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The density-proportional chemical shift observed by Carr and his associates in xenon gas can be used as 
a means of calibrating the spin-rotational coupling existing in a diatomic xenon system during collisions of 
xenon atoms. The basis of this calculation is Ramsey's theory of chemical shifts. The value of the coupling 
thus obtained is of the correct magnitude to account for the observed relaxation of Xe129 in xenon gas. 

INTRODUCTION 

A DENSITY-proportional chemical shift in the 
Xe129 resonance in xenon gas and liquid has 

been found by Streever and Carr1 and, more recently, 
by Hunt and Carr.2 Their observations show that this 
shift from the extreme low-density line is accurately 
proportional to density over a wide range extending 
from the rare gas well into the liquid phase. Also, Hunt 
and Carr2 working with purer samples than Streever 
and Carr have found that the relaxation rate Tf1 for 
Xe129 is proportional to the density. 

The mechanism for relaxation of Xe129 is not finally 
determined, but Hunt and Carr2 have evidence that 
seems to exclude several possibilities. Direct nuclear 
dipolar interaction is by no means sufficient to account 
for the observed relaxation rate. There is good evidence 
that impurities such as O2 have been reduced to negli
gible proportions and wall effects can be excluded. The 
observed independence of 7 \ on magnetic field rules out 
the anisotropic chemical shift mechanism. No Over-
hauser enhancement of Xe129 is produced on saturating 
the Xe131 resonance whereas a 30% enhancement would 
be expected if the Xe129 relaxation is caused by an elec
tron-coupled scalar interaction between the two nuclei 
during collisions. The absence of such enhancement does 
not exclude a possible electron-coupled tensor inter
action which could be an effective mechanism for col
lisions between Xe129 atoms. However, because of the 
closed shell electron configurations one would expect 
the scalar type to dominate. 

There remains the possibility that relaxation in Xe129 

is caused by a spin-rotational coupling existing 
(a) during atomic collisions or (b) during the transient 
existence of diatomic molecules. The presence of such 
molecules in small amounts has been suggested by 
Bernardes and Primakoff.3 These two possibilities differ 
only with respect to the duration of the association of 
two atoms, since the molecules postulated by Bernardes 
and Primakoff are bound loosely by Van der Waals 
forces, the same forces coming also into play during 
binary collisions. 

* This work was supported by the United States Air Force 
Office of Scientific Research under Contract AF49(638)755 and 
by a grant from the National Science Foundation. 
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I t is the purpose of this paper to point out that a 
connection exists between the chemical shift and the 
spin-rotational coupling constant, this connection being 
given by Ramsey's4 theory of chemical shifts. I t will be 
shown that this connection can be used to determine 
the spin-rotational coupling from the observed chemical 
shift, and that the relaxation time 2 \ calculated from 
this calibrated coupling is in excellent accord with the 
observations of Hunt and Carr.2 

The magnitude of the spin-rotational interaction in 
xenon gas and its possible role in the relaxation of Xe129 

spins was theoretically examined originally by Adrian.5 

He concluded that the coupling was insufficiently strong 
to account for the relaxation. His theory was based on 
a formula of Wick giving the magnetic field at a nucleus 
of a diatomic molecule produced by molecular rotation; 
this same formula, involving a sum over virtually 
excited states, was also used by Ramsey in his theory 
of the chemical shift. In Ramsey's theory the same sum 
occurs in the chemical shift formula and is eliminated 
between the two to give the direct relationship men
tioned above. In Adrian's work the value of the sum is 
estimated using some rough approximations which give 
a result a factor of 13 too small to fit the observed 
chemical shift data. In view of the crudity of the ap
proximations used, the failure of this calculation by an 
order of magnitude although somewhat disturbing is 
perhaps understandable. 

