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Final-State Interactions in the Electrodisintegration of Deuterium* 
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The cross section for the inelastic electron-deuteron scattering process is calculated using a semirela-
tivistic approximation. The final-state interaction between the outgoing nucleons is estimated using approxi­
mate wave functions derived from the Gammel-Thaler potential. The rescattering correction is found to 
lead to a decrease in the peak value of the cross section, varying from about —5% at an electron momentum 
transfer of 1.4F"1 to about —2% at a momentum transfer of 4F_1. Various relativistic corrections are 
considered, and an ambiguity in the normalization of the semirelativistic wave functions is discussed. 
Finally, the neutron form factors are redetermined. 

1. INTRODUCTION 

IN recent years considerable effort has been devoted 
to the study of the electromagnetic structure of 

the proton and the neutron. The inelastic electron-
deuteron scattering process has been studied experi­
mentally by the Stanford1 and Cornell2 groups, and 
theoretically by Blankenbecler,3 Durand,4 Goldberg,5 

Jankus,6 and Bosco.7 In principle, the neutron from 
factors may be determined from the differential cross 
section for this process, but there are considerable 
difficulties in the interpretation of the experimental 
results arising from relativistic effects and a possible 
final-state interaction of the two outgoing nucleons. 

In the absence of a usable relativistic theory of the 
two-nucleon system rather drastic approximations must 
be made. Our calculation is similar to that of Durand.4 

The Hamiltonian is treated purely relativistically, and 
the two-nucleon system is described by approximate 
Breit wave functions, which effectively corresponds to 
treating the spins relativistically and the orbital part 
nonrelativistically. 

The cross section has also been calculated numerically 
using Gammel-Thaler wave functions to estimate the 
final-state interaction. 

In Sec. 2 the approximate wave functions are 
introduced, and in Sec. 3 the cross section is calculated 
in the absence of final-state interactions. These are 
estimated in Sec. 4, and the numerical work is described 
in Sec. 5. Finally, we discuss some of the approximations 
and other possible procedures for calculation in Sec. 6. 

The following symbols will be used throughout: 
K, K'=initial and final four-momentum of the electron; 
p, p' = initial and final four-momentum of the proton; 
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P= initial four-momentum of the deuteron; P ' = final 
four-momentum of the center of mass of the outgoing 
two-nucleon system; q=K—K'=momentum transfer­
red by the electron; k=i(p'—7/) = rekitive momentum 
of the outgoing nucleons; 0= scattering angle of the 
electron. 

All these quantities are measured in the laboratory 
system (the deuteron rest frame). The corresponding 
quantities in the center-of-mass frame of the outgoing 
nucleons will be denoted by the subscript c. 

We also use E for the energy of either nucleon in their 
center-of-mass frame, and M, m for the masses of the 
nucleon and electron, respectively. The mass difference 
between the neutron and proton, and the deuteron 
binding energy are ignored. The electron will be treated 
as ultrarelativistic. 

To avoid confusion, q2 will be used only for the 
square of the four-momentum. The square of the 
three-momentum will be denoted by | q|2. 

2. SEMIRELATIVISTIC CALCULATION OF THE 
CROSS SECTION 

The process of interest is 

e+d—>e-\-n+p. 

The electromagnetic interaction may be treated in 
first Born approximation. (The validity of this has been 
discussed by Fubini et al.s) The deuteron and outgoing 
nucleons are described by Breit wave functions. 
Blankenbecler has shown3 that if the retardation of the 
potential and the effect of nucleon-antinucleon pairs 
are ignored, then the energy shell matrix element is 
given by 

T(S) = (f\ jV\i)[dH [x(t,kc; P')JS4>(t-i<L\ P) 

+x(t,k0 ;POiMn*(t+*q,P)l (2-1) 

where x and <j> are the momentum space Breit wave 
functions for the outgoing nucleons and the deuteron, 
respectively, and 7 / , j ^ , j ^ are the current operators 
for the electron, proton, and neutron. 

