
2204 M A R S H A L L 

In Fig. 5 for low fields vlv— v[vo °c E2 holds up to about 
100 V/cm, where i>iv0 is the zero-field intervalley scatter
ing frequency. At intermediate fields the *>iVocE0-87. For 
a Maxwellian electron distribution vlv^E is expected 
for electron energies large compared to the phonon 
involved in intervalley scattering. The tendency toward 
saturation at high fields is probably associated with 
the breakdown of the assumption that the effect of 

1. INTRODUCTION 

INSULATING and semiconducting crystals, in the 
absence of any perturbations, are transparent below 

a certain photon energy above which the absorption 
rises rapidly. In practice, however, this edge exhibits a 
complicated structure often giving an exponential 
type tail in the long-wavelength region.1 I t has been 
suggested unsuccessfully that (a) the absence of perfect 
periodicity, and (b) the presence of impurity states in 
the forbidden band leads to absorption tails in the 
long-wavelength region.2,3 

An alternative explanation of the above effect rests 
on the tunneling of electron states into the forbidden 
band due to band bending; such band bending in 
practice can occur at the surface of the crystal, due to 
the termination of periodicity, or in the bulk of the 
crystal.4 Franz5 considered the effect of a uniform field, 
on the absorption coefficient, by using the Houston6 

wave functions to calculate the matrix elements and 
his results were expressed partly in terms of an infinite 
series. 

We have, in this paper, treated the states as station
ary and thus adopted the standard procedure to 
calculate the matrix elements. The results, expressed in 
terms of the well-known Airy functions in Sec. 3, are, 
in fact, identical to those obtained by Franz for the 
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Photoconductivity Conference (John Wiley & Sons, Inc., New York, 
1956), p. 489. 

5 W. Franz, Z. Naturforsch 13a, 484 (1958). 
6 W. V. Houston, Phys. Rev. 57, 184 (1940). 
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intervalley scattering on the distribution function in a 
single valley can be neglected. 
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case of allowed transitions. Our results, however, can 
be extended to the case of forbidden transitions giving 
the expected exponential type tail in the long-wave
length region. A brief discussion of the results, including 
the effect of binding between electron-hole pairs, is in 
Sec. 4, and the definition of absorption coefficient in 
Sec. 2. 

2. THE ABSORPTION COEFFICIENT 

The absorption coefficient a is defined by7 

4TTV 

a = £ \Pit\mEf-Ei-tua), (2.1) 
ncm2co i 

where Eiy Ef are the initial and final energies of the 
system interacting with photons of energy fio>. n is the 
refractive index; fi is the Planck's constant; c is the 
velocity of light; and e, m are charge and mass of an 
electron, respectively. The matrix element Pi/ for 
electrons going from the initial state i to the final state 
/ can be written as8 (a) for allowed transitions 

p./=<i>(0)Co5*.,fc/, (2.2) 

and (b) for forbidden transitions 

Pif=MVrqH°)\c^r (2-3) 
In (2.2) and (2.3),Co,Ci involving the matrix elements 

between the periodic parts of the Bloch states at the 
band edges, are independent of the electron wave vector 
k with Co having the dimensions of momentum and C\ 

7 J. Bardeen, F. J. Blatt, and L. H. Hall, in Photoconductivity 
Conference (John Wiley & Sons, Inc., New York, 1956), p. 146. 

8 R. J. Elliott, Phys. Rev. 108, 1384 (1957). 
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being a nondimensional constant. The 8 function 
ensures momentum conservation, and q is the polariza
tion vector of the photons with negligible momentum. 
<3>(r) is the solution of the two-particle Schrodinger 
equation with r as the relative coordinate of the 
electron-hole pair. For a pair in the presence of a 
uniform field F (in the Z direction) <£(>) is obtained from 

[ ( ^ 2 / 2 M ) V2+ I e | FZ+Ey>(r) = 0, (2.4) 

where E is the sum of the electron and hole energies 
measured from their respective band edges, and n the 
reduced mass is defined by 

1 1 1 

/x m0 nth 
(2.5) 

with wo and nth as the "effective masses" of the electrons 
and holes in the conduction and valence bands, respec
tively. We remark here that the inclusion of Coulomb 
binding, between the electron-hole pairs, in (2.4) would, 
in fact, describe the Stark effect of hydrogen-like 
atoms and a discussion of this is given in Sec. 4. We shall 
now consider the interband transitions in the absence of 
any such binding between the pairs. 

3. INTERBAND TRANSITIONS 

The exact solution of (2.4) can be written as9 

ei(kxx+kyy) 

•Ai(-a 
where 

\ \e\F/\ h2 ) 

lirh 

e \ / 2 ^ | e h 1 / 3 

with 
\e\FJ 

« = J S - ( * V 2 M ) ( * . * + V ) . 

The normalization factor A is given by 

(2M)1/S 

A= , 
x l / 2 ( | g | F ) l % 2 / 3 

and the Airy function Ai (/3) is defined by9 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

1 /-00 

Ai(£) = / cos(lu3+fxl3)du. (3.5) 
\/ir J o 

(a) Allowed Transitions 

From the above expressions we find that 

#(0) = 

where 

1 (\e\F)v> 

dF*=e2F2/2nti 

(3.6) 

(3.7) 

9 L D. Landau and E. M. Lifshitz, Quantum Mechanics 
(Pergamon Press Inc., New York, 1959), p. 170. 

From (2.1), (2.2), and (3.6), replacing the sum by an 
integral in (2.1) and including a factor 2 for spin, we 
finally have the absorption coefficient in the presence 
of a uniform field, for allowed transitions given by 

a = RB4 

where 

Fmf 
J (,o>\—(ti)ldF 

\Ai{t)\Ht, 

R= 
2e2C0

2 / 2 M \ 3 / 2 

fio)cnm2\ fi } 

(3.8) 

(3.9) 

and fiui is the energy of the gap. Since the Airy function 
satisfies the differential equation 

d2Ai(t) 
-=*Ai(/), (3.10) 

the last integral can be evaluated to give 

nOO 

/ | A i ( / ) | ^ = - / 3 | A i ( 0 ) | 2 + | A i ' ( / 3 ) | 2 , (3.11) 
h 

where prime denotes differentiation with respect to the 
argument. We remark here that a can also be expressed 
in terms of Bessel functions of order 1/3. 