THE CHEMICAL SHIFT 

The diamagnetism of the electrons of an isolated 
xenon atom provides a substantial chemical shift from 
the resonant field of a bare nucleus, amounting to about 
70 G in a field of 12 000 G. The change in this shift due 
to association with another xenon atom may be calcu
lated by means of Ramsey's theory4 of chemical shifts. 
In Ramsey's expression there appears the so-called 
paramagnetic term in the form of a sum over virtually 
excited states. The dichotomy between diamagnetic and 
paramagnetic contributions is not gauge invariant, 
although the total shift, of course, is. Using Ramsey's 
gauge, the paramagnetic term is seen to be closely re
lated to a similar sum over excited states occurring in 

4 N. F. Ramsey, Phys. Rev. 78, 699 (1950). 
5 F. J. Adrian, thesis, Cornell University, University Micro

films Inc. (1955). 
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Wick's theory6 of the magnetic field at a nucleus of a 
diatomic molecule due to rotation. Eliminating the 
excited state sum between the two expressions, Ramsey 
arrives at the result 

cr=(e*/3tnc2)(0\j:kl/rk\0) 

+ (e/3mc<a) (Hr-Ze<a/cR). (1) 

Here, rk is the distance of the &th electron from the 
nucleus for which the shift is being calculated and the 
sum is over the electrons of both atoms. Hr is the mag
netic field at that nucleus due to rotation of the di
atomic system, co is the angular velocity of the line of 
centers, Z is the atomic number and R the internuclear 
separation. Equation (1), as shown by Ramsey, does 
not depend on the perturbation theory used in its deri
vation, but can be obtained on more exact grounds. 

In order to compute the shift observed by Carr,1*2 one 
must first find A<r, the difference between (1) and the 
a of an isolated xenon atom. This Aa is the instantaneous 
shift and the observed shift is found by taking an ap
propriate statistical or kinetic average of Ao*. 

In the first term of (1) we separate the X& into sums 
over atom A at whose nucleus the shift is being evalu
ated and over the other atom B. For the latter part we 
expand as follows: 

l / r*= iX/Kit (rk'/R)nPn(cos6k'), (2) 
71=0 

where rk, 6k are coordinates of electron k at atom B 
relative to nucleus B. We may now rewrite (1) as 

a^(e2/3mc2)(01 £ A l / r * 10)+ (e2/3mc2) (Z/R) 
k 

+ (e2/3mc2R2) (01L* rh' cosdk
f | 0) 

k 

+ (e2/3mc2R")(0 | X 7 rk'
2P2(cosdk

f) | 0) 
k 

+eHr/3mcu - Ze2/3mc2R. (3) 

In this expression the second term cancels with the last 
term, and the third term vanishes by symmetry con
siderations.7 The fourth term is very small. I ts value 
has been estimated, using a Slater-Kirkwood wave 
function for the ground state, to be 2X10"11. Neglecting 
this small term, we are left with the first and fifth terms. 
From this result we must now subtract the diamagnetic 
shift of an isolated atom and finally obtain for ACT, 

A<r=(e2/3tnc2){(Q\T,A 1 /V*|0)-<0 |EA l/r*|0>0} 
k k 

+eHr/3mco). (4) 

In the first term, the subscript 0 means that the wave 

6 G. C. Wick, Phys. Rev. 73, 51 (1948). 
7 This is certainly the case if the interaction between the atoms 

is of the dispersion type. In any case it is negligibly small. 

function of the isolated atom must be used. In order to 
estimate the order of magnitude of the first term we 
shall neglect the exchange forces and take for the per
turbed wave function of the diatomic system a Slater-
Kirkwood function8'9 

^ = ^ o ( l + * ) / [ l + ( * % ] 1 / 2 (5) 

where \pQ is the ground state wave function of the un
perturbed system and 

w = L X# (flXs+ytij—2«»£/) • (6) 

