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the higher order functions. To find these, we choose a 
set of In coordinates at random and let A be any opera­
tor of the form 

i l = X i £ ^ ( « i ) - - - E ^ > ( a ? n ) 

+\2E^(xn+1) • • •E<+>(*2»). (A12) 

The positive definiteness of the quadratic form which 
results from substituting this expression in (Al) shows 
that the inequality (3.14) must hold. When vector 

I. INTRODUCTION 

IN a series of papers, Brout and Horwitz1 have 
shown how to obtain a linked cluster expansion for 

the Ising model and, in particular, how to calculate the 
spherical model value for the free energy as a high-
density limit of the cluster expansion. We note the 
trivial but important fact that the spherical model 
value of the free energy below the Curie point is a 
function of 1—R2, where R is the long-range order of 
magnetization. Reinterpreting the free energy of the 
Ising model as the pressure of a lattice gas in the manner 
of Lee and Yang,2 we observe that the lattice gas pres-
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f This paper is abstracted from the dissertation of M. Cooper-

smith submitted to Cornell University in partial fulfillment for the 
requirements of the doctoral degree. National Science Postdoc­
toral Fellow 1961-1962. Present address: Institute for the Study 
of Metals, University of Chicago, Chicago, Illinois. 

{John Simon Guggenheim Fellow 1961-1962. Present address: 
University Libre de Bruxelles, Brussels, Belgium. 

!R. Brout, Phys. Rev. 115, 824 (1959); 118, 1009 (1960); 122, 
469 (1961); G. Horwitz and H. Callen, ibid. 124, 1757 (1961), 
Hereafter referred to as I, II , III , and IV, respectively. 

2 T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952); 87, 404 
(1952). 

indices are attached to the operators E (+), the same 
proof leads to (5.11). 

We have noted in the text that, for the particular case 
of coherent fields, the inequalities of second degree in 
the correlation functions reduce to equalities. The 
reason for the reduction lies in the way the correlation 
functions factorize. The factorization causes all of the 
second and higher order determinants involved in the 
statement of positive definiteness conditions [e.g., (A9)] 
to vanish. 

sure is a function of p(l~p), where p is the density. 
Since the factor 1 —p comes about from the fact that 
no more than one particle is allowed on a lattice site 
(hard core), we conjecture that it might be profitable 
to formulate a cluster expansion for a real hard-core 
gas with a weak attractive tail using the tail alone as 
the perturbation and calculating all ensemble averages 
with the hard core as a metric (i.e., the cluster integrals 
which occur contain the hard sphere part exactly taking 
into account no overlapping of the cores). 

In Sec. II, we review briefly the cluster expansion 
for the Ising model and the high-density limit (spherical 
model) as a sum of ring graphs (random phase approxi­
mation). In Sec. I l l , we present this cluster expansion 
by a method which uses the lattice gas interpretation 
of the Ising model rather than the conventional spin 
method. The advantage of this method is that the 
cluster expansion for a real gas with a hard core can 
be developed in a parallel manner. In Sec. IV, we show 
how to formulate this linked cluster expansion for an 
imperfect hard-core gas. Finally, in Sec. V we calculate 
the pressure-volume isotherms for the real gas using the 
zeroth order of molecular field approximation to the 
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cluster expansion. By formally summing the set of 
spherical model ring graphs, we then show how to 
obtain fluctuations of the Ornstein-Zernicke3 type. 

Because the fundamental idea is simple, but the for­
mal manipulations tedious and sometimes difficult, we 
have put all formal cluster developments into a series 
of Appendixes. The physical content of the paper is 
obtainable without reading these Appendices. 

II. REVIEW OF ISING MODEL OF 
FERROMAGNETISM 

In this section we recall briefly some of the results 
known in the theory of the three-dimensional Ising 
model. The point of view is that expressed in the papers 
of reference 1. This set of works is incomplete and we are 
still very far from a thorough quantitative understand­
ing of the three-dimensional phase transition phe­
nomena. However, we have obtained certain qualitative 
understanding from the above-mentioned development. 
I t is to be hoped that this point of view will eventually 
be juxtaposed with the numerical work of Domb and 
Sykes4 based on a term by term moment expansion of 
the free energy. The advantage of the latter method is 
a precise quantitative estimate of critical point be­
havior. The disadvantage is lack of a "physical picture," 
balance of energy and entropy, etc. Our present point 
of view is to achieve a qualitative understanding of 
condensation paralleling that of ferromagnetism. 

