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hemisphere. Since this change occurs in the energy 
region of the second nucleon isobar, iV*(1512), it may 
perhaps be due to an interference between the rapidly 
varying resonant amplitude and nonresonant states of 
opposite parity. 

We wish to thank Professor Luis W. Alvarez for his 

1. INTRODUCTION 

SINCE the paper of Chew and Low,1 single-particle 
exchange models have been much exploited. One of 

the applications they suggested was to the determina­
tion of n-n scattering observables from n-d scattering: 
The differential or total n-n cross section could be found 
from the residue of a pole in the corresponding cross 
sections for the process n-\-d —>n-\-p-\-n. Some indica­
tion as to the practicality of this idea can be found by 
looking at the analogous reaction p+d —>n+p+p, 
using it to determine, in this way, the (known) p-p 
cross sections. This experiment is being done by 
Griffiths and Batty,2 using the 30-50 MeV LINAC at 
the Rutherford Laboratory, Harwell. A modified Chew-
Low procedure has already been used by Kuckes et a/.,3 

and agrees qualitatively with the data. 
The pole, which is of second order, occurs in a momen­

tum transfer variable A2; there is also a first-order pole 
at*the same point. Apart from these, the cross section 
is, for purposes of extrapolation, usually expressed as a 
polynomial in A2. But this is only justified if there are 
no other singularities in A2 inside a circle, whose center 
is the Chew-Low pole, including a substantial part of 
the physical region. In other words, it will be difficult 
to separate out the effect of the single-particle exchange 
term if other processes are equally important in the 
same region of phase space: Rather, one ought to in­
clude terms in the extrapolation, or fitting, curve—for 

* Based, in part, on a thesis submitted to Cambridge University 
for the degree of Ph.D. Work performed partially under the 
auspices of the U. S. Atomic Energy Commission. 

1 G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959), 
referred to as C-L. 

2 R. J. Griffiths and C. J. Batty (private communication). 
3 A. F. Kuckes, R. Wilson, and P. F. Cooper, Jr., Ann. Phys. 

(N. Y.) 15, 193 (1961). 
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instance, additional poles—to take account of these 
processes. 

The possibility of such singularities is something that 
can be examined, to some extent, theoretically. For 
example, Landshoff and Treiman4 have pointed out that 
a three-point graph (see Sec. 3) could prejudice the 
determination of the ww cross section from the irp —> inrp 
data. The first step is to locate the singularities of the 
amplitude T; this is done in Sec. 3, in which poles, 
2- and 3-point graphs are analyzed, and contributions 
from final-state interactions considered. In Sec. 4 the 
cross sections are defined in terms of T, and some of 
their singularities found.6 Sections 3 and 4 use the 
kinematical results of Appendix A, which are dealt with 
descriptively in Sec. 2. 

The conclusion of this analysis, so far as it goes, is 
that certain regions of phase space are likely to be 
"dangerous," being strongly influenced by final-state 
interactions. In Sec. 5 we show how to avoid these 
regions, treating in particular Griffith's experiment. 
Kinematical singularities are eliminated, and sugges­
tions offered on the form of extrapolation curve to be 
used near the dangerous regions. No account of polariza­
tion effects is given. 

2. NOTATION AND KINEMATICS 

A. 

For the five-particle process £Fig. 1 (a) J 

1+6 -> 3 + 4 + 5 

there are ten possible scalar products pipjii^j) which 
4 P. V. Landshoff and S. B. Treiman, Nuovo Cimento 19, 1249 

(1961). 
6 1 . T. Drummond, in a preprint received after this work was 

done, has also considered this problem. 
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we may choose as variables. Only five are linearly 
independent though, the remainder being redundant, 
corresponding to there being five degrees of freedom in 
the final state after conservation of over-all four-
momentum is satisfied. We choose the independent 
variables to be [the metric is (1—1—1—1)] 

w=(p1+p6y, A*=(p5-p6y, &=(pz+p*y, 
s= (PZ+PA)\ t= (Pi-Px)2 

which will be called collectively (#). The C-L pole is 
at A2=m2, where m is the nucleon mass; it is illustrated 
in Fig. 1(b). 

In Griffith's experiment, the incoming nucleon has a 
laboratory energy of 30 MeV, so nonrelativistic vari­
ables are adequate, once the analysis of singularities has 
been done in terms of the (3). The set of five non­
relativistic variables will be called (91). Denote by qi 
the magnitude of the momentum of 1, by p that of the 
recoil particle 5 (both in the lab system in which the 
deuteron, particle 6, is at rest), and by Q the relative 
momentum of 3 and 5 in their cm. system. If z and q 
are the cosine of the scattering angle and relative mo­
mentum of particles 3 and 4 in their cm. system, (91) 
is the set (#i2,^i2,QM q21,2). (91) and (#) are related by 

(32==4^2+4Q2j A2=m2-2(^2+a2), s=4m2+4g2, 

W2=9m2-6a2+2qi
2, (1) 

/= -2q2-p2-~a2+2qz(p2+q2+a2yi2. 

Here <?2=|q2|, and the deuteron mass is 2m—a2/m; 
a2/m is the deuteron binding energy. 

Since the C-L pole is at p2= —a2, it is useful to define 
the dimensionless variable x— (p2-\-a2)/q-?. The x plane 
is a more convenient scale than the A2 plane for discuss­
ing the positions of singularities in relation to the 
physical region, which we now describe. 

B. 

Although the variables (#) or (91) are independent, 
physical restrictions on energies and angles place limits 
on their values. We mention two reasons why we must 
learn something about the allowed physical regions. 
First, the limits on p2 are especially important. The 
maximum range of p2 is 0<p2<qi2, while the C-L pole 
is at p2= —a2^qi2/30. Hence, for the extrapolation, we 

(b) 

FIG. 1. (a) T is the amplitude, pi and p$ are the four-momenta 
of the incoming nucleonfand deuteron, respectively; pz> pi, and ps 
are those of the outgoing nucleons. (b) The C-L pole at (pn—pa)2 

= p22 = m2. Particle 5 is the "recoil" particle having momentum p 
in the laboratory system. 

want experimental points particularly in the region of 
low p2. It follows that we must know how to ensure that 
this region is accessible for a particular experiment. For 
instance, C-L already pointed out that, for a given q2

f 

only part of the full p2 range is attainable. We shall 
recall this point below, and also further delimit the 
range of p2. 

