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is also small numerically, and since it enters the ex
pression of Eq. (28) along with the small weighting 
factor R(KS), the net effect on dEex/dk\k=k0 of the 
terms in (28) for KST^0 is negligible. 

We have also calculated the total exchange energy, 
by numerical integration. The result for free electrons 
as given by Wigner and Seitz is — 72.0 kg cal/mole. The 
effect of the periodic lattice has also been calculated by 

I. INTRODUCTION 

THE first approach in the theory of ferromagnetic 
thin films is due to Kittel.1 He showed that when 

the thickness of the thin film is smaller than approxi
mately 10~5 cm, the film becomes a single domain, 
magnetized in a direction parallel to its surface. 

By applying Bloch's theory of spin waves, Klein 
et al?'* have studied such a single domain for various 
lattices. It should be mentioned that they have not 
taken into account the effect of magnetic anisotropy. 
This fact gives rise to a divergence in the final results 
for the magnetization if the state of the zero spin-wave 
vector is included in the sums which appear. With a 
view to avoiding this difficulty, Klein et al. have 
omitted this state in the corresponding sums, but they 
have not given a complete justification of this 
procedure. 

Recently, Doring4 tried to give a complete discussion 
of the questions which arise in Klein's calculation. He 
justified the omission of the zero spin-wave vector 
state, but showed that even in this case the correct 
calculations lead to a strange dependence of the 
magnetization on the dimensions of the surface of the 
thin film. Doring showed also that by introducing a 
magnetic anisotropy term in the Hamiltonian, this 
situation will no longer appear, i.e., the magnetization 
will no longer depend on the dimensions of the surface 

1 C. Kittel, Phys. Rev. 70, 965 (1946). 
2 M. J. Klein and R. S. Smith, Phys. Rev. 81, 378 (1951). 
3 S. J. Glass and M. J. Klein, Phys. Rev. 109, 288 (1958). 
4 W. Doring, Z. Naturforsch. 16a, 1008, 1146 (1961). 

Wigner and Seitz, and they find that to three decimal 
places, there is no difference between the free electron 
and periodic value. Our result is essentially the same, 
although we get a slightly different numerical value for 
the difference between the free electron and periodic 
case, viz., about 0.005 kg cal/mole. The smallness of this 
correction is of course a Consequence of the rapid de
crease of g(x,y) and R(KS) with Ks. 

of the thin film. However, as is known,5 when the 
anisotropy term is taken into account, it is no longer 
necessary to omit the zero spin-wave vector state and 
the divergences in the calculation of the magnetization 
will no longer appear. Doring has also discussed the 
cyclic condition for the perpendicular axis of the film, 
and has recalculated the magnetization, going further 
than Klein et al. to higher order terms.6 It should be 
mentioned that Doring has not considered the case in 
which the magnetic anisotropy is perpendicular to the 
surface of the thin film. 

In this paper, the spin-wave theory in the Holstein-
Primakoff (H-P) formulation7 will be developed for 
thin ferromagnetic films. We shall not take into account 
the spin-wave interactions, which, as Dyson8 and 
Oguchi9 have shown, do not influence the first approxi
mation of the H-P method. Oguchi has concluded in 
his discussion,10 which applies entirely to our case, that 
the first approximation in the H-P method gives the 
essential features of the problem, and that all the 
correction terms are quite small at low temperatures. 
In this manner, we restrict ourselves to the first 
approximation of the H-P method in this paper. 

5 C . Herring and C. Kittel, Phys. Rev. 81, 869 (1951). The 
authors showed that the magnetic anisotropy eliminates the 
divergences in the magnetization of a monatomic layer. 