In (6), (xi,yi,Zi) is the position vector of the iih electron 
of atom A and (fy,7?y,£y) that of the 7 th electron of atom 
B each referred to the respective nucleus and both %i 
and t-j are measured along the line of centers. X# are 
variation parameters and (A2) 00 is the expectation value 
of v2 for the unperturbed system. Restricting the sums 
in (6) to the outer shell electrons all X# are equal and 
have the common value9 

X= (e2nw/4Noh2RQ)lf2, (7) 

where a is the polarizability of a xenon atom and 
No(= 6) is the number of outer shell electrons. Assuming 
î o is a simple product wave function one finds for 
the expression in the curly brackets in Eq. (4) 

0 = - f X W o 2 ( r 2 ) a v ( ^ 2 } a v / ( r - 1 ) a v - <f >av), (8 ) 

where the averages are over the unperturbed wave func
tion. We are interested only in the order of magnitude 
and so will neglect (r)a v and put9 

(r2)^=3(fi2a/4:Nome2y^ (9) 

Using (7) we then get 

~(3~(3a2/8R2)-(r-%v. (10) 

Putting9 a = 4 X 1 0 - 2 4 cm3, ^ = 4 X 1 0 " 8 cm, and 
( r 1 ) a v = 10+8 cm"-1, we find for the first term of (4) 

(Acr)i=~1.4X10-8 . (11) 

This is entirely negligible compared either to the ex
perimental value of ACT (inferred from Hunt and Carr's 
data2) of — 3.8X10"5 or to the theoretical value of the 
second term of (4) based on Adrian's5 estimate of Hr: 
(A<jr)2=— 3X10 - 6 . We, therefore, neglect the first term 
of (4) and arrive at the very simple result 

A(7= (e/3meo))Hr. (12) 

Quite generally Hr will be proportional to co, the pro
portionality factor depending only on R. That is, 

Hr = »/(X), (13) 
giving 

Ao-= {e/3mc)f{R). (14) 

8 J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931). 
9 H . Margenau, Rev. Mod. Phys. 11, 1 (1939). 
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We must now make a suitable statistical or kinetic 
average of (14). The proper statistical average is ob
tained by integrating (14) over the radial density func
tion. For low densities 

<Aer>av= (e/3mc) [<r»™ikTf(R)N4*rR*dR, (15) 

where N is the number density of atoms and u{R) the 
interaction potential. The rigid-sphere model, 

« ( £ ) = « > , R<Rm 

= 0, R>Rm 

gives 

(16) 

((A<7)av)r.8.= (4xeiV/3wc)/ f(R)R*dR. (17) 

(18) 

The Lennard-Jones potential 

u(R)^4et(a/Ry*-(a/Rn 
gives 

«A(r)av)LJ 

AfireNc? r™ ds 
- / exp[ -7* 2 0? 2 - l)]/(flr-1/8)—, (19) 
Jo s2 9mc 

where y=4e/kT. 
From (17) and (19) we see that measurements of 

(Ao-)av do not determine Hr directly, but only certain 
integrals of Hr over R. In order to obtain a useful result 
that can be inserted in the theory of relaxation, some 
form for the function f(R) must be assumed. 

I t may be expected that f(R) will be a rapidly de
creasing function of R. I t will suffice to take 
f(R) = KR~n. Assuming some value for n, the constant 
K can be determined from the shift data and then used 
to find a value for Th If exchange forces are neglected 
so that only Van der Waals interactions are included 
one finds5 n=6. For definiteness we shall assume this 
value for n although the final result will not depend 
critically on the value of n assumed. With « = 6 w e get 
from the rigid-sphere model [Eq. (17)] 

«A<7>av)r.s. = 4weNK/9mcRm\ (20) 

and from the Lennard-Jones potential, taking10 

€=319X10-1 6 ergs and r = 2 9 8 ° K , 

«A<r)av)Lj= 1.672(4T/9)(eNK/mcas). (21) 

If in (21) we put10 a = 3.94X 10~8 cm and for K, Adrian's 
result,5 — 2.1X10 - 5 7 cgs units we obtain (A<rexp) 
= — 3.3X10"8 per amagat. 