8 S. Fubini, M. Gourdin, and A. Martin, Nuovo Cimento 
23, 249 (1962). 
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The full Breit wave functions are quite intractable. 
We shall assume they factorize into a product of free 
neutron and proton spinors and a scalar orbital wave 
function. To find a suitable form for the latter, it is 
useful to consider the ordinary Schrodinger wave 
function. In configuration space, the nonrelativistic 
(NR) deuteron wave function may be written 

m(r) 
*NR(r) = E (lm\lfnilm9)Yr*(f) \ lm9)m, (2.2) 

i r 

where (lm\lmisms) is a Clebsch-Gordan coefficient 
defined as in reference 9 and | 1WS)NR is the nonrelativ­
istic spin wave function. The normalization is given by 

f 
Jo 

[u0
2(r)+U22(r)lldr (2.3) 

The momentum space wave function is given by 

1 
<£NR(S) = 

where 

^ <t>i{\s\)(lm\lnii\m8)Yi^{§)\lm8)i 
( 2 T T 2 ) 1 / 2 I 

(2.4) 

* i ( W ) a 
r"ui(r) 

/ ji(\s\rydr. (2. 
Jo r 

5) 

We assume that the orbital part of the Breit wave 
function is adequately approximated by the nonrelativ­
istic form. Shirokov10 has shown that in the deuteron 
rest frame the spin part of the relativistic wave function 
may be obtained from the nonrelativistic form merely 
by replacing the nonrelativistic spinors by relativistic 
spinors, providing the Foldy-Wouthuysen representa­
tion is used.11 Hence, the Breit wave function is written 
in the form (2.2) with | 1WS)NR replaced by the relativ­
istic spin function 

| lm8; s,P>=XXlms | in i W V * (iP+s) 
Xvn"(iP-s), (2.6) 

where the v's are Foldy-Wouthuysen spinors for free 
particles, normalized by 

vv=l. 

The final-state wave function is somewhat more 
difficult. Neglecting coupling between states of different 
angular momentum, the nonrelativistic configuration 
space wave function may be written as 

W r ) = £ ZM2L+l)JtHLe-i8J™ 
JLSMMLMS 

rFjLa(\K\r)-[ 

x 
L |k.|r J 

\{JM\L0SM) 

X(JM\LMi£Ms)YL*"<(f)\SMs)nK, (2.7) 
9 A. R. Edmonds, Angular Momentum in Quantum Mechanics 

(Princeton University Press, Princeton, New Jersey, 1957). 
10 M. J. Shirokov, Zk. Eksperim. i Teor. Fiz. 40, 1387 (1961) 

[translation: Soviet Phys.—JETP 13, 975 (1961)]. 
11L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950). 

where the normalization is chosen so that 

FJLS(\K\r) 

IkJr 
cosdjLS JL( I kcIO+sinSJLS nL(\ kc \r). 

(2.8) 

This equation is written in the center-of-mass frame 
of the outgoing nucleons, whereas all the quantities in 
(2.1) are measured in the laboratory frame. The trans­
formation between these frames has been discussed by 
MacFarlane12 and Shirokov.10 They show that the 
orbital part is essentially unchanged by the transforma­
tion apart from a normalization factor, and, in partic­
ular, its argument is still kc rather than k; while in the 
spin part we should use the laboratory values of the 
momenta. (It is also necessary to introduce various 
rotation matrices, but as these cancel out from the 
expression for the cross section in this case we shall 
omit them from the beginning.) Although their results 
do not apply strictly in the semirelativistic approach 
used here, the nature of their argument suggests it 
should be a very good approximation to use them in 
this case. 

The choice of the normalization factor is a nontrivial 
problem. There are various possibilities for the normal­
ization which are all equivalent in the strict nonrelativ­
istic limit, but which differ appreciably in the region of 
interest. A formal expression for the normalization of 
the Breit wave function in the laboratory frame can 
be obtained by assuming that the potential is instan­
taneous in all frames, but this is likely to cause a large 
error for large values of the momentum transfers. Since 
it is known that using semirelativistic wave functions in 
the relativistic region is inconsistent, we require our 
normalization to give the best approximation to the 
relativistic result rather than to give consistency. For 
this reason the normalization has been fixed, rather 
arbitrarily by comparison with dispersion theory. 