6 In order to calculate these terms, Doring performed some 
approximations, some of which were not entirely justified. 

7 T . Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940). 
8 F . J. Dyson, Phys. Rev. 102, 1217, 1230 (1956). 
9 T. Oguchi, Phys. Rev. 117, 117 (1960). See also, F. Keffer and 

T. Oguchi, ibid. 117, 718 (I960). 
10 See reference 9, especially p. 122. 
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We shall calculate the dependence of the spontaneous 
magnetization on the temperature and the number n 
of monatomic layers of the thin film. Also, the influence 
of magnetic anisotropy on the magnetic properties of 
thin'films'is considered. To this aim, we will introduce 
in the Hamiltonian a magnetic anisotropy term, which 
takes into account the possibility of a parallel and a 
perpendicular magnetic anisotropy. We note that the 
influence of magnetic anisotropy on the magnetic 
properties of ferromagnetic thin films has also been 
studied, by using the trace theory of Heisenberg, in 
some previous papers of Corciovei,11'12 who developed 
Valenta's method.13 Recently, Corciovei and Ghika14 

have passed to the third-order approximation in the 
trace theory of Heisenberg. 

In the present paper, the influence of a small per
pendicular anisotropy15 is found to be unimportant. 
On the contrary, the parallel magnetic anisotropy has 
a very interesting influence on the family of curves 
which give the dependence of spontaneous magneti
zation on T for various n. 

II. THE FIRST-ORDER APPROXIMATION 
IN THE H-P METHOD 

In our study of the ferromagnetism of a thin film, we 
shall proceed with the H-P method for the spin-wave 
theory, in contrast to Klein et al.2'd and Doring,4 who 
have applied the results of spin-wave theory in Bloch's 
formulation. 

We shall consider that the thin film is a cubic simple 
lattice, whose unit vectors are iXi im and i2, so that ix 

is perpendicular to the surface of the thin film.16 The 
thin film can be divided into n monatomic layers 
parallel to the surface of the thin film, which shall be 
numbered by v (V=l, 2- • -n). In this manner, the 
position of an atom is given by the number of the 
monatomic layer to which it belongs and by the vector 
j in the plane of the layer. Evidently, 

where a is the lattice constant, j y and jz are integers 
(jy, jz—l,2—-N), and N? is the number of atoms in 
a layer which is supposed to be a square. Thus, any 
atom can be denoted by v). 

The Hamiltonian JC will contain an exchange term 
3Cex, an anisotropy term 3Canis, and the Zeeman term 
3Cz. We shall denote the spin operator of the v] atom 
by Svj and its components in the three directions \x, 
iy9 and iz by SV}X, Svjy, and S^, respectively. In the 

11 A. Corciovei, Czech. J. Phys. 10, 568, 917 (1960). 
12 A. Corciovei, J. Phys. Chem. Solids 20, 162 (1961). 
13 L. Valenta, Czech. J. Phys. 7, 127, 136 (1957). 
14 A. Corciovei and G. Ghika, Czech. J. Phys. 22, 278 (1962). 
16 We note that in references 12 and 14 the effect of hypothetical 

very large internal perpendicular magnetic anisotropy fields is 
studied. Such effects will not be studied in the present paper. 

16 It should be stated that we assume that the cubic lattice is 
not perfect, but is compressed or dilated along the \x direction. 

exchange term, we shall consider only the interactions 
between nearest neighbor atoms. In this manner, 

where J is twice the exchange integral corresponding to 
two nearest neighbors and by ( ) we indicate sum
mation only on the pairs of nearest-neighbor atoms. 

We shall assume that the magnetization axis, which 
is situated in the plane of the film, is the \z axis which 
does not represent a restriction of the problem. We 
can, thus, suppose that there is a small magnetic 
anisotropy in the same direction, which we shall call 
parallel anisotropy. As is known,1 there exists also a 
perpendicular magnetic anisotropy corresponding to 
the ix axis.17 To the parallel and perpendicular magnetic 
anisotropy will correspond two internal anisotropy 
magnetic fields, Hn and Hi which are not equal. In a 
manner similar to that of Doring,4 we can now write 
the anisotropy term of the Hamiltonian in the form 

3CaniS= -gmB{HL £ S,js+Hn E S,u), (3) 

where g is the gyromagnetic factor, and MB is the Bohr 
magneton. As for the Zeeman term, it can be written 
in the form 

3CZ= ~gmB E (HxSv]x+HySv]y+HzSvU)y (4) 

where Hx, Hy, and Hz are the components of the 
external magnetic field H in the three directions. 