Second, in Sees. 3 and 4 some singularities are 
analyzed. We are interested in their positions in the A2 

or x planes, but they will, in general, depend on some or 
all the other four of the (#)• So we must know what are 
the ranges of all the variables for a physical process, so 
that the nearest and furthest distances of approach of 
the singularities to the C-L pole may be found. The idea 
is then to choose experimentally a region of phase space 
such that what seem to be the worst singularities are 
not too close to the C-L pole. To do this, the preferred 
region of (£f) or (91) space must be translated into a 
region of laboratory phase space, since none of Q2, t, or 
q2, for example, are measured directly; this is done in 
Sec. 5. 

Let Ei be the lab energy of particle i, and zy the 
cosine of the lab angle between i and j , the polar axis 
being taken along the direction of qx. Equation (Al) 
and the requirement 12*51 < 1 give the C-L phase 
diagrams (Figs. 1 and 2 of reference 1) for p2 and q2. 
For #2=#o2=i(2i2—«2, the allowed p2 region is 0<p2 

< (4/9)#i2; this is the only value of q2 for which p2=0 is 
attainable, and so is the "best" q2 to choose experi­
mentally, since the region p2^0 is of especial interest. 

We consider now other limitations on the values of p2. 
Since P32 must be non-negative, from (A5) it follows that 

p2<2Q2-t/2, (2) 

and since the momentum transfer (pi—ps)2 is non-

p2>-2q2-t/2-a\ (3) 

The condition \zn\ < 1 is expressed in (A7), where we 
have taken q2=qo2. Neglecting a2, putting u=2Q2, 
v=3p2, w~3t/2y and scaling by qi2, (A7) may be 
written as 

- f 0+ l ] 1 / 2 < (v-u+w+% )<§ O + I P 2 . (4) 
The planes v, w= constant cut the region (4) in parab­
olas. Combining these results, the maximum extent of 
the physical region of p2 is given by the C-L diagram; 
the actual upper limit on p2 is the value from Fig. 1, 
Eq. (2) or (4) whichever is the least [the limit (4) is 
weaker than (2) provided Q2<i#i2], while the lower 
limit is the largest of (3), (4), and Fig. 1. Figure 2 shows, 

positive 

FIG. 2. The C-L 
pole is at # = 0 ; the 
maximum extent of 
the physical region 
if c?/q£<x<{±/9) 
+ (<*/*&. 
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in the x plane, the C-L pole and the maximum extent 
of the physical region for q2=q0

2. 
We can also obtain phase diagrams linking other 

variables. The restriction |2i4 | < 1 is expressed by (A8), 
and solving for / gives the t—Q2 diagram of Fig. 3. 
Finally, since qi—3p=4Q—2q, using (Al) and the 
condition |cos(Q,q)| < 1 , we get the Q2—q2 diagram of 
Fig. 4. In particular, at q2=qi2, 0 < Q 2 < ^ i 2 ~ Jo:2. These 
diagrams show the interconnection between allowed 
values of p2, Q2, q2, and /. 

C. 

As we mentioned in Sec. 2A, of the ten possible scalar 
invariants only five are linearly independent; we chose 
five of the form (pizkpj)2, the set (#). We call the re­
maining five such products Sa [the relations between 
them and the (#) are given in (A9)-(A13)]. Three of 
the Sij involve A2 directly: This means that singularities 
in one of these are effectively singularities in A2, as 
Landshoff and Treiman have pointed out.4 

A dependence more complicated than linear is found 
if we choose a nonvariant variable as one of the inde­
pendent five. Two examples arise. First, suppose we 
want to know the singularities of the partial cross 
section da/dsdtdA2=as. a% is obtained from a^—da/ 
dsdtdA2dQ2 by a single integration, and the singularities 
of (74 are just those of | T |2, apart from kinematical 
factors. For 0-3 there is one less degree of freedom, so 

£/q 

.1 

.05 

FIG. 4. The area 
inside the ellipse is 
the physical region. 

0 .05 .1 .2 
Q2/qf 

that one of the ($)—namely, Q2—is redundant. The 
integration involved can be written as one over either 
Q2 or an angle variable, such as the relative azimuthal 
angle <p of particles 3 and 5 in the c m . system of 3 and 4. 
In the first case the range of integration—the physical 
region of Q2 when s, t, and A2 are given—has to be 
found. This is most conveniently done by expressing Q2 

in terms of s, t, A2, and co$<p, for then the condition 
|cos<p|<l gives the Q2 range. [See (A15')J But it is 
awkward to have A2 appearing in the limits, since it is 
in that variable that we are interested in the properties 
of 0-3. Instead, we may integrate over <p rather than Q2, 
in which case the limits are simple, but Q2 has to be 
replaced by (A15'). One can then find the singularities 
of 0-3 by considering how those of the integrand move in 
the <p plane as A2 is varied. Similarly, for (r2=da/dsdA2, 
t as well as Q2 has to be integrated over. By expressing 
/ in terms of s, A2, and cos0, the cosine of the scattering 
angle of 3 and 4 in their c m . system, by (A 14), a2 is 
written as a double integral over 6 and <p. 

Second, the experimental arrangement may limit the 
number of degrees of freedom. For Griffith's experiment, 
all particles are coplanar, so that the restriction <pz±= w 
is imposed, where ^34 is the relative azimuthal angle 
of 3 and 4 in the lab system. Now only four variables 
are independent. The cross section of interest is related 
to 6V3/6V34 with <p34=7r. Hence, Q2 is no longer a free 
variable and has to be expressed as a function of s, t, A2, 
and <pu- [See (A19).] We shall see in Sec. 3 that 
singularities in Q2 and the related variables S45 are just 
the important ones; in Q2 they occur at Q 2 ~0, so that 
in (A20) and (A21) we have taken Q 2 =0 to simplify the 
equations. 

The main purposes of these considerations is to stress 
that in the analysis of Sec. 3 we have to be careful to 
include all singularities in variables that are not 
independent of A2. 

3. SINGULARITIES OF THE BREAK-UP AMPLITUDE 

A. 