While the full dispersion calculation presents many 
difficulties, the contribution of the nucleon pole terms 
may be calculated straightforwardly.13 The use of these 
terms only corresponds to neglecting final-state inter­
actions and replacing the deuteron wave function by 
its asymptotic form. These approximations should be 
essentially unaffected by any relativistic effects, so the 
normalization has been fixed by requiring that in the 
neighborhood of the neutron pole the cross section 
should reduce essentially to the dispersion-theoretic 
result. 

Finally, it is convenient to write the Breit wave 
function with an arbitrary axis. Then it has the form 

X(t,kc; P ') = Z 7[8 (2L+ l)Ji2e+ib^(JM \ LOSM) 

X(JMf \ LM^MS)^M'MJ{R)YL
M^{IC) 

XXJLa{tc^)(SMa\t,P,\9 (2.9) 
12 A. MacFarlane, Rev. Mod. Phys. 34, 41 (1962). 
13 S. Bose, Nuovo Cimento 17, 767 (1960). 
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where 

r 
-- j drr2ji 
Jo 

( | t . | r)-
3(|k.[r) 

form 

(2.10) x(t,kc;P')= (2wmtc-kc)yvp(iP'+t)vn(iP'-t). (3.1) 

(SMS; t ,P' | =Z<SMfl|ififiJf»^,»i(jP'+0 

and 3)jf'jif^(i?) is a rotation matrix representing the 
change of axis defined as in reference 9, where R is the 
rotation that takes the axis into kc. 7 is a normalization 
factor, which has the value (q0+2M)/2E for the 
normalization discussed above. Physically, this is 
just the Lorentz contraction factor. 

The only remaining factors in (2.1) are the currents. 
For a free particle, the proton current is given by12 

Substituting this into the expression for the cross 
section and summing over the spins gives 

|ZW= 
4iry2 3e4 

9' 

X 

r= 5eir 
( G M ^ + G C H " 2 ) 

4 2»»L 

H2j-2<z2GM
p2l 

[ tKp "I 

FIP(-&V>+—**,(-?>** Up) 
2M J 

(q-P'-p), (2.12) 
where KP is the proton anomalous magnetic moment, and 
Fip, Ftp are real scalar functions normalized to 

Fip(0) = P,p(0) = l . 

We assume that this form is correct for the bound 
proton as well, and that FiP, Ftp have their free-
particle values. This assumption is discussed by 
Blankenbecler.3 

I t is convenient to introduce linear combinations of 
Fip and Fip which represent the distribution of total 
charge and total magnetic moment14: 

{p+P'Y 
I f I2 

X /<*»t«(t.-k.)*o(|k-iq|) 

+neutron+interference terms, (3.2) 

where the deuteron D state has been ignored tem­
porarily. 

For any reasonable deuteron wave function, 
$o(|k— §q|) will be strongly peaked at k = | q . The 
laboratory and center-of-mass variables are connected 
by 

t \ . 1 i > ( k - k ) ] q r 2£ I 
k - i q = k o - k c — 1 • (3.3) 

|q |2 U„+2Jf J 
At 

k= |q , 

|q|2 

2£ 

-qo+2M 

Ikc l2 

= 1 — 
qo+2M 2M* 

GCn»(-q2) = Flp 

Kpq* 

AM* 

— rt2\ V2 

"ip> 

GMp(-g2) = •FO 
\4ikf2/ 

(2.14) 

The second term in (3.3) is, therefore, much smaller 
than the first near k = | q , and k—|q may be replaced 
by kc— |q c . This gives the maximum of the inelastic 
cross section at k c = | q c = (M/2JE)q, which agrees well 
with experiment. 