This is to be compared to Hunt and Carr's result,2 

((A(7-)av)eXp= — 4.2X10 - 7 per amagat. (23) 

10 G. K. Horton and J. W. Leech, Proc. Phys. Soc. (London) 
(to be published). 

RELAXATION TIME 

In computing the relaxation time one has the option 
(as in the case of ACT) of using either a kinetic (time) 
average or a statistical (ensemble) average. Each pro
cedure has its advantages. The kinetic average is the 
simplest in the low-density case for collision dynamics 
based on the rigid-sphere model, but becomes almost 
unmanageable for more realistic models and at higher 
densities. The statistical average, although manageable 
for realistic potentials, must be based at present on the 
approach of Oppenheim and Bloom11 which involves 
"the constant acceleration approximation.'' Although 
this approximation is probably a good one, its re
liability has not yet been adequately tested. 

We shall first calculate Ti for the low-density case 
using a kinetic average with the rigid-sphere model. 
Later we shall discuss the application of the Oppen-
heim-Bloom theory to this problem. 

Consider a Xe129 atom moving through the gas and 
making random collisions. The very small probability 
of a nuclear spin flip as a result of a single collision is, 
by perturbation theory, 

W=tr2\ I 
\J —o 

3C' (Qe-^o'dt (24) 

Here, co0=Y#o is the Larmor frequency in the large 
steady field H0 and 3C' is the interaction Hamiltonian 

3 C ' = - 7 M - H r . (25) 

An alternative expression for 3Cr is obtained from 
(13) noting that 

C O = R X P / M ^ 2 

where the relative momentum P=juVr, M is the reduced 
mass, and \ r the relative velocity. Thus, 

30'= - (7*/ / i iP) / ( i? ) I .RxP. (26) 

Since 5C;(/) is a very sharp function of time, the limits 
of integration in (24) have been taken from - c o to 
+ oo. For the same reason the factor e~ioi0t may be re
placed by unity. Thus, from (25) we obtain 

W=%y2 Hr(t)dt sin2#, (27) 

where 6 is the angle between Hr and H0. Since H r is 
orthogonal to the orbital plane, 6 is constant during a 
collision. We may anticipate subsequent averaging over 
collisions by replacing sin20 by its average over the unit 
sphere of 2/3, obtaining 

W = •iY n 
J —00 

Hr(t)dt (28) 

1 1 1 . Oppenheim and M. Bloom, Can. J. Phys. 39, 845 (1961). 
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The probability w, per unit time, that the Xe129 where 
nucleus flips is then given by averaging W over the 
collision frequency. Let n(Vr)dVr be the number of T_ C „ f*™ /?2//z?w 
atoms per unit volume with velocity relative to the ~~ / J J\ ) V 
given atom of Vr in dVr and b be the impact parameter 
of a collision; then rR 

w= f f WX2Tn(Vr)dVr Vrbdb (29) 
Jo Jo 

= f n(Vr)dVr. (30) /•** r 
Jo 1=2 db 

Jo J h 

= 2 / • < » / R2f(R)d<p+ db R2f(R)d<p, 
Jo Jo J Rm J 0 

where Rm^b sin<po and <po is the value of <p on impact. 
and Also, since sin<p= b/R, d<p= —bdR/(R2—b2),112 and so 

N 

We find at once for 1/Ti=2w 

l/T1=(2ir/3)y2[ n(Vr)VrdVr 
Jo 

Rf(R)b(R2-b2)~^2dR 

+2 /* db f RJ(R)b{R2-W)-V2dR, (34) 
J Rm J b 

tite 

/

, , * / / " ™ , \ /̂ -x a n d in the s( 
, ( L ' J ' ( 3 1 ) (34) reduces 

In the first integral we reverse the order of integration 
second we integrate by parts and find that 

to 

In order to extract a value of T\ from this expression, 1=2 I R2f(R)dR. (35) 
it is necessary to consider the dynamics of a collision. J Rm 
We shall return to this matter in a moment, but first let 
us note that Aa of Eqs. (12) or (14) might have been Inserting (35) in (33) we obtain Eq. (17), verifying the 
averaged over collisions in a manner similar to 1/2Y ^ ^ of t h e s t a t l s t l c a l a n d k i n e t i c averages in this 
In fact, such an average gives 