For definiteness we shall consider the process 
p-{-d—> p+n+p. There are nine single-particle ex­
change poles occurring when the initial and final parti­
cles can be formed into two groups, each with the 
quantum numbers of a single particle.1 One is the C-L 
pole at A2=m2 (or # = 0 ) ; another is the pole in W2 at 
the helium mass, which is independent of A2. We list 
the other seven, the positions being evaluated for 
£2=2o2. 

The only poles involving A2 directly [cf., (A9)-(A13)] 
are those at Si5=M2> £=M2> and Sse=m2

y where /x is the 
pion mass. The first is at #~0.7 , and the second is at 
oc——%lJL2=2q2—t/2. The nearest approach to x=0 is 
found by choosing t=—4:q2 (the least value of t allowing 
an extrapolation to real z at #=0) , in which case its 
position is x~\. For t—0 it is at #^0 .8 . The pole 
5*36=m2 is at ^ 2 = 2 Q 2 - / / 2 + a 2 . From Eq. (2) this is 
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just a2 from the upper limit of the physical p2 range. 
I t is of the same type as the C-L pole, a2 below the 
physical region. 

The remaining poles involve A2 only when one or both 
of t and Q2 is not a free variable. a2 and 0-3 are considered 
in more detail in Sec. 4; for the moment we note the 
singularities for the cases z=0, ± 1 , cos<p= dbl. Neglect­
ing a2, the pole Q^—mi is [A(15)] at %—\ for cos<p= 1, 
2=0, while for z— 1, — 1 it is at x=0 and 4/9, respec­
tively. The position of the S^=mi pole is found by 
interchanging the sign of z and cos<p. As z varies, the 
t=n2 pole describes an arc of a circle in the x plane; its 
nearest distance from x—0 is at # = ± 1 , for which it is 
at x=—fj2=t2fjLqi) | # | ^ 0 . 7 . The pole i=n2 is found by 
changing the sign of z. For 2 = ± 1 and Q 2 =0 the pole 
5*36=m2 is at x=2a2/qx

2 [Eq. (A15')] and for s = ± l it 
is the pole SA6=M2 which is at x—2a2/qi2 when Q2 has 
its maximum value (\q-?—a2/2 when #2=#o2, according 
to Fig. 4). 

For the case in which 3 and 4 are coplanar, similar 
results hold. Using (A22) and (A23) to express Q2 in 
terms of p2, q2, and z one finds that the 536 and Q2 poles 
are at x = 0 for z— — 1, and the S46 and £45 ones are at 
# = 0 for z= — 1 . For 2=0, the Q2 and S45 poles are at 
# ^ J (A20) while those in 6*36 and 546 appear at the 
roots of the cubic 4#3+0.92x2--1.52H-l = 0. The cubic 
has one real root x^0 .9 , and two complex roots, 
| a | M ) . 5 . 

We see that some single particle poles may be close 
to, or on top of, the C-L pole when the variables in­
volved are at the limits of their ranges. However, 
neither the Sz$ nor the 546 pole should be important in 
an experiment which selects events in which 5, rather 
than 3 or 4, is a spectator; and we shall see below (Sec. 
3C) that the Q2 and 545 poles, corresponding to triplet-
state interactions, are much less important than terms 
accounting for singlet-state interactions. In any case, 
all these singularities could be included explicitly in the 
fitting curve. 

B. 

The next lowest order perturbation theory graphs are 
the 2- and 3-point graphs of Figs. 5 (a) and (b); the 
singularities of the latter include those of the former. 
Both graphs lead to branch points rather than poles: 
Fig. 5 (a) of the square root, Fig. 5 (b) of the logarithmic 
type, 

A full description of the relevant properties of 3-
point graphs has been given by Bonnevay et al.Q which 
contains appropriate references. Application to the 
present problem is discussed, and only the results are 
given here. Defining 

qi2=m22+m^2— 2wi<mzX, 

and cyclically for Y and Z in terms of qi and qz
2, the 

branch points from Fig. 5 are at X, F , Z— — 1. As well 
6 G. Bonnevay, I. J. R. Aitchison, and J. S. Dowker, Nuovo 

Cimento21, 1001 (1961). 

FIG. 5. (a) 2-point 
graph (normal 
threshold), (b) 3-
point graph (anom­
alous threshold), qi 
are the external four-
momenta, mi are the 
internal masses. X> 
Y, and Z are denned 
in the text. 

(a) 

(b) 

as these normal thresholds, the amplitude T repre­
sented by Fig. 1 may also have branch points— 
anomalous thresholds—at points on the surface S given 
by 

X2+Y2+Z2-2XYZ-1 = 0. 

Reference 5 established which of these points are 
singular on the physical sheet: As a first orientation, it 
is these ones that are expected to be important 
physically. 

In our case, at least one of the qif say g3, in Fig. 5 (b) 
must represent a stable particle: This means that Z is 
real, say Z=a, — l<a<l. In the subsequent analysis, 
we examine only graphs in which one or both of Y and Z 
represent either A2 itself or an Sij related to A2; the case 
in which / or Q2 is not a free variable is not discussed. 
Hence, this section applies directly only to the singulari­
ties of 0-4. Also, all positions will be evaluated at q2= q<?. 

To apply the rules of Bonnevay et a/.6 systematically 
we must enumerate the 3-point graphs occurring in the 
process of Fig. 1. Of the cases in which two external 
lines represent real particles, variables Y and Z, only 
those four need be considered in which the invariant 
belonging to the third line is one of (If), (6t), t=3 ,5 , 
since the others do not involve A2; the shorthand (ij) 
stands for the invariant associated with particles i and 
jy a bar denoting a negative four-momentum. Typical 
graphs are shown in Figs. 6(a)-(c). The first two have 
only normal thresholds. For Fig. 6(a), the branch point 
is at x=2fJ

2+ 2(f+t/2 for i = 3 , x^2y2-a2+l-2q2 for 
i==S. The second is fixed, at #~f, while the first is at 
# > f for t>— 4#2. For Fig. 6(b) the branch points are 
at x^zk2tn2=30, very far from # = 0 , illustrating the 
general point that the normal thresholds nearest to the 
physical region are those associated with the lowest 

i \ 

• / 

(it) 

(o) 

FIG. 6. In this and subsequent graphs, the dashed lines repre­
sent pions, the solid ones nucleons, and the double line is the 
deuteron. 
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A 
(e) 

FIG. 7. (a)-(d) Possible configurations of the five external lines 
at the vertices of a 3-point graph, (e) Structure of intermediate 
states in a 3-point graph. 

mass intermediate states. Figure 6(c), on the other 
hand, has the usual anomalous threshold associated 
with the deuteron vertex.7 For i = 3 , the branch point 
is at #=J(^2+0.35wju+4a2+4Q2—/), which reaches 
x=0.6 for *=Q 2 =0. For i=S it is at a=—0.6. The 
normal thresholds are both far away, \x\ ~ 2 . 5 . 