Making this approximation in (3.2), a straightforward 
but tedious calculation gives 

HFip+KpF2p}' 

These correspond to matrix elements of j ^ p between 
states of definite helicity.15 A similar form is assumed 
to hold for the neutron current. For the electron 

dV GTjtf |k c | 
= _ M > Io(0), 

&K7da(K') 7T E 
(3.4) 

where GM is the Mott cross section for scattering by a 
point charge given by 

(f\jif\i)=wnfli- (2.15) a2 cos2 (0/2) 

Finally, the differential cross section is given in 
terms of the energy-shell matrix element by 

dV # 0 | k c | l 
: ( 2 T T ) - 5 W 2 M 2 — - T — E \T(§)\\ 

<TM~ 

and 

Io(*) = -
4M2 

a^0
,^(K,)ao(kc) K0' 2E O spins 

4ikf2-g2 

(2.16) 

3. FREE FINAL STATES 

When there is no interaction between the outgoing 
nucleons, the final-state wave function has the simple 

14 F. J. Ernst, R. G. Sachs, and K. C. Wali, Phys. Rev. 119,1105 
(1960). 

16 D. R. Yennie, D. G. Ravenhall, and M. M. Levy, Rev. Mod. 
Phys. 29, 144 (1957). 

+ ( ( G M P ) 2 + ( G M " ) 2 ) ( 

IkJ2 

4Z0
2 sin4(0/2) 

(GCH J > ) 2 +(GOH K ) 2 

41f2_g2 

(3.5) 

1+ •tan 

X (M0-

x i 

2ilf2 \ 2 / / J 

: )+l 2GCn*>Gcnn+%GM*GMn 

2M2 ) L 

/ 4 M 2 - g 2 /B\\-]_ 1 

/ 1 + _ tan2f-JJjMo + A7, (3.6) 
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where 

M0=if L4>o(z)Jdz, 

Mt=hf (l-22)[<^o(2)]2&, 

(3.7) 

and <f>o(z) is the function defined in (2.5) expressed in 
terms of z= cos??, where?? is the angle between kc and qc. 

M contains various negligibly small corrections to 
the interference terms, and also a term proportional to 
qocMh where 

Mi--

< 
z\j>o(z)12dz. (3.8) 

At the peak in the inelastic cross section #0 c~ 0 and 
this term is negligible. I t gives an appreciable contribu­
tion, however, far away from the peak. 

Noting that 4if2—g2=4E2 at the peak and substitut­
ing for GCK and GM from (2.14), this expression for the 
cross section agrees with that found by Durand4 to 
within terms of order q2/M2 except for the term in M2. 
This justifies the use of the four-momentum transfer in 
the cross section, but shows that appreciable deviations 
from the nonrelativistic result might be expected far 
from the peak, where the AI term becomes appreciable. 

The M2 term is a purely relativistic effect and 
corresponds to certain of the terms denoted by Ap in 
Appendix I of Durand's first paper.4 I t might be 
expected to be small, since <j>o is strongly peaked at z= 1. 
A better estimate may be obtained by assuming a 
simple form for uo(r). If uo is taken to be a Hulthen 
wave function, the error in neglecting this term is of 
order B/M, where B is the deuteron binding energy, 
which is of the same order as terms we have already 
dropped. 

The effect of the deuteron D state can be calculated in 
exactly the same way. The calculation is rather long and 
only the result will be given. The effect is to add a term 

M2i 

EA 
( G C H * ) 2 + ( G C H W ) 2 + ( ( G M " ) 2 + (GMW)2) 

2E2 

X( H tan2l 
M2 

4V2 
+— 

3 

(i+?,>n'©)>° 
/ 2Ei /6\\_ 1 

GM'GMH 1 + — tan2f - J )N0 (3.9) 

to the peak value of 7o, where 

Ny 0 = 4 / 0 o ( z ) * 2 ( # , 

o = i / ^o (z)4>2 (—z)dz, 

In deriving (3.9) we have dropped contributions 
involving the square of the Z>-state wave function, and 
various terms of the nature of i f 2. 

4. EFFECT OF THE FINAL-STATE INTERACTION 

Substituting the above expressions for the wave 
functions into the formula for T(8), and neglecting the 
contributions from the deuteron D state, gives a sum of 
Clebsch-Gordan coefficients, rotation matrices, and 
integrals of the form 

fdH [xJL8(tc,kc)YL*ML(ic)<l>o(\ t - k l )e+i8jLS 

(J e)~\ 
X(SMS; t ,P ' | 7 / | lm, t - Jq, P > — +neutron. (4.1) 

a2 J 

The final-state wave function should be strongly 
peaked at t c =k c . We may, therefore, replace tc by kc 

and t by k in the factors involving the currents; and 
shall also replace t— f q by t c - 4 q c in #0 as before. 