We first review the molecular theory approximation 
of the Ising model. The Hamiltonian in the notation 
of reference 1 is 

H= - i E ^ / W - Z f*.3C. (2.1) 

The Weiss theory makes the fundamental assumption 
of statistical independence. 

(nw)=(f*i)(v>j). (2.2) 

Alternatively, each spin feels a mean field 

iVo 

<3Cmoi) = E ^0*y)+3C=w(O)JK+5C, (2.3) 

where R is the magnetization and is equal to (m) 
ensemble average. The energy is then given by 

E= -±N0v(0)R2-N<WR, (2.4) 

where v(Q) is the q—0 component of the Fourier trans­
form of the exchange integral. The Weiss theory be­
comes exact in the limit of an exchange integral of 
infinite range. One calculates the free energy as E—TS 
where for S one uses the entropy of spins distributed at 
random but at fixed R. Using the stationarity of F 

3 L. Ornstein and F. Zernicke, Proc. Acad. Sci. Amsterdam 17, 
793 (1914); Physik Z. 19, 134 (1918). 

4 For a review of this work see C. Domb, in Advances in Physics, 
edited by N. F. Mott (Taylor and Francis, Ltd., London, 1960), 
Vol. 9, p. 191. For the applications of this work to critical phe­
nomena see M. Fisher, Physica 28, 172 (1962). 

with respect to R, we arrive at the familiar molecular 
field theory equation for the magnetization as a function 
of an applied magnetic field H. 

fi=tanh[j3(i»(0)jR+5(C)]. (2.5) 

From Eq. (2.6) we find that the Curie temperature is 
given by 

kTc=v(0). (2.6) 

Equation (2.5) contains all the qualitative features of 
ferromagnetism except a description of short-range 
order, i.e., microscopic deviations in the long-range 
order or magnetization. This is, of course, a direct result 
of using a molecular field which is constant at all spin 
sites. If the exchange potential is now considered to be 
cut off at a finite distance (nearest-neighbor distance 
in a crystal lattice is the usual procedure), then it can 
easily be seen that the molecular field result is a high-s 
approximation, where z is the number of spins in the 
range of the potential. This result, as well as the ex­
pansion of the free energy in powers of 1/z (cluster 
expansion), is described in I I . 

In I I I , it was shown that the summation of ring 
diagrams with noncrossing internal dotted lines is 
equivalent to the spherical model of Berlin and Kac.5 

The Curie point is reduced from the Weiss model by 
0(1/z) according to 

kTc=w(0), (2.8) 

where w(q) = v(q)~8 and the saddle parameter, 5, is 
given by the spherical condition 

£ , C l - 0 ( l - . R > ( q ) } - 1 = t f . (2.9) 

v(q) is the crystal Fourier transform of t>#. A recently 
discovered inconsistency6 in the spherical model indi­
cates that the fluctuation, (MO2)— (MO)2, is not equal to 
the susceptibility (defined as dR/dH) for zero applied 
magnetic field below the Curie point as it should be 
from statistical mechanical considerations, although the 
singularities occur at the same (Curie) temperature 
defined in Eq. (2.8). This inconsistency occurs within 
0(1/z2) of the Curie point. Detailed examination by 
Englert and Horwitz6 has shown that one can reduce 
the domain of inconsistency by bond renormalization. 
However, the current status of consistency is by no 
means clear. In this paper we shall ignore this problem 
since the main point is to bring the knowledge of con­
densation as based on cluster developments to a quali­
tative understanding analogous to the Ising model 
problem. 