(Ao-)av= (2Te/3mc) I n(Vr)VrdVr 
Jo 

00 / • + 0 0 

Xf bdb f J[R(t)~[dt. (32) 
Jo J — 00 

case. 
Returning now to Eq. (31) for 1/Ti and putting 

di— —d(p/w, Hr=a}f(R), we get 

l / r i = | 7 T 7 2 f fl(Vr)VrdVr 
Jo 

xf bdbff f(R)d<pY (36) 
This expression can be transformed by (a) putting ° ° 
d<p=udt so that <p is the angle of the internuclear axis T o p r o c eed further we must assume a form for f(R). 
with the respect to the original relative velocity and F o r r e a s o n s men tioned in Part II we take f(R) = KBr*. 
(b) putting bVr=uR2, because of angular momentum I n t h e App e ndix it is shown that for the rigid-sphere 
conservation.12 We, then, obtain model 

<Ao-)av= (2ire/3mc) / h(Vr)dVr f bdb ( f Rr*d<p\ =—Rm~10. (37) 

X db R2f(R)d<p. (33) ' 
J 0 J 0 f _ 

/ n(Vr)VrdVr = NVr, 
It is instructive to verify that this expression agrees J ° 

with the statistical average of Eq. (17). For the rigid- w n e r e 

sphere model the integrals over cp and b do not depend y _ ,«, T , ,lj2 , . 
on Vr so r~~ / ? W ^ ' 

(Aa) v = {2ireN/3mc)I *s t ' l e m e a n relative velocity. Thus, we obtain finally 
av ' for Ti for the rigid-sphere model and f(R) = KR~6, 

12 Because of the very large angular momentum in a collision, * inn __ (<\AI\ ^ N 2V A77T2/7? 10 (2Q\ 
the classical approximation in the collision dynamics suffices and L/ * * ^ 7 r / ±OJJ1 ¥ r i V / 1 ' ^m ' v o y / 
it is unnecessary to take account of a possible transfer of angular . . 
momentum h to a nucleus. Eliminating K between (20) and (39) we get an equa-
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tion of the Korringa type 

40TT e2Rm
AN 

7 , « A < r > a v ) 2 = - - . (40) 
21 m2c2y2Vr 

In order to evaluate the right member of (40) one must 
assume a value for Rm, the effective rigid-sphere atomic 
diameter. I t is probably incorrect to take i? m =a, the 
value of R at which the Lennard-Jones potential 
vanishes. A better procedure is to compare Eqs. (20) 
and (21). Equating these, we find 

Rm=a/(1.672y\ (41) 

Inserting (41) in (40) we get 

jTi«Acr>av)2= 3.56X 10~8 per amagat. (42) 

Using Hunt and Carr's latest data,13 Trl= (S.0±0.S) 
X10"6 sec"1 amagat"1 and <A<r>av= (4.22±.05)X 10~7 

amagat -1 , we get 

[r1((A<r)av)2]eXp=3.6(zb0.4)X10-8 per amagat. (43) 

The remarkable agreement between (42) and (43) 
is, of course, largely fortuitous because of the theoretical 
approximations made. 

DISCUSSION 

We have shown that the measurements on the chemi
cal shift of Xe129 in xenon gas can be used as a calibration 
of the local field at a Xe129 nucleus due to the rotating 
diatomic system in an atomic collision and that the 
local field so determined accounts well for the observed 
relaxation time. 

