives of 
the distribution functions in (77), we find 

dS K 
— = — £ d'7d»7ii ,7^»7,C(«rP^P,;«rP,«rP1)[r,±F,(V)][r,±F,(Vi)] 
dt 4 <r=«,i 

X[>„±Fff(V2)Xr,±F,(V8)] In 

| F,(V2)F,(V3) 
X< 

F,(V)F.(Vi) 0„±F„(V2)][>v±F„(V3)] 

[^±F„(V)][^±F,(Vx)] 

F,(V)F.(V0 

F„(V2)F,(V3) 

if 1|>,±F,(V,)3I>,±F,(V,)] Cf.±F,(V)][r.±F,(Vi)]l 2j 

XC(eP,,*P,;6P,«P1)[r.-F.(V)IrJ±F<(Vi)Ir.-F.(Vs)]C»'<±F<(V1)] 

Fe(V)Fi(V1) Cr.-F.(V,)Ir<d=F i(V,)] 1 

dWdWidWidWs 

Xln 
l[/-e-Fe(V)][n±Fi(V1)] Fe(V2)F,(V3) 

11 J. E. Mayer and M. G. Mayer, Statistical Mechanics (John Wiley & Sons, Inc., New York, 1940). 
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X • \-K E dWdWidkdQdk'dQ' 

l n r . - i ? . ( V O I r i ± ^ ( V , ) ] Zr.-F.(V)Jri±Fi<yi)V *™J 

X ^ ( P i X ' k ' ; P X k ) [ r , ± ^ ( V ) ] [ ^ ± ^ ( V 1 ) ] [ r x + J P x ( k ) ] [ r v + F v ( k ' ) ] 

F,(V)Fx(k) [r ,=bF,(Vi)][>v+Fx. (k ' ) ] I Xln 
l C r , ± F , ( V ) I r x + F x ( k ) ] 

F, (Vi)Fv(k ' ) 

F,(Vi)Fx-(k') 

F,(V)F x(k) 
X { : — : • - K £ / dWdWxdW^WzdUQ, 

l [> ,±F, (Vi) ] [>V+Fx. (k ' ) ] |>„:fcF„(V)][>x+Fx(k)] J x j 

Xr . (Xk|cP,*Pi ;cP,>*P,)Cr . -F.(V)]Cr, -=bF i (Vi)][ r . -F. (V J ) ]Cf<±/ ?
i (V,)Irx+Fx(k)] 

F.(V)F<(V!)Fx(k) [ r . - F . ^ I / d r W , ) ] | Xln 
l [ r e - F e ( V ) ] [ r ! + F i ( V 1 ) ] [ r x + F x ( k ) ] F.(V2)F,-(V,) 

F.(V,)F<(V.) 
X 

F.CVOWOFxCk) 

[ r . - F . C V O I n i F ^ V , ) ] [ r . -F . (V)] [>d=F, (Vi ) ] [>x+Fx(k) ] J 
(78) 

In this expression we have assumed a plasma consisting 
of electrons and only one type of ion. The fact that 
electrons are fermions and photons are bosons has been 
accounted for explicitly where suitable, whereas the 
possibility of either kind of ion has been allowed for. 
Maximum use has been made of the symmetries in
herent in the scattering, emission and absorption fre
quencies. The contributions to S arising from the 
scattering of particles by particles are the quantum 
generalization of those presented in the classical de
velopment of an H theorem for the two-component, 
neutral, ideal gas12; and the contributions arising from 
the scattering of particles by photons are the anticipated 
analogs thereof. The remaining terms are contributed 
by processes involving the emission and absorption of 
photons. I t was for the purpose of guaranteeing the 
proper structure of these last contributions to S that 
the effects of inelastic particle scattering were incor
porated into the particle balance relation. Since re—Fe 

^ 0 (the density of Fermions can never exceed the 
density of available states), it is evident that $ ^ 0 
always, and equal to zero only if each and every inte
grand in Eq. (78) separately vanishes. The conclusions 
to be drawn from the vanishing of the several inte
grands can be summarized by consideration of the last 
one. In this instance we require 

In 
F.(V) 

e~Fe(V) 
+ l n 

= ln 

fi(Vx) 

F . (V0 

-1+lnl-

r.-F.<y,) 
+ l n 

Fx(k) 

t rx+Fx(k) 

fi(V,) 

rt±Fi(\i) 
(79) 

At the same time we note that the emission frequency 

12 Sydney Chapman and T. G. Cowling, The Mathematical Theory 
of Non-Uniform Gases (Cambridge University Press, Cambridge, 
England, 1952). 