III. THREE-DIMENSIONAL LATTICE GAS 

The Hamiltonian for the interaction in the Ising 
model may be written as 

No 

3C= - | E Vifflw-NoRSZ, (3.1) 
&i 

5 T. Berlin and M. Kac, Phys. Rev. 86, 821 (1952). 
6 F. Englert and G. Horwitz (private communication); some 

results will be found in F. Englert, Phys. Rev. 129, 567 (1963). 
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where No is the number of lattice sites or volume of the 
crystal. In order to establish the connection between the 
Ising model and the lattice gas, we add to the Hamil-
tonian the constant %NQV(0)+NQ&, where v(0) is the 
2=0 component of the Fourier transform of v^. The 
Hamiltonian becomes 

£TL.G.= - § E ViswriNQvM-NoRaz+NiW. (3.2) 

We now define 

or equivalently 

p= (1-29/2, 

€i= (l — /J,i)/2, 

U=( l -2p) > 

m= (1—2ei), 

(3.3) 

(3.4) 

so that €• takes on the values + 1 and 0. In terms of 
the new variables u and p, the Hamiltonian becomes 

# L . G . = - \ E ^0*tf*y-l)+^o(l--R)3C 

•• - i E ^•(-2ei-2€J-+4ei€y)+2^0p3C 

iVo 
: - 2 E vijeiej+2Nop3C+2Nopv(0) 

first expression ranges from 1 to TV" and the sum in the 
exponent of the second expression ranges from 1 to No. 

Using Eq. (3.6), a cluster expansion for the Ising 
model may be derived. The motivation will become clear 
when we attempt a study of real gas with hard cores. 
We first rewrite Eq. (3.6): 

ln2 : 
No 

= lnE 
2V=0 

(1/N I) 

X L ' e x p [ | / 3 E ^ + ^ M ] . (3.7) 
configurations %7*3 

The factor 1/N! appears here in order to make the con­
nection later on with the real gas. The prime on the 
sum over configurations indicates that we must include 
all possible permutations of the particles in a given con­
figuration on the lattice. The 1/N! changes the summa­
tion over configurations from one involving only com­
binations to one involving both combinations and 
permutations. 

Following the procedure used in the derivation of 
the cluster expansion for the Ising model (/), we replace 
the summation over N by its largest term, say N. This 
amounts to picking a fixed p= (N/No) or, equivalently, 
using a canonical ensemble instead of a grand ensemble. 
In the future, since N and N will never be used together, 
we shall drop the bar over the N and replace N by N 
in all equations. Equation (3.7) becomes 

No 

-§ E Uijeiej—Nopv, (3.5) 

where we have put mj=4:Vij and /z= — [23C+w(0)/2], 
Interpreting p as the density and /* as the chemical po­
tential, we find that the pressure (In of the grand parti­
tion function) of the lattice gas is equivalent to the 
free energy of the Ising model as follows: 

- / 5 F i - J A r c ^ ( 0 ) - A r « ^ = A r
0 l n Z j - i A r c ^ ( 0 ) - A r ^ 

+ 1 No 

=in{E E expCipEw^w+^iae]} 
22=1 {Mi} *5*J 

-±Nopv(0)-NoPW 
1 No 

= ln{E E exp[i/3 E UijeiBj+Noppv} 

= ln{ Z° £ expQ/3 E « « + # & ] ) 
JV=0 configurations ij^j 

= lnSL.G.= [/3/>F]L.G. = [J8£»JVO]L.G., (3.6) 

where *J0 is the volume of a unit cell of the lattice and 
a configuration of particles refers to an arrangement 
with the particles considered as indistinguishable, and 
p is the pressure. Clearly, the sum over configurations 
of exp[i /3E^y] is equivalent to a sum over {u} of 
expQ0 E Uij€i€j} since the sum in the exponent of the 

lnE=lnIF(p)+m<exp(!/3 E **))+Np», (3.8) 
19*3 

where f (p ) = L ° i and the average of a function, 0, 

of the ̂ 's is given by 

(oy-
i 

Ty ( p ) configurations 
o. (3.9) 

In writing the above expression for W(p), we are making 
the assumption that no two particles can go on the same 
lattice site (hard core). The function W(p) has the same 
value as the function W{R) used in the Ising model 
when p is given by Eq. (3.3) in terms of R. We now 
write the logarithm of the average of the exponential 
as a semi-invariant expansion.1 

ln(exp(|/3 E /x*y)HE (P»/nl)MnQ E «*), (3.10) 
X9*3 %9*3 

and proceed in the manner of the articles of reference 1. 
As the cluster expansion so obtained is a re-expression 
of the results of the reference 1, we relegate the details 
of proof to Appendix A. 

The reason for presenting this new proof of already 
familiar results is that the development of the real gas 
is carried out along exactly analogous lines. The reader 
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FIG. 1. Pressure-volume isotherms (schematic) in molecular field 
theory approximation of the Ising model. 

interested in the details of the cluster developments of 
the real gas (Appendix B) as carried out in this paper 
is first advised to practice on the Ising model as given 
in Appendix A. 