The remaining graphs are those in which only one 
external line represents a real particle. The possible 
configurations of the external lines are shown in Figs. 
7(a)-(d). Figure 7(c) does not have to be considered as 
it does not involve A2, and the same is true for (a) and 
(b) for i = 4 . We then have to insert the lowest mass 
intermediate states with the structure of Fig. 7(e), 
consistent with the conservation laws. The nearest 
normal thresholds have already been discussed: I t 
remains to analyze the anomalous thresholds. 

I t turns out that only two three-point graphs can 
cause trouble. For the others, the kinematics of the 
physical regions imply that 2 is either not singular on 
the physical sheet, or else the singular points are far 
from p2^0. One comes from contracting the line / in 
Fig. 8. For the maximum allowed Q2, the singularity is 
at %= — 0.5—1/2. From (A8) we see that t has the range 
-lqi2-fa2>t>-qi2+2a2 for this Q2, so that it 
approaches very close to x=0. The maximum Q2 corre­
sponds to the production threshold for 4 and 5 in the 
final state. The other graph is the same with 3 and 5 
exchanged, for which x^O is reached at Q 2 =0, the 
threshold for producing 3 and 5 in the final state. 

These graphs may be interpreted as final-state inter­
actions,8 and could well be important. However, they 
represent the effect of a point interaction at the (45) 
or (34) vertex. The singularity we have found is most 
important in the phase-space region in which 4 and 5 

l \ —-> 3 
J FIG. 8. "Final-state inter-
i t > 4 action" graph. 

7 R. Karplus, C. M. Sommerfeld, and E. H. Wichmann, Phys. 
Rev. I l l , 1187 (1958). 

8 R. F. Sawyer, Phys. Rev. Letters 7, 213 (1961). 

(or 3 and 4) have nearly zero relative momentum, which 
is just the region in which the nucleon-nucleon cross 
section rises very sharply. I t is more likely that the 
main final-state effect is this low-energy "resonance," 
which we now consider. 

C. 

We recall that we are trying to separate out the 
effects of the C-L pole which, in the reaction 
p+d —> p+n+p, is important when the energy of the n 
is low. Now, there are also processes leading to a slow 
proton in the final state: The incoming proton may 
collide with either target particle and only just dis­
sociate the d, or it may exchange with the target proton 
having transferred most of its energy to it. In these 
cases, since the low-energy n-p cross section rises 
sharply, the effect of the C-L pole may be masked. 

There is evidence that this is so. For an incident 
proton energy of 9 MeV, Nakada et al.9 have measured 
the cross section a2=dcr/dE,dQl

/ where Q' is the solid 
angle around p', the momentum of the recoil n in the 
over-all cm . system, and Ef=pf2/2m. a2 is related to cr2, 
using (A13). At 0°, the spectrum da/dE' shows two 
pronounced peaks, at low and high neutron energies. 
A simple calculation shows that the position of the 
low-energy peak is not correctly given by the C-L term 
which peaks too near £ ' = 0 , although one can perhaps 
distinguish a small shoulder corresponding to it. A 
detailed calculation by Komarov and Popova10 includ­
ing both p-p and n-p final-state interactions gives good 
agreement, the high-energy peak being ascribed to the 
p-p interaction. So, at least for <r2, singularities from 
processes other than the C-L pole are of greater weight 
than it. 

I t is desirable to have a simply analytic expression to 
represent these effects. Such a form was proposed by 
Watson,11 and has been re-examined by McVoy.12 These 
authors suggest that the final-state interaction of 3 and 
5 can be represented by a term in the amplitude 

/ = [Vs sin5/1 Q | ] X (factors varying slowly with | Q | ) , 

where 8 is the 3-5 phase shift. If we assume that only 
the scattering length a enters, / can be written as 
F/tylQl+ar1), where F varies slowly with | Q | . The 
main singularity is then a pole in the Q2 plane at — ar2. 
Notice that / satisfies unitarity, and has the right 
threshold behavior at Q 2 =0. 

For a detailed critique of this assumption for / we 
refer to references 11 and 12, remarking only that the 
essential criterion for its validity—that the scattering 
cross section be large compared with the cross section of 
the region of interaction—is well satisfied in this case, 

9 M. P. Nakada, Phys. Rev. 110, 595 (1958). 
10 V. V. Komarov and A. M. Popova, Zh. Eksperim. i Teor. Fiz. 

38, 1559 (1960) [translation: Soviet Phys.—JETP 11, 1123 
(I960)]. 

11 K. M. Watson, Phys. Rev. 88, 1163 (1952). 
12 K. W. McVoy, Phys. Rev. 121, 1401 (1961). 
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especially for singlet scattering. There are other 
indications that it is reasonable. The n-p singlet 
scattering length as is much larger than the triplet 
one, at: as^ — 20 F, at^S F.13 It follows that the pole 
Q2= —#s-2 is closer to the physical region than that at 
— at~

2, corresponding to the results of reference 10. If 
we neglect as~

2, the point Q2=0 is at E'~0.65 MeV for 
forward scattering, just the position of the low-neutron 
energy peak in Nakada's data.9 Also, the position and 
width of the high-energy peak are very well given by 
taking this form for / , with a singlet p-p scattering 
length of —5.5 F.14 Indeed, Ilakovac et al.15 have used 
this approximation to determine the n-n scattering 
length from the reaction nd —» nnp, as Singh had pro­
posed earlier.16 