The total Hamiltonian 3C will be 

3C = X ex+3Canis~f"3Cz. (5 ) 

In the H-P theory, the creation and annihilation 
operators a„j* and av], for each atomic spin, which 
satisfy the following commutations rules are introduced: 

dyjdy'y &Viy dpj^1 Opp'Ojy, 

dp^dv''y Q'p,yCt'pj-~Cl'vj Ctp'y Q/pry # j / j = = U , 

and the spin operators are related to these operators 
by the relations 

S,J.-iS,Jv=(2S)1'»a,j*/rj(S,)> (7) 

where 
/ r j (5)=( l -a , j*W25) 1 / 2 . (70 

As is known, we can write the series expansion of 
fvi(S) in powers of av^av^ but we shall not enter into 
the complexity of this problem.9 As mentioned in the 
introduction,10 we shall restrict ourselves, in order to 
obtain the essential features of the problem at low 
temperatures, to the first approximation of the H-P 
method, In this approximation, /„j (S) may be replaced 

17 For justification see, also, footnote 16. 
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by 1. Performing the calculations, the three terms of the Hamiltonian become 

3Cex=— / S £ E (a,iavy*+avi*avy) — JS E E (a,ja*'j*+a*j*0»'j)+/SE E (0,j*a,j+'a,r*a,]') 

3Cani8= -pnaH^S/l)11* E E (a,i+a,i*) —«w»«£r„ E E (5-aFl*a r i), 
v J ? i 

Wz=-gmBHx(S/2y* E E ( ^ j + a , i * ) + ^ z ^ S / 2 ) 1 / 2 £ £ ( ^ - ^ - ^ f l , £ ^ (S-a,j*a,j), 

where z0 is the number of nearest neighbors of any and the new operators satisfy the following commu-
atom in the same layer, and z\ is the number of nearest tation relations: 
neighbors of any atom in a given nearest layer of the 
layer of the atom under consideration. Evidently, in a„h#v'h'*—av>h*(iv\L—§vv'?)hhf, 
our. case »o=4 and 2i=l . avhav^~av^avh^av^av^-av^avh^O^ ( } 

III. CANONICAL TRANSFORMATIONS R i s nQW e y i d e n t ^ (1Q) ig a l sQ a c a n o n i c a l t r a n s . 

We shall now perform some canonical transfor- formation. 
mations, in order to transform the Hamiltonian into We introduce the notation 
a sum of independent oscillators. Firstly, it is possible 
to perform a Fourier transformation and to introduce, Vh== (l/*o) E expph(j- j ' ) ] , (12) 
new creation and annihilation operators #„h* and a„h, j given 
where h is the propagation vector within the layer, 
namely, where in the sum only the pairs with a fixed j are 

h= (27r/Na)(myiy+mziz) = hyiy+hziZy (9) considered. It is evident that for cubic simple lattices 
we have 

where my and mz are integer numbers such that 
* r / ^ ^ T / „ 7h=i(cosM+cosM). (120 

[—N/2<my, mz<N/2. 
m ^ . ' r ^ Taking into account the fact that 
The Fourier transformation is ° 

<M= (i/N) Eh exp(-ihj)a,h, S i exp ( -* j ) = ^ o j , (13) 
(ip'*= (V^O Eh exp(ihj)a„h*, it is easy to show that 

3Cex= — (JSzo/2) E E yh(aPhavh*+avh*ayh)—JS E E (aphav>h*+a*h*a9>h)+JS E (*o+2iv) E tfvh^h 
v h (vv') h v h 

-JS^nNH^/l-JS^n- l)Nhi, 

3Canu= -gmBH1.(N*S/2)^ E Ko+^o*)+gWB#n E E a„h*a*-gmBHnnN2S, (14) 
v p h 

3CZ= - p w a t f . ^ W * E (ar^-ata*)-gmBH,{,NiS/2y'* E ( a , o - a ,o* )+^ B 5 , E E aA*oA-gmBH*N*S, 
v v v h 

where 
Zi„=2 for v=2,3, • • • , n ~ l , . 