I t is instructive to study the limiting cases of a, 
namely, (i) When co>coi and near the edge, 

a^RdF1'2] t h r ) + / . |Ai(,)H 
•i^co-coi)1 '2 as Z?->0. (3.12) 

Hence, in the absence of field, and co>coi, we get the 
familiar expression for a with the square root depend
ence7 on the frequency (measured relative to the edge). 
(ii) When co<<Cwi, again using the known properties of 
Airy function, we obtain10 

dFv2 

a « R exp| 
8(co—coi) 

r 4/cui—co\3/2"| 
(3.13) 

thus giving us an exponential-type tail in the long-
wavelength region. The trivial solution a —> 0 as F —> 0 
is satisfied by (3.13) and we remark here that (3.13) is 
identical to that obtained by Franz; in fact, his integral 
expression for a can, with change of variables, be 
reduced to (3.8). 

(b) Forbidden Transitions 

|Vrfl<£(0)| can again be obtained from (3.1) and we 
now need to consider two separate cases: 

(i) The polarization vector q||F, in which case 

1 (\e\F)V2 

VMO)-
2Thwli2(hd> 

— A i l ; 

>)2 \ mFJ 
(3.14) 

10 H. Jeffreys and B. S. Jeffreys, Methods of Mathematical 
Physics (Cambridge University Press, Cambridge, 1946), p. 508. 
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and (ii) q ± F (say q||x), in which case 

VM0) = ikM0)- (3.15) 

An identical calculation to that for the case of allowed 
transitions yields from (2.1), (2.3), (3.14), and (3.15). 

all = SdFV2f |A i ' ( / ) | 2 ^ , (3.16) 

Oil 

where 

S r00 / w i - w \ 
= —0F 3 / 2 / f t+ J | Ai(012dt, (3.17) 

2 J (ui—a)/0F \ OF I ((01—U)/6F 

(3.18) 
oicnm^ 

Again using the known properties of the Airy function 
it can be easily verified that 

(i) when w<Kwi, 

an,j." - S6F
S/2 exp 

r 4/coi-co\3^n 

L 3 \ OF / J 

and (ii) when a?>a?i and F—> 0, 

au,i-+S(a)—coi)3/2, 

(3.19) 

(3.20) 

thus giving us the familiar three-halves power law for 
forbidden transitions.7 In the gap, however, we again 
have an exponential-type tail, given by (3.19), in the 
presence of a uniform field. We now proceed to consider 
the effect of Coulomb binding on the absorption coeffi
cient, and a brief discussion of results. 

4. DISCUSSION 

It is interesting to note that both the allowed and 
forbidden transitions give an exponential-type tail in 
the long-wavelength region, this being an essential 
feature of the tunneling mechanism. Another striking 
observation is the dependence of the absorption 
coefficient on the field term 6F having the dimension 
of frequency; in particular, at the edge (w=coi) the 
absorption coefficient varies as 6F1/2 for allowed transi
tions and as 0F3 / 2 for forbidden transitions. The results 
of Sec. 3 can be extended to the case of slowly varying 
(in space) one-dimensional fields by integrating a over 

the crystal. This and other more specific application of 
the present results, will be considered by Dr. Redfield in 
a forthcoming paper. 

In the absence of the field the effect of Coulomb 
binding (namely, exciton absorption), on the absorption 
coefficient, has been considered by Elliot.8 In the 
presence of the field no exact expression, for the 
absorption coefficient of bound pairs, is available. 
Approximate expressions for a in the two limiting cases 
of large- and small-orbit excitons can, however, be 
written. 

(a) In the (near) continuum corresponding to ionized 
pair states where the Coulomb interaction still affects 
the motion, and is treated as a perturbation, we expect 
the absorption coefficient (when co>coi) to be modi
fied by the appropriate Sommerfeld factor T, i.e., 
aOTciton(w,0/?)«ra(w,0jp). (For example, for allowed tran
sitions8 T = ^X^/sinn^rX, where X = [Ei/fi (co—coi)]1/2 and 
Ei = fjLe*/2fi2K2, K being the dielectric constant.) 

(b) For the case of tight binding, the field term may 
be treated as a perturbation and the predominant effect 
of the field on the discrete hydrogenic spectrum is to 
give us the Stark shift. 

The above approximation is evidently crude and a 
more detailed study is necessary, especially near the 
edge and in the long-wavelength region. Closely related 
to this problem is the absorption into empty impurity 
levels (in the gap) and was considered by Eagles3 for 
the field free case. In the presence of a uniform field, a 
similar calculation indicates that Eagles' result is 
modulated by a factor 

/ 3 - 1 ' 2 / |Ai(/)|2<ft, «/. 

with P=[_(tio)—fei+£i)/%0/], where for absorption 
into donor states, the reduced mass [i becomes mo. 
This modulation factor leads to the presence of an 
exponential-type tail, for photon energies less than 
(fio)i~ Ei), again reflecting the features of tunneling. 
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