Singh has shown16 that the contribution of the plane 
wave part of the final-state wave function is only about 
one seventh of that including interactions. Some idea of 
the relative magnitudes can be got by considering a 
point-interaction model. A calculation similar to that 
of Karplus and Rodberg,17 for example, implies that 
the amplitude for the process in which the incoming 
proton hits the target proton, which then interacts with 
the neutron, is proportional to 

1 *MIQI) 
\p2+a2 | (q3+p) | 

r(|q.+p|/2)+|Q|+fa-ii 
n \ (5) 
L(|q8+p|/2)+|Q|-iaJJ 

XI: 

where fpp, fnp are the p-p and n-p amplitudes, respec­
tively, fnp= — (i | Q | +#~1)~1 and the deuteron wave 
function is (all2/ir)e~ar. The first term of A (the plane 
wave part) is just the C-L pole; the second is the final 
state interaction. The singularities of the logarithm are 
exactly those of the corresponding 3-point graph 
discussed earlier, but the main |Q| dependence cer­
tainly comes from fnp. At |Q |=0 , fnp^—ds (taking 
only the singlet interaction) so the second term in A 
is — (ias/2p)ln£(p+ia)/ (p—ta)], so the logarithm is pure 
imaginary. At E'^0.65 MeV, taking p' along q, the 
second term is roughly nine times the first, and of the 
same sign (for the triplet interaction, the opposite sign 
if at would lead to destructive interference). Of course 
the over-all effect is not so pronounced, since for a2 we 
integrate over the angles between q and p': For example, 
at p=0, corresponding to cos(q,p')~90° and £ ' = 1 
MeV, the two terms are roughly equal. Nevertheless, 
it is clear that the pole is masked. 

13 J. M. Blatt and V. Weisskopf, Theoretical Nuclear Physics 
(John Wiley & Sons, Inc., New York, 1952), p. 71. 

14 H. P. Noyes and D. Wong, Phys. Rev. Letters 3, 191 (1959). 
16 K. Ilakovac (unpublished). 
16 L. S. Singh, thesis, University College, London University, 

1959. 
17 R. Karplus and L. S. Rodberg, Phys. Rev. 115, 1058 (1959). 
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FIG. 9. The positions of the final-state interaction pole 
for various q2 and z. 

This also emerges from considering how the pole in 
fnp moves in the x plane, which it is necessary to do for 
0-3 and cr2, and if 3 and 4 are coplanar. We treat the 
coplanar case as an example, taking as~

2~0. Using 
(A24) with q2=qo2, neglecting a2, we find that it is at 

*=(3+^)/18±(15+^)1 /V18, 

so that it goes from 0 to 4/9 as z goes from — 1 to 1 (the 
points move off the physical region if a2 is included). 
Equation (A24) can also be solved for different q2\ the 
results for # 2=| , i , \ are shown roughly in Fig. 9. It is 
clear that this singularity is near the physical region, 
and can be dangerously close to the C-L pole. The value 
q2=\ is slightly more favorable than qo2, since it allows 
larger s's to be used. As q2 decreases the lowest allowed 
p2 increases, but it is still low enough at q2=i to make 
it worth considering doing the experiment at this value. 

It is suggested then that the 3-point singularity—that 
of the logarithm in (5)—is less important than the pole 
of fnp. The total amplitude T is antisymmetric in 3 and 
4, so that the final-state interaction part has the form 

( — — ) 
\i IQI +aa~

l ¥ I p4— PI +ar1/ 
Xfactors slowly varying. (6) 

The positions of the pole in the second term of (6) may 
be found from those of the first by interchanging the 
sign of z. 

4. SINGULARITIES IN THE CROSS SECTIONS 

A collection of singularities of the amplitude has been 
discussed; to justify an extrapolation of observed data, 
we have to show that the corresponding cross section 
has a large enough radius of convergence about the C-L 
pole. This has first to be defined so that it is an analytic 
function. In the physical region, where all variables are 
real, the total cross section is essentially 

. - / , T\*dr, (7) 
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where dr is the phase-space element and T is the total 
amplitude. But we must not use (7) to define a every­
where, since T*, the complex conjugate of T, is not an 
analytic function; rather, the definition must coincide 
with (7) in the physical region while allowing continua­
tion away from it. 

We illustrate the definition to be adopted by con­
sidering the examples of the singularities treated in 
Sec. 3. For poles, a is easily defined. Consider the term 
(t2—)tt2+ie)~1, in which e is a small positive number 
tending to zero (the Feynman prescription for satisfying 
causality). In the physical region, the denominator 
never vanishes, so e can be put equal to zero, and the 
contribution to a is 

where R is regular in A2. Apart from those of the 
integral, then, a2 has singularities at ei=zkm, or 
A2=m2+sdz2m\/s. Also, 

<r* = lR'/(ei*-n*)*l[\T\*dv 

H [ l / ( / - M 2 ) 2 > 

which also defines au off the real axis. For the triangle 
graphs e is important, though. Suppose for some such 
amplitude F, Z is associated with a stable particle 
vertex, Y with an energy variable and X with a 
momentum transfer variable. In the physical region, 
- K Z CI, F < - 1 , X > 0 . Since F is on the cut which 
starts from the normal threshold F = — 1 , we have to 
consider FPPP(X, Y—ie,a) as e—-»0; the suffixes p(u) 
on F mean that the variables X,Y and a are in their 
respective physical (unphysical) sheets.6 The contribu­
tion of F to a is then proportional to 

where R' is regular in A2, so that cr3 has a second-order 
pole at ei=d=m. 

We ought now to rewrite | T |2 in the appropriate way 
for (8), and use the usual technique5,6 for discussing the 
singularities of the integrals. In practice, this seems to 
be very awkward for the triangle graphs. As mentioned 
in Sec. 2C, if we integrate over cos0 and <p, a nonlinear 
A2 dependence in / and Q2 is introduced via (A 14) and 
(A 15), considerably complicating matters. The results 
of Sec. 3 apply directly only to 0-4, therefore, and to 
discuss the singularities of 0-4 we must find those of the 
various amplitudes on the unphysical sheets like pup. 
This can be done using the technique of Bonnevay etal.,Q 

but will not be discussed further: We assume that Fig. 8 
(and the symmetric one with 3 and 5 exchanged) still 
represents the most dangerous graph, and any other 
dangerous one is treated similarly. 