= 1 for p=l , w. 

In this manner, the sums ( ) have been eliminated. In addition, we introduce the canonical conjugated 
operators Q„h, Pvh by the relations 

a,h= (l/2yi*(Qvh+iPvh), a,h*=(l/W*(Q*-iP,J. (16) 
We obtain 

QphPvh' — Pv'h>Qvh~i8vV'$hh>, (17) 
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the other commutators are zero. The three terms of the Hamiltonian can be written 

3Cex=-(/50O/2) E E Yh(e,h2+P,»2)-/S E E (Q*Q^+P,hP,'*)+(JS/2) E (*o+*i,) E (&**+P,hs) 

- /5(6 , + l)wiV2(0o/2)-/5'(5+l) (»- l)N%, 

3C»u= -gmBHiiWS)1* E &o+ (gmsHu/2) E E (Q**+P,*)-gnntnN*nll(S+i), (18) 

3Cz= -gmBHx(WSy> E Qrt-gmBH,(N*Sy* E Prt+(&nBHj2) E E (&h2+P,h2)-smfiW;V2#,(S+!). 

We introduce the notations 

w 0=-/5(5+l)niV 2 (2o/2)~^(^+l)(^- l ) iV 22i , a = i / 5 , « h = - ^ o Y h + i / S ( z 0 + 2 ) . (19) 

In this manner, the total Hamiltonian 3C becomes 

W=wo-gtnBnN*(Hz+Hu)(S+i)+Z {(ah+gmBHz/2+gmBHn/2) £ (^h
2+P,h

2) 
h y 

- a ( 0 l h 2 + P l h 2 + G n h 2 + P n h 2 ) - 2 « E (GrhQr'h+PrfiPr'h)} ~ g ^ ( # * + # l ) ( ^ 2 S ) 1 / 2 £ & o 

-gtnBHy(N*Sy*XP>o. (20) 

In this expression, for every h the oscillations for 
various v are still coupled. 

IV. THE COMPLETE DIAGONALIZATION 
OF THE HAMILTONIAN 

With a view to a complete separation of the Hamil
tonian in a sum of terms of independent oscillators, we 
shall perform a new transformation : 

fth^l^rjrh, Pv^ilT^VTPTh, (21) 

r=l r=l 

for which we impose the conditions 

£ & h 2 = E<7rh2, £ i \ h 2 = L£rh2 , 

Qlh2+Cnh2+2 £ 0,h^h=2> ( h )rgrh2 , 
(j-J-') T 

Plh2+Pnh2+2 E i W V h = E *(h>rPrh2. 
<»*') r 

These conditions can be transformed into 

J» J. vT± VT' VTT'I 

and 
(-X*\+l)T»\T+T<*>lT=0, 

•*(Wrr»>FT+(r(»^llT+r»)^.iir)=o, 
for J /=2 , 3, • • •, »—1, 

(-*<Wr+l)2,<»„T+7,w«_1.T=0. 

(22) 

(23) 

(24) 

One sees that the solutions (24) are independent of h. 
We can, thus, omit the superscript (h) in T{h)

VT and 
#(h)

T and write simply TVT and xT. 
The solution TVT of (24) must not vanish; it is, thus, 

necessary to impose the condition 

(25) 

It is evident that the problem discussed above occurs 
for n^2. In the case n=l, the canonical transforma
tion is no longer necessary, and it can be seen formally 
that #=2. 