Writing 

*o(I tc- k c I) = £ 1 W+ V)Ki (tc,iqe)Pi (tcMc), (4.2) 

where 
r uo(r) 

Ki= ji{\tc\r)ji{hWc\r) Mr, (4.3) 
Jo r 

the angular integration may be performed to give 

T (S) = 4TT £ (2L+ \)l'2e^JLS{JM \ LOSM) 

X(JMf I LMLSMS)®M>MJ{R) 

where 

KJLS(kcAc) 

X| YL
M^(q)—~^—KJLS{KAO) +neutron, 

^ (4.4) 

2 r°° r00 

•— / tMc / 31 
T J 0 J 0 

(hr) 
FjLs(\K\r) 

rHr 

X JL(ty)JL(h\dc\r') r'Hr' 
Jo r' 

rFJLS(\kc\r) Mf) „ 
- — y L ( i | q . | r ) rHr. 
Jo K0 r r 

(4.5) 

and $2 is given by (2.5). 

As it stands, (4.4) is not the partial wave expansion 
of T(S) since (j^) depends on the orientation of kc, 
and the terms in the series are not orthogonal. In the 
neighborhood of the inelastic peak, kc may be replaced 
by k c in (jpp)- This is equivalent to dropping terms 
analogous to i f 1 and i f 2, and should, therefore, be well 
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justified. A standard calculation then gives the cross 
section as an infinite series in KJLS2* 

As pointed out by Durand,4 this is not the best form 
for calculation, as the series converges rather slowly. I t 
is better for calculation purposes to subtract the value 
of this expression when there is no final-state interaction 
and KJLS = KL, and to add this on again in closed form. 

Introducing 
&JLS=KJLS

2-KL
2 (4.6) 

the differential cross section is given by (3.4) with lo 
replaced by 7 O + / F S where, at the peak 

M2\ 
/FS=—HCai (GcH p ) 2 +2a 2 GcH^cH w +a 1 (GcH w ) 2 ] 

EH 

+K^(GMpy+2a,GMpGM
n+ad(GM

n)2'] 

XII+2-FMI>]\- (4-7) 

with 

*i*=X:(2/+l)A<r iL.i, 
JL 

a2=i:(-)L(2j+i)Aj,L,1J 
JL 

< * 3 = Z L [ ( 3 L + 4 ) A L + 1 ) L , 1 + ( 2 L + 1 ) A L , L , I 

+ ( 3 L - 1 ) A L _ 1 I L , I + 2 ( 2 L + 1 ) A L ) L , O ] , (4.8) 

^ = E ^ ( - ) L [ ( 3 ^ + 4 ) A L + l l L ) 1 + ( 2 i : + l ) A L , L , 1 

+ ( 3 L - l ) A x _ 1 , L ( i - 2 ( 2 L + l ) A W i o ] . 

5. NUMERICAL CALCULATIONS 
For the numerical calculations FJLS was obtained as 

the solution of a Schrodinger equation with the Gammel-
Thaler potential.16 The potential was slightly modified 
by neglecting all terms coupling different partial waves. 
The deuteron was described by a Hulthen wave function 
with a hard core.17 That is, with x=ar, xc—arc 

for r<rc, 
wo(r) = w2(r) = 0, 

and for r>rc, 

Uo(r) = Aoe~x{l — exp^—&{%—#„)]}, 

u2(r) = A 2e~x{l — exp[—Y(#—XC)~}}2 

r 3 ( l - < r ^ ) 3(1-e-^)2-] 
X 1 + — + . (5.1) 

L x x2 J 

I t would have been preferable to use a Gammel-
Thaler wave function for the deuteron as well, but this 
would have increased the computing time substantially, 
and was not worth while for the present experimental 
errors. The inclusion of the hard core in the Hulthen 

16 J. L. Gammel and R. M. Thaler, Phys. Rev. 103,1874 (1956). 
17 L. Hulthen and M. Sugawara, in Handbuch der Physik, 

edited by S. Flugge (Springer-Verlag, Berlin, 1957), Vol, 39, 

TABLE I. Percentage contributions of various terms to the peak 
value of the cross section for typical values of q2 and 0. 