The results of the cluster development of the second 
term on the right-hand side of Eq. (3.8) is that the 
coefficient of (3n/n I is the sum of all irreducible graphs 
containing n solid lines as well as internal noncrossing 
dashed lines with the proviso that if a graph is pinched 
together where there is a dashed line (i.e., two vertices 
connected by a dashed line are juxtaposed), then the 
resulting graph must be reducible. To calculate the 
value of a graph, one associates to each solid line be­
tween vertices i and j a factor — u%j and to each dashed 
line a factor — 5#. To a vertex joined by v solid lines, 
one associates a factor Mv{p) which is the *>th semi-
invariant generated by p. One multiplies these factors 
together and sums on all possible such graphs. 

In analogy with the Weiss theory of ferromagnetism, 
we investigate the theory resulting from taking only 
the first diagram in the cluster expansion. (In the 
Horwitz-Callen formulation, this is the summation on 
Cayley trees.) This is 

No 

Jp2 Z Urir2gr1r2 = iN0p
2u(0). ( 3 . 1 1 ) 

n , 7*2=1 

The pressure is then given by 

1 
-h& = pNo=(l/P)lnW(p) 
fi +±NoP2u(0)+NoPfx. (3.12) 

To determine p as a function of n we use the stationary 
property of the pressure with respect to p in analogy 
with the molecular field treatment of the Ising model. 
We get 

dpN0/dp= (No/0) m [ ( l - p ) p ] 
+NOPU(0)+NO/JL=07 (3.13) 

or 
P=i{tanhH0?p«*(O)+/5/i)]+l}. (3.14) 

Eliminating p, from Eq. (3.12) by using Eq. (3.13), we 

obtain for the pressure 

pN*= (1//3)Z-NOP lnp-No(l-p) m ( l - p ) ] 
+J^op 2 ^(0)+( l / /5) [^oplnp 

- i \ r 0 p l n ( l - p ) ] - i \ V ^ ( O ) 
= - (No/0) l n ( l - p ) + J p % ( 0 ) . (3.15) 

In Fig. 1, we show the pressure-volume isotherms 
schematically for three values of the temperature. 
Again, as in the Ising model molecular field, we have a 
loop in the isotherm for T<TC. The straight line is the 
result of using a grand ensemble instead of a canonical 
ensemble as we have done by fixing N. The dashed line 
represents the coexistence curve of liquid and vapor 
and is a transformation of the magnetization curve 
from the Ising model. In fact, the isotherms could have 
been obtained by simply transforming Eq. (1.6) using 
Eqs. (3.4) and (3.6). We use the above method, how­
ever, to establish a connection later on with the real 
gas. The critical temperature is determined as the 
largest value of the temperature for which the com­
pressibility, dp/dv=0. Since dp/dp is zero when dp/dv 
is zero, we see easily from Eq. (3.15) that 

kTc=u(0)/4:. (3.16) 

This is the same as Eq. (2.7) for the molecular field 
theory of ferromagnetism when it is remembered that 
«(0) = 4i>(0). 

I t should be mentioned at this point that according 
to Eq. (3.3) defining p in terms of R, we have the simple 
but very important equation 

i ( l - 2 P ) = P ( l - p ) . (3.17) 

The free energy in the Ising model apart from the 
magnetic field is an even function of R since the 
Hamiltonian is invariant under /**--•> —pa. Conse­
quently, the free energy can always be written as a 
function of 1 — R2 which means that the pressure of the 
lattice gas is a function of p(l—p). Furthermore, the 
cluster expansion is in terms of p(l —p),1 which means 
that if we consider small densities (gas), we have an 
expansion in terms of p or the number of particles 
since 1—p is essentially unity. Similarly if we consider 
densities close to unity (liquid), then we have an ex­
pansion in terms of 1 — p or the number of holes. I t is 
easily seen that preventing the particles in the lattice 
gas from occupying the same lattice sites (hard cores) 
gives rise to the factor 1—p which is not present in the 
original Mayer cluster expansion where the whole in­
teraction potential, hard core included, is used as the 
perturbation. This leads to an expansion in terms of p 
alone. The importance of the expansion parameter 
p(l —p) is stressed since it will motivate our thinking 
when we come to the real gas. 