The solution of (25) is simple when n is small. For 
example, one obtains for n=2: #i=2, #2=0; for n=3: 
#i=2, #2=1, #3= — 1 ; and for ^ = 4 : #i=2, #2=VZ, 
#3=0, #4= — V2. It is possible to show18 that for a given 
n the solutions xT can be written 

— x 
1 
0 

0 
0 
0 

1 
— x 
1 

0 
1 

— x 

— x 
1 
0 

1 
— x 
1 

0 
0 
0 

0 
1 

1 -

# T =2 cos[(7r/V)(r—1)], r = 1, 2, (26) 

Using (23) it is easy to verify that gTh, fiT'w satisfy the 
rule 

qrhpT'h>—pT'h'qTh=i&TT'&hh>. 

because the secular problem is very similar to that 
which appears in the vibration of a linear chain of 
atoms. It is to be noted that condition (26) corresponds 
to the introduction of a cyclic condition in the ix 

direction of a thin film with 2n layers instead of n. 

18 C. Hemmer, thesis, Nordita Publication 27, 1959 (unpub
lished). See also reference 4, p. 1148. 
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Performing the transformation (21), the Hamiltonian corresponding to n monatomic layers takes the form 

X==w0-gmBnN"(Hz+Hn)(S+i)+Y: E {(«h+gmBH z/ '2+gmBHu/ '2)(q^+Prh2)} 
h T 

-aH E xr(qT£+prf)-gmB(Hx+H,)(WSyi* £ ( E TVT)qro-gmBHv{mS)^E ( E Tpr)pTo. (27) 

Finally, we perform the transformation 

gro=9ro+CgwB(F«+F1)(iV2,S)1 '2 E - TVTyi2a0+gmB(Hl+Hn)-2axr'], 

pro^pro+timBHyiWSyi* E » r ,T] /[2ao+gWi !(#*+fl '„)-2aXrl , 

?Th=?rh, Prh=/>Th, for M O , 

(28) 

where ao is «h=o. The transformation is evidently 
canonical and the new operators satisfy the commu
tation rules 

With the transformation (28), the Hamiltonian 
becomes a sum of oscillators: 

W=Wo+Z L [(ah+gmBHz/2+gfnBHu/2-axT) 
h r 

X (qr*2+pri?)']+wx(Hx+Hl¥+WyHyz 

+w,(H,+Hn), (29) 

where we have introduced the notations 

g W i r a ( £ v rVTy 

where k is Boltzmann's constant and T is the tempera
ture. I t is easy to show that we obtain 

Wx=— £ 

Wu 

wz 

r 4:(a0+gmBHz/2+gmBHu/2—axT) 

frnJWSCE, TVTy (30) 

r 4:(ao+gmBHz/2+gmBHu/2—axT) 

-gmBnN2(S+^). 

On the other hand, the quantization can be per
formed according to the rule 

Aq2+Bp2_> (2r t+l)04£) 1 / 2 , 

where n is an integer quantum number. 
In this manner, the Hamiltonian will have the 

following eigenvalues: 

En=wo+wx(Hx+Htf+wyHy*+wz(Hz+Hu) 
+ L r Z h W r h ( 2 t t r h + l ) , (31) 

where 

wTh=ah+gmB(Hz+Hu)/2—axT, (32) 

and tlrh are the (positive or zero) corresponding quan
tum numbers. By n we have designated the set of all nTh-

Now we can calculate the partition function Z. We 
have 

Z=Zexpl-En/(km 
n 

r=expf -
wo+w^H.+H.y+WyHy'+w^H.+Hnh 

kT J 

e-wTh/(kT) 

x n n • (33) 

With the aid of Z, we can calculate the free energy 
F = - kT InZ in the form 

4 - I E « ' A + i i r l I l n ( l - e - ! « ' r h ' W ) . (34) 
r h r h 

V. THE MAGNETIZATION OF THIN FILM 

The components of magnetization on various axes 
are given by 

Mx=-dF/dHx, My=-dF/dHy 

Mz=-dF/dH2. 
(35) 

One obtains 

Mx=-2wx(Hx+HL), My=-2wyHy, (36) 
and 

1 + ) . (37) 

When H vanishes we obtain the spontaneous mag
netization. I t is seen that the spontaneous magneti
zation on the Oy axis vanishes. Also, since the order of 
magnitude of HL is 10 Oe to 100 Oe, we have wxHi<Kwz 

and, thus, the spontaneous magnetization perpendicular 
to the thin film can be neglected as compared to the 
spontaneous magnetization on the Oz axis. Further, 
we shall consider only the spontaneous magnetization 
in the plane of the thin film on the Oz axis. 