Only the pole terms are easily handled. The /=/x2 pole 
has been discussed by Ascoli. Dropping the factor 
R(ei2—m2y/2, its contribution to <r2 is 

0"2 
(14) -*L 

dz 

l-2q2-x+2q2(q2+x)^2-fJ
2-ieJ 

(9) 

<r*=lim [FPPP(X, Y-ie, a)Fm*(X, Y-ie, a)dr. u s i n S ( A 1 4 ' ) ' T h e . r 0 o t i s P o s i t i v e w h e n * i s red and 
«-»° J >—q2> As we saw in Sec. 2, the denominator vanishes 

By inspection of the Feynman representation of F, 

FPPP*(X, Y—ie, a) = Fppp(X, Y+ie, a) 

and by continuity 

Fppp(x> Y+ie, a) = Fpup(Xy Y—ie, a). 

So <rF may be written as 

aF=\im [FPPP(Z, Y-ie, (fiFpupiX, Y-ie, a)dr (8) 
e-»0 J 

which defines the continuation of aF for all F.18 

We are particularly interested in the cross sections a2 

and 0-3. Ascoli19 has shown that 

<r2=f(s,W2)(dx15/dA2) f\T\2dcosBdcp. 

From (A150, d#15/dA2 has the form g(s,W2,A2)/ 
(ei2—m2)z/2 where g is regular in A2, so that 

a2^[R(s,W2,A2)/{e1
2-m2yi2'] f \T\2d cosBtfy, 

along an arc of a circle in the x plane but no pinch occurs 
and only the end-point singularities remain: (9) 
integrates to give 

0"2 
(14) -t 47T 

(10) 
Aq2(x+q2)- (2q2+ix2+x)2J 

which has poles at x— — fji2dz2iq/x. a2—a2
u is free of 

these poles, though there will still be contributions from 
cross terms involving them. 

If these interference terms are small, it is enough to 
consider the pole terms independently. Of these, the 
closest to x=0 are those at 536, S^=m2, and £45, 
Q2=md

2, and the final-state interaction poles. Using 
(A14') and (A15), omitting the kinematical factors, and 
taking q2=qo2, the S36 pole contributes 

2w(a+bz) 
0-3 

( 3 6 ) -

where 
l(a+bz)2-c2(l-z2)J 3/2 

(ii) 

a=—qi2+p2, 

/ | g i 2 - a V / 2 

(<?i2 •P2), 

18 See also reference 4. 
19 R. Ascoli, Nuovo Cimento 18, 744 (1960). 

[ )#*(4$i*-9#»)1'». 



N U C L E O N - D E U T E R O N B R E A K U P R E A C T I O N 2491 

o-3
(36) is singular at # = 0 for 2= + l, and at x^ —0.9, 

x=0A±0Ai for 2 = 0 (see Sec. 3A). Similarly, the 
contribution to cr2 is 

4?r 

a 2 — b 2 — c 2 

which is singular near # = 0 . These results hold for the 
5*46 pole if we change the sign of z. 

The Q2 and S±h poles are of the same type, though we 
argued in Sec. 3C that their effect is probably small. 
Using (A15), we find that o-3(Q2) is singular at x=0 for 
Z = — 1 , while <T2iQ2) is constant; exchange of 3 and 4 
is effected by putting — z for z. 

which is singular near x=0. 
The result is true for the other final-state interaction. 

As expected, these are the most troublesome singular­
ities; in an extrapolation of a2) one should include a 
term of the form (12) in the fitting curve, which allows 
for these dominant effects explicitly. In fact, one might 
sum up the results of this, and the previous, section by 
saying that extrapolation to partial cross sections seems 
likely to be more successful than extrapolation to total 
cross sections. This is because each integration leads to 
the inclusion of "dangerous" phase-space points—re­
gions for which the various singularities approach 
closest to the C-L pole. Only for o-4 is it possible to avoid 
this trouble entirely. 

5. CONCLUSIONS 

The results of the last section must now be translated 
into experimental terms. The cross sections cr2, cr3, and 0-4 
have to be related to measured quantities, kinematic 
singularities located, and dangerous regions of phase 
space avoided; also, one has to consider what is the 
most convenient way of collecting the data. In this 
section we discuss, in particular, the experiment of 
Griffiths, in which the two protons are detected in 
coincidence. 

The cross section is20 

1 2ir\T\2p 
da = , (13) 

vi 2E{2m& 
where 

1 
p = — ( 2 ^ 5 ^ ! - p 6 - p 3 - p 4 - p 5 ) 

2TT 
5 d% 

X I I 2Td(pi
2-m2)6(pio) , 

*-« (2TT) 4 

20 R. P. Feynman, Theory of Fundamental Processes (W. A. 
Benjamin, Inc., New York, 1961), p. 73 ff. 

The final-state interaction poles are of the form (6). 
The Q2 term contributes to 0-3 a term proportional to 
[(a'+b'z)2-c'\\-z2)~]~1i2, where 

a' = ±qi
2-a2+4/a2, 

/lqi2-a2\1'2 

c'=-c. 

I t is singular at x=0 for 2 = ± 1 , neglecting a2. I ts 
contribution to a2 is proportional to 

and Vi—qi/m. We fix the normalization of T below. 
Equation (13) gives21 

da , 4 | r | 2 | p 3 | 3 p 4
2 

2 4 = — = , 
diViidZizdzudvat £4^34 

where A = 27r/^iE1w«!(27r)5 and £134= Vz2(W—£4) — £3p3 
•(qr— P4). The measured cross section S4 has to be 
related to 0-4, via the Jacobian J=d(\ p*\ ZnZu<pu)/ 
d(stA2Q2). This is done in Appendix B, Eq. (Bl). 