The possibility of determining Hr from the shift data 
rests on the validity of Eq. (12). This equation has 
been justified by the use of Ramsey's formula (1) and 
the neglect of certain terms in the resulting Eq. (3). 
The neglect of these terms is rendered plausible by an 
order of magnitude estimate of them. The terms ne
glected are estimated to be several orders of magnitude 
smaller than the observed Aa. The final term included, 
however, has a theoretical value smaller than the ob
served Aa by one order of magnitude [see Eqs. (22) 
and (23)]. This discrepancy is disturbing and points 
to the desirability of a more refined calculation of the 
local field, Hr. 

Nevertheless, there seems little doubt that the spin-
rotational coupling is the effective mechanism for the 
relaxation of Xe129 in the gas. Unlike relaxation which 
can be produced by a variety of mechanisms, the 
chemical shift can only be due to the distortions of the 
electron clouds in collisions. Thus, the calibration of Hr 

by this shift seems unambiguous. 
The closeness of the agreement noted between experi

mental and theoretical values of ri((Ao-)av)2 is probably 

13 E. R. Hunt and H. Y. Carr, preceding paper, Phys. Rev. 
130, 2302 (1963). 

fortuitous. By taking Hr=KR~Q we have neglected 
overlap forces which are especially effective in close 
collisions. However, generalizing to Hr=KRrn does not 
affect the order of magnitude of the theoretical 
Ji«A<7)av)2 for n considerably larger than 6 (see 
Appendix). Another source of inaccuracy is the fact 
that Eq. (40) is based on the rigid sphere model in the 
collision dynamics. Some mitigation of this error is ob
tained by use of Eq. (41) for Rm. This effectively small 
value of Rm does not imply that atoms get that close 
together during a collision but rather it takes account 
of a longer time of association resulting from the at
tractive part of the interatomic potential. This way of 
including a realistic force law is, however, not very 
satisfactory. I t would be much better to include such a 
realistic potential in the calculation of T\ from the start. 

The Oppenheim-Bloom theory11 of relaxation in 
fluids provides a way of doing this. Recently Oppenheim 
and Bloom14 have inaugurated such a calculation by 
the use of the interaction Hamiltonian of the form (26) 
in their formalism. We have been able to show that 
their theory leads to a result for Tx which for a realistic 
potential can be determined by machine calculation. 
We have also shown that for the rigid sphere model 
their equations gives a result for 7 \ which differs from 
(39) by only 13%. This small difference which is pre
sumably due to their use of the "constant acceleration 
approximation" shows that at least in this case this ap
proximation is reliable and lends support to its use in 
the more general case. 

We have based our calculations on the assumption 
that xenon gas is monatomic. Bernardes and PrimakofF 
have shown theoretically that diatomic xenon molecules 
bound by van der Waals forces may exist in small per
centages in xenon gas. The possible presence of such 
molecules suggests that the mechanism involved here 
for relaxation might prove to be more effective than in a 
monatomic gas because of the longer times of association 
of a diatomic system. We now present a rough calcula
tion to show that such molecules in small percentages 
would be less effective than atomic collisions in pro
ducing relaxation. 

First assuming no molecules and only atomic colli
sions, let us assume that Hr is constant for a time r c of 
a collision and vanishes outside that time. The Eq. (28) 
gives W= %y2Hr

2rc
2. If r0 is the mean time between col

lisions, we get for 7 \ 

l/Tt^i^BrW/ro. 

On the other hand, by Eq. (12) 

<Acr)av= (p/3mc)(Hr/o))(rc/ro) 

assuming some mean value for co during a collision. 
These two equations give 

T V A ^ ^ f ( e /W 7 ) V-Vo-1. (44) 

1 4 1 . Oppenheim and M. Bloom (private communication). 
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Let us now assume on the contrary that only during 
molecular associations are significant shifts and flip-
pings produced. 