In formula (37) we can go from the sum to an 
integral over dhydhz and, for the spontaneous magneti-
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FIG. 1. Magnetization vs temperature for rj = 0.001 and for 
different values of the thickness. 

zation, we obtain 

Mz=gmBnN2(S+i) 

N2a2r r*/a 

: (2T ) S /

TT/O fir/a t 2e Iwrh/<<'cl) \ 

_. /J_ r / a \ l~e~2-rh/(^)/ 

dWTh I 

dHz -l#a»o 

(38) 

where we have also introduced the normalization factor 
(Na/2ir)2. The main contribution to (38) arises near 
the point hy=he=0, as can be seen from (32) and (19). 
We can, thus, approximate 7h which appears in ah by 

7 h = l ~ i [ ( M 2 + ( M 2 ] , (36) 

and the integration can be performed by using polar 
coordinates 

hy— (a/a) cos0, hz— (<r/a) sin0 (40) 

and replacing the square domain of integration with a 
circle of equal surface. In this manner, we obtain 

Mz^gmBnN2(S+i) 

where we have introduced the notations 

M0=gmBSnN2, <p=kT/ (JS), 

v^gmBHu/(2JS). ( 4 4 ) 

We note that rj is the ratio between the "parallel 
magnetic anisotropy constant" gmBEn and the "ex
change constant" 25/ . In general, we have t?<<Cl. 
Expression (43) gives us the general dependence of the 
magnetization on the temperature, the thickness, the 
parallel magnetic anisotropy, the exchange integral, 
and the spin. 

For r = 1, we have 1 — #T/2 = 0. In this manner, it is 
evident that the quantity rj eliminates in (43) the 
divergency at r = l . The unnatural procedure of 
Doring4 of eliminating the divergency without intro
ducing the magnetic anisotropy leads to some diffi
culties which cannot be overcome in a consistent 
manner. In our opinion, only by taking into account 
the parallel magnetic anisotropy, can we study the 
problem in a consistent manner. As we have seen, 
the perpendicular magnetic anisotropy introduces a 
component of the magnetization on the Ox axis which, 
of course, for the usual small values of H^ can be 
neglected as compared with Mz. In our approximation, 
the perpendicular anisotropy does not influence the 
magnetization on the Oz axis. 

Formula (43) shows that for small values of n, Mz 

decreases linearly with T. When n becomes very large, 
we must obtain the well-known Tm decrease of the 
magnetization which corresponds to the bulk material. 
Let us demonstrate this fact. For simplicity we shall 
put 77=0 and we shall neglect the quantities 

e x p [ - ( 2 / ^ ( 2 ^ + 1 - ^ / 2 + 1 7 ) ] , 

which are practically vanishing in (43) at low tem
peratures. Passing from sum to integral and putting 
r— l = y, we obtain 

/7VV r r2Vir r27r / 2e~2v)T{<T)KkT) \ V <P fn 1 "1 

" " W ? U 0 Jo \ 1 + l - ^ w * > W Mz~M\4^SJo lni-e~W^dyj 

dwT (<r) 
X <rdi 

dH 
'add (41) 

where we have also performed a series development 
in the vicinity of y=0, where the main contribution 

where wT(cr) is obtained from (32) and (19) and has the 
expression 

wr(a) = JSa2/2-JSxT/2+JS+gtnBHz/2 
+gmBHu/2. (42) 

By performing the integration, it is easy to show that 

• f co 

AirnS 

» 1-expC- (2 /^ (2^+1-^ /2+7?) ] ) 
X E In , (43) 

l - exp[ - (2 /^ ) ( l -* r / 2+*? ) ] J 

0& 03 » V v 
FIG. 2. Magnetization vs temperature for rj = 0.01 and for 

different values of the thickness. 
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of the integral appears. Further, we introduce 
u=iry/ {n\/<p) and obtain 

r <pm r00 1 ~| 
Mz=Mo\ 1 / In du I 

L WSJo l-e~u2 J 

where we have approximated the upper limit of the 
integral with infinity at low temperatures. 