All particles are coplanar, so we need daz/dcpzi, 
dcr2/d<pu with <p34= 7T. Since 

dzu dQ2 2 | p 3 | | p 4 | ^ 
= ( -£ i3 4 ) 1 / 2 and = , 

dcpu d;334 -E34 

where 
/ | p 3 | E 4 | p 4 | ^ 8 \ 

£34= ( £ 4 - £ 3 ) + — — — 1*84, (15) 
\ |P4| IPs! / 

where km is defined in Appendix B we have 

das/d<pu=E,EluZA/Snidqi2Eu\ p 3 | 3 | p 4 | 2 (16) 

= A\T\2/Sfndqi
2Eu. (17) 

Kinematic singularities appear in da$/d<pu at £34= 0; 
by inspection, this occurs when P3=P4, which from 
(A22) is at £ 2 = 0 or (4/9)^!2 for 2=0 , q2=q0

2. So 
£34(^0-3/^^34) must be extrapolated. 

The extrapolation is done at constant t and s, so we 
must specify how to move in (£4213214) space in order 
to travel on the line L: (s,t= constant) in (stA2) space 
in such a way that p2 decreases to zero. If, equivalently, 
we keep 2 fixed, we can use (A22) and (A23) to find £ 4 , 
213 and z 14 for fixed 2 and q2, and various p2. (It seems 
unlikely that the resulting redundancy of t changes the 
conclusions of Sec. 3 very much; it can easily be included 

21 Compare Eq. (9) of reference 3. 

— In — — — ±——- (12) 
?o M-qi^+a'bO+^cW+a^i-qoW+a'byj"} 
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in the pole terms, as we saw). Plots of (A22), (A23) for 
<72==<?o2, z = 0 , J, J are shown in Figs. 10(a) and (b). For 
a chosen z, the values of £3, £4, £13, and zu correspond­
ing to various p2 values can be read off. These graphs 
show how to select regions of phase space near z = 0 . 
Similar plots can be made for constant L 

Consider first an experiment in which / is fixed. At 
each point on L, 2 4 is determined experimentally, and 
hence from (15) and (16), Euidas/dpu) is calculated. 
On L everything is a function of p2 only, so that we have, 
say, six to ten numbers to extrapolate to x=0. We 
suggested in Sec. 4 that a possible choice for the fitting 
curve would be to take for I T12 

(A2~m2)2 (A2-m2) 

+y( + ) 
\ Q 2 + i A 2 i ( P 4 - p ) 2 + i / W 

+power series in p2, (18) 

where S is a function of s and /, and 13 and 7 are con­
stants. The coefficient 5 is to be found; [notice that 
everything appearing in 6V3/0V34 given by (17) with 
(18) for I T\2 is measured]. Substituting the first term 
of (18) into (13), taking the nonrelativistic limit and 
comparing with Eq. (2.4) of C-L, we get the relation 
between S and the p-p differential cross section 6a/d2: 

S= ZSm2a/(l - raa)irViA ] [do/&2], 

where r0 is the triplet effective range. We also note that 
according to Singh's estimate,16 7 should be roughly 7 
times S. 

If we keep cos# fixed, we have to calculate 
cV2/d cos0d<p34. We have 

i-3,4 
(a) 
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FIG. 10. The correspondence between laboratory-
variables and p2, z. 

6V2 6V3 

d cosddcpsi dcpu 2\/s 
l(s+m2-A2)2-4m2sJf2, 

where dvz/dyu is given by (16). As well as the kine­
matic singularity £34=0, there are now branch points 
at A2=s-\-m2ziz2m\/s, so one must extrapolate 

{E34/C(s+m2-A2)2-4w V]1'2}[6V2/d cosfld<p34] 

= (q/2Vs)Eu(daz/dvu), 

which is related to measured quantities as before. 
This way of extrapolating is wasteful of the data. If 

ten different p2 values are chosen, one has to do several 
experiments at different settings of #13, 6u. Suppose the 
counters have an angular spread of 2°. From Fig. 10(a), 
we see that if 3=0 , only 0<^>2<0.08gi2 can be covered; 
the value of p2 being found by following the z—0 line 
for p3

2 or p4
2 in Fig. 10(b). To cover the range 0<p2 

<0.16^!2, three angle settings are needed, and so on. On 

the other hand, the s = | curve for du rises very slowly, 
and the angle would not have to be changed for this z 
to obtain the range 0<p2<0.2qi2. For each setting, a 
spectrum of energies is recorded though only one point 
is used, corresponding to the chosen p2. The data could 
be used to better advantage if the form (18) were 
modified to include terms in q2 and z, so that the 
complete energy spectrum at each angle could be fitted. 
The two procedures would in any case complement 
each other. 

Finally, a2 can be measured directly by measuring the 
energy and angle of the recoil particle 5, since from (Al) 

da 
o-2= 

4qip dp2dzu 

The fact that 315, not q2, is the free variable introduces 
complications into the analysis of Sees. 3 and 4, which 
would have to be reconsidered. 
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APPENDIX A 

We derive a number of kinematical results used in 
the text. 

1. The Physical Regions 

With the notation of Sec. 2, 

2(ivV=s-W2-A2+md
2+2E1Eb 

so that 

2qipzv>=3p*+4(qs+a>)-qi\ (Al) 

and | Zi51 < 1 leads to the C-L phase diagram. Again, 

2 q r p 4 = * - 2 m 2 + 2 £ i £ 4 (A2) 
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(A10) 

and 
2 q 1 - p 3 = m 2 + A 2 ~ / - 5 + 2 E 1 E 3 , (A3) 

where 2mdE8=Q2+A2-t-m2, 2ntdEA=t+W2-Q2-tn2, 
2mdE1—W2~m2—md

2. In terms of (31) 

£3= m+ p^2/2m=m+Q2/m~ p2/2m- t/4m, (A5) 
and 

- E 4 = w + pt2/2ni—m— Q2/m 

+ qx2/2m+t/4m-a2/m, (A6) 

For q2=q0
2, \zu\ becomes 

r 3t T 
4 g i 2 ( 2 Q 2 - £ 2 - Z / 2 ) - 3^2 2(Q2+a2) > 0 . (A7) 

Using (A2) and (A4), | s 1 4 | < is 

4 ? i 2 P / 2 - g i 2 - 2 ( Q 2 + a 2 ) ] 

3t 

1= A2—s—z-f-wiH-w^+w^2. 