The calculation is similar to the atomic case with r c 

replaced by the mean time of a continuous molecular 
association and TO by rm, the mean time spent by a 
xenon atom between molecular associations. Then 

APPENDIX 

ri<A<r)av
2=|(6/mc7)2co-2T. (45) 

By the equipartition therorem, the quantities co2 will 
be about the same in (44) and (45). Expression (45) will 
hold if relaxation of xenon atoms and their shifts are 
caused by their transient existence in molecules and if 
the number of molecules is small compared to the 
number of atoms. Now we have shown by a more re
fined calculation that the right side of Eq. (44) is in 
accord with experiment. Since rm)>>ro it follows that the 
right side of (45) is very much smaller than the experi
mental value. We conclude from this argument that 
even if such molecules exist they cannot be responsible 
for the observed relaxation and shift. 

Our calculations have been based on the assumption 
of low density. Now it is a fact that at all the densities 
used by Carr and his associates, the gas is far from ideal. 
However, although the pressure and density are not 
linearly related it is a remarkable fact that both T-r1 

and (Ao-)av are within the limits of error proportional to 
the density. Indeed, in the case of (Ao-)av this propor
tionality extends well into the liquid phase. In making 
statistical evaluations of these quantities, they are inte
grated over the radial density function which has a 
"virial expansion" in the density p: 

g(r,p) = go(r)p+gi(r)p2-\ . 

If only the first term of this expansion is included, as 
in (15), one obtains a density-proportional result. If 
higher terms were important in this averaging they 
would show up as deviations from linearity of the ob
served Tf~l and (Ao-)av. Since such effects are not ob
served, we conclude that the lowest virial term suffices 
for these quantities, if not for the pressure; not only 
for the "rare gas," but also in the highly compressed gas 
and for (A<j)av in the liquid. Of course, Ti~1 has to be 
calculated on a different basis for the liquid and this 
remains an outstanding problem. The independence13 

of Ti on temperature for liquid xenon is a striking ex
perimental result which needs elucidation. 
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We shall prove Eq. (37) of the text. We shall treat 
the more general case of Hr—KR~n and evaluate 

/ » = / " bdbff R-»dv\=4(Jn'+JS), (Al) 

bdb( / R~nd<p\ 

fir/2 / r<P0 \ 2 

•2n+2 / Cos<po sirr2n+1<pod<po( / smn<pd<p J , 

where 

using 

and 

b = R sin<p — Rm sin^o, 

/ / = / " bdb(f R~nd<p\ 

aTT/2 v 2 

sin<pd<p j , 

= [ l / (2w-2)# 2 *- 2 ] ( / sm<pd<p J . (A2) 

By a partial integration, Jn' becomes 

Jn
f = [l/(n-l)R*n-*l 

X I smn~2<pod(po I $inn(pd(p 
' o Jo 

r r 
C / sinw-Vod<po / 
Jo Jo a TT/2 V 2 

s in»^J . (A3) 
Inserting (A2) and (A3) in (Al), we get 

Jn=4Bn/(n-l)R*n-\ (A4) 

where 
/•ir/2 f<pQ 

£ n ~ / sn r - n -Vo^o / sin'Vd^. (A5) 
Jo Jo 

Changing variables of integration to 

z = sin (fQ, w = sin <p/sin <p0, 
we obtain 

W / 
J o J o 

1 r1 zzdzwndw 

[ ( l - ^ X l - s W ) ] 1 ' 2 

and integrating with respect to z, we get 

1 r1 

Bn—- I wn~2£(w-\rw~1) tanh~%—l]dw. 
2 J o 

Using the expansion 

t a n h - ^ = Z w2k+1/(2k+l)} 
k=0 
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and integrating term by term, we get 

H . C . T O R R E Y 

2Bn=Z (2k+l)~1(2k+n-l)-1 

k=0 

and we get 

2 5 n = [ l / ( » - 2 ) X ^ ( » - 2 ) - ^ ( n / 2 - l ) + C / 2 ] 
+ ( l / » ) C ^ ( n ) - ^ ( » / 2 ) + c / 2 ] - l / ( « - l ) . 