We observe that 

f l n [ l / ( l - e - « 2 ) ] ^ = 0r1/2/2)f(3/2), 
Jo 

where f is Riemann's function. As is known, f (3/2) 
= 2.612. In this way, we obtain finally 

Mz=M0[l - 2.612TT1/2 ̂ 3/2/ (8TT25)] 

r 0.117 i 
= M0 1 <p^ , (45) 

which is exactly the result known for a ferromagnetic 
cubic solid body.19 We can introduce the quantity To 
defined from the condition 

0.117X (kTo)ziy{2Pi2SW)= 1. 

In this manner, (45) becomes 

M 2 = M 0 [ i - ( r / r 0 ) 3 ' 2 ] . (46) 

For T=To, Mz vanishes and, thus, in this theory, To 
can be considered the Curie temperature of the bulk 
material. 

The transition from the linear decrease with T of 
the magnetization for small n to the Tm decrease for 
large values of n can be seen in Figs. 1 and 2. Figure 1 
shows the dependence of the magnetization on T for 
small values of n and for S—\ and 77= 0.001. Figure 2 
shows the same family of curves, but for 97=0.01. This 
value of 77 is larger than the experimental values of 77 
for the solid body. In Figs. 1 and 2 we have also shown 
Prom Eq. (46)] the dependence of the magnetization 
on T for the bulk material (n of the order of magnitude 
of N) and for 77=0. We observe that the temperature 

19 See, for example, R. E. Peierls, Quantum Theory of Solids 
(Clarendon Press, Oxford, 1955), p. 172, formula (42). For com
parison with Peierls we observe that in (45), JS is the exchange 
energy and 25 is the number of J spins of any atom. .We note 
that the correct numerical constant has been obtained. 

FIG. 3. Magnetization vs temperature for n— 1, and for 
different values of the coefficient rj. 

where the magnetization vanishes is the Curie tem
perature, which increases with increasing n and 77. 
However, as is known, in the H-P method, the results 
are only qualitative in this range of temperatures. In 
Fig. 3, the dependence of the magnetization on T for 
n— 1 and 77=0.1, 0.01, and 0.001, respectively, is given. 

It is very interesting to note the dependence on 77 of 
the family of curves given in Figs. 1-3. For a given 
temperature and a given n, the magnetization increases 
with increasing 77. It is very possible that 77 depends on 
n, i.e., that it increases when n decreases.20 On the other 
hand, it is well known that for n smaller than 10, the 
experimental results are very unsatisfactory, different 
authors giving different results for the same material.21 

In particular, Neugebauer22 obtains larger values for the 
magnetization than other authors. In this manner, the 
results of Neugebauer seem to indicate a greater 77 for 
very thin films than for the solid body. For example, 
it can be seen in Fig. 2 that for 77 = 0.01 for n greater 
than 10, the dependence and the values of the magneti
zation become practically the same as for the solid 
body. 

It is, of course, evident that accurate experimental 
results will permit the calculation of the corresponding 
77 and, thus, the magnetic anisotropy for various n, and 
will also clarify other problems which arise in the study 
of very thin ferromagnetic film. 

20 It is not the purpose of this paper to explain such a 
dependence. 

21 See, for example, C. P. Bean, in Proceedings of an International 
Conference on Structures and Properties on Thin Films, Bolton 
Landing, New York, 1959 (John Wiley & Sons, Inc., New York, 
1959), p. 331. 

22 C. A. Neugebauer, Phys. Rev. 116, 1441 (1959). 