For completeness, we present the spherical model 
for the lattice gas. Although it is subject to the same 
inconsistency as the spherical model for the Ising 
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model, it nevertheless gives an indication of how to 
obtain fluctuations in the theory of the real gas. Since 
the diagrams contributing to the spherical model in 
the present case are the same as those contributing to 
the spherical model of ferromagnetism, we shall simply 
transcribe the equations for ferromagnetism into those 
for the lattice gas without rederiving them. We shall, 
however, derive the analogous theory for the real gas. 
The equation for the free energy of the Ising model in 
II yields for the pressure of the lattice gas. 

(3pNo=lnW(p)+±NoPp2u(0) 

- * E ln[l-j8p(l-p)2i(q)]+i^op(l-p)/3€ 

+NQp^ (3.18) 

where z(q) = u(q) — e and e is the saddle parameter. 
The equation determining e is given by transforming 
Eq. (2.9). 

Z Cl-j8p(l-p)a(q)]=Ar0. (3.19) 

The interpretation of Eq. (3.19) is the following. We 
write the interaction energy of the lattice gas as 

No 

4 E « * « 6 , = i £ « ( q ) | € ( q ) | 8 , (3.20) 
17*3 q 

where the Fourier transform of u is defined in the same 
way as for \n in the Ising model. Now, 

£ kl'=£ kl'-tf 
q^O q 

No 1 No 

= Ee<2 E e ,€y=iMl-p) . (3-21) 

*=1 NQ i>3==1 

But (1 eq |
2) is given by 

<|€Q|2) = 2dlnS/dMq) 
= p(l-p)/[l-/5p(l-p)2(q)3, (3.22) 

so that Eq. (3.19) for the saddle parameter just ex­
presses the spherical condition, Eq. (3.21). The phase 
transition is the place where |eo|2—><*>, i.e., the com­
pressibility blows up. This occurs at unique values of p 
and T, namely, 

p c=l , kTc=z(0). (3.23) 
The critical density pc in this case is determined by 
symmetry alone. 

If it were not for the rapid variation of e(T,p) with 
p within (1/s) of T, the theory based on Eq. (3.22) 
would describe condensation very neatly. Actually the 
critical region is very badly handled because of the 
inconsistency mentioned in Sec. I. 

Let us, however, assume that this difficulty did not 
arise; for example, suppose one could suppress the 
variation of e with p in the critical region for some reason 
or another [actually it has been shown that this sup­
pression occurs to 0(1/2) and is probably general6], 

then it is clear that the presence of the factor p(l—p) 
in (3.22) for 0>(3C leads to convergent results in the 
liquid phase (p>J). In this way, an equation of state 
based on (3.18) presents a convergent expansion in 
terms of the parameter p(l —p) which describes at once 
both liquid and vapor, in the same way that the Ising 
model factor (1—R2) gives a convergence factor in the 
presence of both =L3C (in the limit as ] 5C | —> 0 for 
£>&). 

IV. THREE-DIMENSIONAL HARD-CORE GAS 
WITH WEAK ATTRACTIVE TAIL 

The motivation for dealing with a hard-core gas is 
the success of the factor 1—p in determining an equa­
tion of state which is valid for the liquid and gas re­
gions below the critical temperature in the lattice gas. 
The idea will be to use the hard core as the unperturbed 
part of the Hamiltonian and the weak attractive tail 
as the perturbation.7 As with the lattice gas, the cluster 
expansion will be made on the attractive interaction 
averaged over the unperturbed hard-core interaction. 
The following notation will be used throughout the 
rest of this paper: 

V—volume of system, N= number of particles, No 
= maximum number of particles in the volume, V, 
a = diameter of hard core, va—a?/^/2 — volume of each 
particle in close-packed arrangement, p== density, pva 

= N/No, g(n)(r) = ^-particle hard-core correlation func­
tion, f(r) — 1 —g(2) (r), AH.C.(?) = hard-core potential. 