This result may be expressed as 

+ E (2k+l)~H2k+n+l)-i-l/(»-l). w - 1 . j . t 

£„= ( J+J+ . . .+ +ln2) , (^odd) 
n(n—2)\ n—3 ) 2n 

These sums may be expressed in terms of the logarith
mic derivative of the gamma function, n—1/ 1 \ 1 

( 1 + H - - - + • Oseven) 
n-2)\ n-3/ 2n 

\p(x) = — C+Z) %/v(x+v), 

n(n—2y 

For n=6, we find J56=7/36 and JQ=7/45Rm
10. 
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Rotational Excitation and Electron Relaxation in Nitrogen* 
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Using the expression given by Gerjuoy and Stein for the cross section for excitation of rotational states in 
N2 by monoenergetic electrons, an exact expression for the average electron energy loss rate, (dWe/dt), is 
derived in the case of a Maxwellian velocity distribution. The results are used in the interpretation of cross-
modulation experiments performed at microwave frequencies in an afterglow discharge. Computed results 
are presented for several gas temperatures, T, in the range 300-735°K with the electron temperature, Te, 
being a running variable within 250°K of the gas temperature. It is seen that (dWe/dt) varies linearly with 
(Tt—T), when Te is less than 10% in excess of T; and that the slope, proportional to the inverse electron 
relaxation time, r, decreases as T~112. This is also predicted by an approximate, closed form representation 
of (dWe/dt), which agrees extremely well with the exact computation. The experimental data on r, found 
by microwave cross-modulation techniques, agree well with theory. Using Pack and Phelps' relationship 
between the electron momentum transfer collision frequency vm, and Te, it is found that the G factor varies at 
Tr3 / 2 , with G/Gcwcai ranging from 55.9 at 300°K, to 14.3 at 735°K. 

INTRODUCTION 

AS has been suggested by Gerjuoy and Stein1 two 
different approaches are feasible in order to 

compare the theoretically predicted cross section for 
rotational excitation with experimental results obtained 
from swarm experiments. The first approach, recently 
utilized by Frost and Phelps,2 solves the Boltzmann 
equation with the rotational excitation terms included; 
and a reiteration procedure determines the collision 
cross sections that yield the closest fit to the presently 
available data on transport coefficients. In this paper, 
we present a second approach which is based on the 
cross-modulation phenomenon taking place during 
the afterglow of a transient, quiescent nitrogen plasma.3 

The electrons, being close to thermal equilibrium with 
the gas molecules, can be expected to obey a Maxwellian 

* Work supported in part by the Army Missile Command and 
the Advanced Research Project Agency. 

1 E. Gerjuoy and S. Stein, Phys. Rev. 97, 1671 (1955). 
2 L . S. Frost and A. V. Phelps, Phys. Rev. 127, 1621 (1962). 
3 M. Mentzoni, C. Montgomery, and R. Row, Bull. Am. Phys. 
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velocity distribution. Thus, an average value of the 
electron energy-loss rate can be computed and compared 
directly with observed data on the electron relaxation 
time, r. This will also serve the purpose of determining 
the validity of the assumptions used for the cross-
modulation experiment, namely, that the average 
electron energy-loss rate, (dWe/dt), is proportional to 
the excess electron energy, Te—T, T being the gas 
temperature. 

Of particular interest, to many workers in the field 
of plasma diagnostics and ionospheric research, is the 
fractional electron excess energy loss factor, or the G 
factor. Apart from the cross-modulation phenomenon, 
which can be used as a diagnostic tool, substantial 
microwave heating of the electrons is often desired. 
In the case of the noble gases, the electron temperature 
for a specified field strength can be computed, since the 
G factor is constant (i.e., independent of the electron 
temperature.) In molecular gases, this is far from being 
the case and it is one of the purposes of the work 
reported here to find how the G factor varies with Te. 