Since Q2=W2-2pvp^2pvp6+m^ 

SM=Q2- t - W'+m^+m^+m,2, (Al l ) 

and squaring (pi+ps—pz)^ (^4+^5), with (A9) and 
(A10) we get 

SM=t-Qt-A*+m£+m£+m<?. (A12) 

Finally, using (Al l ) and (A12), 

S 1 5 =s- IF 2 -A 2 +Wi 2 +m5 2 +W6 2 . (A13) 

The expressions connecting /, Q2 with 0 and <p are 
obtained as follows. In the 3-4 c m . system, denote the 
initial and final three-momenta by r and q, and write 
wr

2—m2+r2
} wq

2=m2+q2
y ( r = | r | , g = | q | ) , then 

S=4wq
2, t=2m2—2wqwr+2qr cosd, i~2m2—2wqwr—2qr 

Xcos0. Hence, t+i=^m2—4:wqWr=3m2+A2—s from 
(A 10), so that we obtain 

t^2m2-^(m2+s-A2)+cos0l(s--4m2)/s']112 

Xl(s+m2~A2)2-4:sm2Jf2. (A14) 

We note that r2 = p2-\-q2-\-a2, so that also we have 

/ = -q2-r2Jt2qrz=-2q2--p2-a2 

+ 2qz(p2+q2+a2)1/2. (AW) 

Let Xij be the cosine of the angle between i and j , and 
let €i be the energy of i, all in the 3-4 c m . system. Then 
we find 

and 
Q2=2fw«+2e8eB-2[(e38-fft2)(€B2-i»2)]1%8B 

2q,2+ 2(Q2+a2) 
2 

> 0 . (A8) 

2. Redundancy Relations 

The four-momentum conservation relation is 

pi+pQ=pz+p4+p?>. 
Squaring, 

S,^W2-s-Q2+m,2+m,2+m,2. (A9) 

Defining 

i=Sn=(pi—pz)2, we have s+t+i= A+mz2+mi2+mi2, 

#35=#13#15+ (1 —#132)1/2(1 —#152)1/2 COS<£>. 

X13 is just — cos0. Using (A 13), it follows that 

xlh=l2eleh+s-W2-A2+md
2)/2(el

2--m2)^2 

X(e5
2-m2)1 ' '2] (A15) 

and the e* are 

2s1'2€i= (s+m2-A2), 2ez=s112, 2s^2^=W2-s-~m2. 

In terms of (91), we have 

^ l 5 = ( ~ ^ 1 2 _ a 2 + 3 ^ + ^ 2 ) / 2 ( ^ + ^ ) l / 2 ^ i 2 _ 3 ^ 2 + a 2 ) ] l / 2 p 

For q2=qo2, it follows that 

f\qi2-a\f2 

)z 4Q 2 =< ? 1
2 / 2 -a 2 - ( ) {(<?i2 /2-3^ 

\iqi2+P2/ 

+ c o s ^ ( 4 ^ 1
2 - ^ 2 ) 1 / 2 ( l ~ 2 2 ) 1 / 2 ] } . (MS') 

The root is certainly real, since 0<^ 2 <4/9g x
2 . The 

coplanar case is expressed by <pu=TT, or equivalently by 

013+014=034, (Ai6) 
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where 0# is the laboratory angle between i and j . (A16) 2| p3|giZi3=f (#i2—^2) 

qi2~P2 may be written as , 2 

L 2r 

2^2p3-p4=2p rq12p4-q1 -2(g24-a2)-gz(2r ^ 

- [ # 3 V - ( 2 p r q i ) 2 ] l / 2 

X^V-^ -qO 2 ] 1 ' 2 - (A17) ± % w ( 1 _ 2 l 5 2 ) ( 1 _ s 2 ) ] 1 / 2 J . (A23) 
Also, we have *r J 

2ps-p4=2m?-t-2EzEi— s. (A18) The expression for 2|p4|#i2i4 is the same as (A23), the 
sign of z and the (±) being changed. Zi*> is given by (Al). 

Equation (A17) is then given in terms of (dl) using (A2) Since Q = i(p3~ p), Q 2 = 0 is 
and (A4); for q2=qo2, neglecting a2, (A 17) is 

r (qi2-p2)~\ 
16Q^p^+q1

2)+SQ2(q1H-6pn-6p"-4q1
2p2) gi2-2g2-3a2+2g2| r-

+qi2(t+4p2)2=0. (A19) 

At Q2=0, (A19) is just t= -4p2, or ^-l^p2{l-zlb
2){\-z^)Ji\ (A24) 

r 

z^{qm-^)/qi{f+qmy'\ (A20) S u b s t i t u t i n g ( A 1 ) i n t 0 ( A 2 4 ) > putting; ^= g o
2 . and 

which checks with (A15) for Q2=0. If, in (A17), we fff°Z «2, we recover (A20) If a? is included we 
put Q2=0 and neglecta2 we find find' fo.r e x a m P l e . a t T0' f=lV(>±^<?/9)h so that 

' the point <?i2/6 is shifted off the physical region by 

/ W ~ 12^V]+C-48^V+20^-4^ °W >the s a m e is t r u e for t h e P o i n t s P2=0> (4/9)<7i2. 
- 6 4 ? 1 Y + 3 2 g V ] + 1 6 A l

4 = 0 . (A21) APPENDIX B 
Instead of J p*| and <pu it is convenient to use E±, 

3. Relations Between the Laboratory a n ( j Zu d e n n ed by and (31) Variables 
Z34=2l33l4+(1 — 213

2)1/2(1 — Zu2)1 '2 COS^34. 
To see how to select experimentally regions of phase 

space defined in terms of (91) variables, we solve for Using (A2), (A3), and (A18) with (A4) we obtain 
p3

2, P42, zu, and zu in terms of p2, q2, and z, putting ,„ , „ 
?34= it. After tedious algebra, the result is j, jW^f^)_= m̂ 

P32--|(?i2-/>2-2a2) - A t c o n s t a n t S} t) a n d A2; QZu/dipu= {-klu)
xn where 

— 1̂34=1—Zi32—z14
2—Z342+2z13zi4Z34, and of course 

ai ] dEi/d | p41 = | p41 /Ei. Hence <n=/S4, where 
± - [ 4 ^ 2 ( l - z 1 6

2 ) ( l - z 2 ) ] 1 / 2 , (A22) 
r I EiEm 

J= . (Bl) 
P 4 2 = ? 1

2 - P s 2 - / ' 2 - 2 « 2 , 16mfqi*\ P4l3P34(-^134)1 / 2 