S wave, nn -\-pp 
S wave, np interference 
D wave, nn -\-pp 
D wave, np interference 
Final-state Interaction 

Q 2 = -

0=60° 

102.1 
0.2 
1.1 

-0.7 
-2 .7 

-4F-2 
0=135° 

102.4 
-0 .3 

1.1 
-1 .4 
-1 .8 

g2 = _ 

0=60° 

100.1 
-0 .1 

1.1 
-0 .1 
-1 .6 

-10F-2 
0=135° 

99.8 
0.2 
1.2 

-0 .1 
-1 .0 

<z2 = -
0=60° 

100.8 
-0 .1 

1.3 
0.05 

-2 .0 

16F-2 
0=135° 

100.2 
0.2 
1.3 
0.1 

-1 .7 

wave function should make it a better approximation, 
however. 

The values of the parameters were taken to be 
r c = 0 . 4 F , a r 1 ^4.316 F, 0 = 7.961 F"1 , 7=3.798F~ 1 , 
and A 2/A 0 = 0.028 corresponding to a 4 % D-state 
probability and a deuteron effective range of 1.70 F. 
The results were not sensitive to the choice of param­
eters, and changing the D-state probability to 5 % or the 
effective range to 1.73 F made a difference of less than 
1% to the cross section. The presence of the hard core 
made a difference of 3 to 4 % in the range considered. 
The percentage contribution of various terms to the 
differential cross section is given in Table I for typical 
values of q2 and 6. 

The effect of the final-state interaction can be seen 
from Fig. 1, which shows the corrections ar as functions 
of q2. The relative importance of different angular 
momentum states can be seen from Table I I , which 
gives values of AJLS for the first few partial waves. The 
corrections are negative throughout, in agreement with 
the approximate calculation by Durand4 though the 
numerical values are somewhat larger. The corrections 
decrease with increasing momentum transfer and for 
— q2 greater than 10 F~2, they are negligible in compar­
ison with the experimental error. 

The Gammel-Thaler potential is not expected to be 
reliable for center-of-mass energies of the nucleons much 
greater than about 350 MeV which corresponds to 
<f= —16 F - 2 . This sets an upper limit to the range 
over which this calculation is useful. The numerical 

TABLE II. Values of DJ,L,S = &J,L,S/KL2 for values of q2 in F~2. 

L 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

DL, L, 0 

-0.300 
-0.182 

0.040 
-0.013 

-0.235 
-0.200 

0.079 
-0.039 

-0.179 
-0.206 

0.066 
-0.045 

-0.176 
-0.223 

0.023 
-0.048 

DL, L, 1 

-0.060 
0.090 

-0.000 

-0.123 
0.103 

-0.004 

-0.162 
0.038 

-0.007 

-0.211 
-0.036 
-0.014 

DL-I,L,I 

-0.072 
-0.055 
-0.000 

-0.161 
-0.113 
-0.008 

-0.219 
-0.149 
-0.018 

-0.295 
-0.193 
-0.040 

DL+I, L, 1 

-0.156 
0.066 

-0.004 
0.000 

-0.217 
0.092 
0.013 
0.009 

-0.274 
0.040 
0.038 
0.020 

-0.382 
-0.036 

0.064 
0.048 
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FIG. 1. Values of br= —ar/Mo. 

accuracy in the calculation of the corrections is not very 
great, but they should certainly be correct in order of 
magnitude and sign. It was difficult to estimate the 
sensitivity of the corrections to the choice of wave 
functions. These conclusions on the relative importance 
of the corrections are not affected by the choice of the 
wave function normalization. 