Te incorporates the conservation rules, 

£ e V + ^ V i + £ k = Eey2-\-Eiyv 

and (80) 
me\+miY1+izk=me\2+Mi\s. 

From Eqs. (79) and (80) we may conclude that a 
general form for the distributions characteristic of the 
state of the system for which $ = 0 is 

F.(V) = 

Fx(k) 

(me/liAy 

exp{0D*.+». (V-W)V2]} + l 

{mi/lrhf 

e x p ^ + ^ V x - W ) 2 ^ ] } ^ ' 

AV(2T)» 

e x p { j 3 [ £ ^ - ^ k - W ] } - l ' 

(81a) 

(81b) 

(81c) 

In line with the remarks in Sec. I I relative to Eq. 
(47a), we here take the photon energy to be 

Ek=fick\ i+Z 
27re<r2p<r(X)" 

mac
2k2U -

The parameters /ze, m, /3, and W are not determined by 
the sole requirement that S=0. However, the fact that 
they must be independent of position and time (be
cause the distributions must be independent of space 
and time at this point in the present argument) sug
gests that the only interpretation available to W is 
that of an irrelevant, over-all velocity of the system— 
hence, here it might as well be taken to be zero. The 
further fact that we are dealing with the fully ionized, 
nonrelativistic plasma suggests that /xe and in be deter
mined by the requirement that the integrals of the 
particle distributions over velocity space represent the 
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constant densities appropriate to the system. And 
finally, the desire to interpret 5 as the system entropy 
suggests the identification of (3 (the only parameter now 
common to all of the distributions) as (KT)~1, where K 
is taken to be Boltzmann's constant. With these inter
pretations and identifications, it is evident that the 
distributions (81 a,b,c) are the conventional ones for 
an equilibrium gas mixture of Fermi—and Bose— 
particles and photons. 

V. DISCUSSION 

Equation (61) for the particle balance relations and 
Eqs. (62), (65), and (71) for the self-consistent electro
magnetic fields represent a simultaneous, formal gen
eralization and restriction on the usual Boltzmann-
Vlasov-Maxwell description of the fully ionized plasma. 
They are generalizations in that for the particle balance 
relations the quantum statistics for the particles have 
been accounted for as well as the influence of particle-
photon scattering and inelastic (radiative) particle-
particle scattering, whereas for the field equations the 
presence of "fluctuation" or "correlation" currents has 
been noted. They represent restrictions in that the 
variability of the distributions and self-consistent (as 
well as external) fields in space, time, and frequency has 

been limited by the necessity for coarse-graining in 
space and time. If both the generalizations and the 
restrictions are ignored, it is seen that the equations 
comprise the conventional description. I t should be 
noted of course that, if one wishes to ignore "collision" 
effects entirely, the Vlasov equation for a non-coarse
grained particle distribution is derivable in the classical 
limit, subject only to the approximations of replacing 
multiplet densities by products of singlet densities. 

The generalizations noted here are not anticipated 
to be of much significance in the study of terrestial 
plasmas, and, as has been evident throughout, the re
strictions have merely been qualitatively noted and not 
quantitatively evaluated. Thus, it is our opinion that 
the importance of this work stems from the demonstra
tion that the extensively employed Boltzmann-Vlasov-
Maxwell description of the fully ionized plasma is 
logically deducible in some sense, and from the sketch
ing of a framework in which the restrictions on such a 
description can be investigated in some detail. 
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