The neutron form factors were obtained from values 
of the ratio of the proton-electron elastic-scattering 
cross section to the peak values of the inelastic deuteron-
electron cross section at various scattering angles. 
The values of these ratios, and of the proton form factors 
were taken from deVries, Herman, and Hofstadter.1 

The cross sections had been corrected for radiative 
effects.18 

For values of — q2 between 4 and 16 F"~2, the equations 

TABLE III . Values of the neutron form factors for q2 in F"2. The 
errors quoted are maximum errors. 

Fin 

4 
6 
8 

10 
12 
14 
16 

0.110±0.20 
0.130rfc0.10 
0.112±0.16 
0.100±0.10 
0.085=1=0.11 
0.062=1=0.08 
0.075=b0.06 

0.750±0.10 
0.662=b0.08 
0.604=b0.06 
0.500±0.05 
0.435=1=0.06 
0.376=b0.05 
0.338=1=0.03 

for the form factors possessed a solution to within 
experimental error, and the solutions found by taking 
different combinations of scattering angles agreed 
fairly well. For — q2=2 F~2 the ellipses did not intersect, 
but in this region the corrections are large and are 
highly energy-dependent; so that a much more accu­
rate calculation of the corrections may be necessary. 
In all cases we took the "right-hand" solution1 for the 
neutron form factors. The values of F\n and JP2» are 
given in Table III and are shown in Fig. 2; Gcnn and 
GMU are shown in Fig. 3. In Fig. 2 the values of Ftp are 
shown for comparison. 

The errors in the numerical work were estimated to 
be less than 1%; and allowing for the various approx­
imations made it is estimated that the theoretical 
cross sections should be correct to within 4 or 5%. The 
errors given for the form factors are only a rough 
estimate, and might be much larger if the errors on 
the cross sections are completely uncorrelated. 

These estimates do not allow for the uncertainty in 
the normalization of the wave functions. This could 
cause an error of up to 15% in the value of the peak 
cross section at large momentum transfers. The normal­
ization factor enters in such a way that it is impossible 
to determine it solely from electron deuteron scattering 
experiments, though it might be possible to estimate 
it from some other process such as deuteron photo-
disintegration. Fortunately, the form factors do not 
depend very sensitively on the normalization, and the 
maximum error on the neutron form factors due to the 
normalization is about 6% at the upper end of the range 
of q2 considered, and correspondingly less at the lower 
end. 

-f IN UNITS OF F* 

18 S. Sobottka, Phys. Rev, 118, 831 (1960). 

FIG. 2. Values of Fm, F2«, and F2P, The errors shown are 
maximum errors, and the curves are smooth curves drawn through 
the experimental points, 
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FIG. 3. Values of GCHW and GM". The errors shown are maximum 
errors, and the curves are smooth curves drawn through the 
experimental points. 

The results for the form factors are compatible with 
Fin=0, though a small positive value is suggested. 
There seems to be no indication of negative values for 
Fin. The relationship GCHW=0, giving zero charge dis­
tribution for the neutron, does not seem to be supported, 
nor does, the relationship GMn/Kn=

zGMp/(l+Kp), 
giving equal distributions of magnetic moment for the 
two nucleons. The hypothesis F2n=F23, is almost 
certainly wrong. All these conclusions are essentially 
unaffected by the uncertainty in normalization. 

6. DISCUSSION 

In view of the somewhat arbitrary assumptions we 
have been forced to make, the question arises whether 
one might do better by using other techniques, notably 
dispersion relations. The difficulty in using dispersion 
techniques arises from the anomalous threshold due to 
the deuteron. While the pole approximation may be 
calculated straightforwardly, present techniques seem 
to be inadequate to cope with the effect of the rescatter-
ing correction, or any other terms in which the two 
nucleon amplitude occurs bilinearly.19 The general form 
of the cross section can be deduced on general grounds— 
the difficulty arises in identifying the various terms that 
arise with the properties of the free neutron and 
proton, and in the absence of either a usable relativistic 
theory of a bound state or a systematic method of 
going off the mass shell, it is hard to see how this can be 
done without some such assumptions as we have made. 

At the present time the experimental uncertainties 
are rather larger than the theoretical ones; the chief 
need at the moment is better experimental results, 
particularly at small momentum transfers and small 
scattering angles. 
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