The logarithm of the grand partition function is 

No 

lnS=ln E \jsxp(PvN)/NQ 
#=0 

> < / • ' • / 1 1 ^ exp[-4/S E ual, (4.1) 

where u(r) is a long-range negative potential with a 
hard core of diameter a. We now define v(r) as the 
negative part of u(r) and zero inside the hard-core 
radius. Equation (4.1) becomes 

ln2=ln £ \jsxp(PnN)/Ni] [-•• [iLd*n 
N=0 J J 

X e x p { ^ E C ^ - ^ ( H . C ) ] } 

= ln £ [expOMO/^!] f • • • f II dhi 
JV=O J J 

X e x p R / 3 E ^ ] I I ^ > (4.2) 

where g(r) = exp[—h.c.W]=zero for r less than a 
and unity for r greater than a. Proceeding as in the 
case of the lattice gas, we take the largest term in the 

7 This idea has been applied to the equation of state of dilute 
gases by R. Zwanzig, J. Chem. Phys. 22, 1420 (1954). 
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sum over N9 calling it N and then dropping the bar in 
the future. 

lnE=ln(l/i\n) 

= ]nW(pva)+\n{exp(tf £ t><,)>+2Vfti, (4.3) 

where W(pva) is given by 

wifioa) = ( 1 / ^ i) f n ^3n- n gih (4.4) 

which is just the hard-core partition function. The 
average of a quantity in the sense of Eq. (4.3) is de­
fined by 

{0)= fo ft giiTLVTil f fi guilds. (4.5) 

Unfortunately, the numerator of W(pva) cannot be 
evaluated exactly. The simplification in the lattice gas 
comes about because each particle can exclude only its 
hard-core volume which is simply the volume of the 
unit cell of the lattice. This is true for all positions of 
the remaining particles. In the real hard-core gas, two 
particles can exclude less than twice their individual 
hard-core volumes if they get too close to each other 
since the regions of exclusion will then overlap. Simi­
larly, n particles can exclude less than n times their 
hard-core volumes and in a very complicated way. 
However, if we assume that W(pva) is a known function 
(e.g., by machine calculations), we can proceed for­
mally as with the lattice gas. 

We expand the logarithm of the average in Eq. (4.3) 
in a semi-invariant series 

ln<exp(|/3 E *</)>=£ Wn\)Mn{\ £ *<,), (4.6) 

and proceed with the cluster development as in Ap­
pendix A. The derivation is given in Appendix B. 

The results of the cluster expansion for the real gas 
differ from that of the lattice gas in two respects. In the 
lattice gas simple concise results were obtained by 
taking into account the excluded-volume problem (no 
two spins on the same site) by the introduction of the 
dashed line bonds. In the real gas, simple results ex­
pressible in terms of the two-body hard-core distribu­
tion function are obtainable only in the superposition 
approximation of Kirk wood8 as applied to the hard-
sphere problem. Analysis of terms of low order indicate 
that the error so introduced is of 0(l/z2) in the critical 

region, but this point is not proved. In any case, the 
cluster expansion presented below is no longer rigorous. 
The second item is that, whereas in the lattice gas it 
was possible to sum whole classes of excluded volume 
graphs by introducing Mv(p) at a vertex, in the real 
gas this is no longer possible. Thus, the results below 
are given before this last step is taken. In the section 
on the spherical model of condensation, this problem is 
taken up in detail for ring graphs. 

The coefficient of fin/n\ in (4.6) in superposition 
approximation is the sum of all irreducible graphs con­
taining n solid lines together with all possible com­
binations of dashed lines (now both internal and 
external because of the second item in the above 
paragraph). However, these must not be connected 
sequences of dashed lines joined at a vertex at which is 
not also joined a solid line. Unlike the case for a lattice 
gas, Fig. 16 must also appear. 

To each solid line associate a factor g(2)(r)v(r) where 
g(2) (r) is the two-body hard-core distribution function 
normalized according to Eq. (B15) and to each dashed 
line a factor [_g{2)(r) — \~]^f{r). The value of a graph 
with m vertices is pm times an w-fold integral over the 
variables r i , • • •, rm associated with the vertices. The 
integrand is the product of factors associated with the 
various bonds in the graph. The number of times a 
particular graph appears is a combinatorial problem 
which is not of interest in the present work. It may be 
calculated using the techniques of IV. What is useful 
for us at present is that a simple linked-cluster ex­
pansion exists (at least in superposition approximation) 
and this may be used to classify terms to 0(l/z) in 
analogy to the Ising model. 

V. RESULTS OF THE THEORY OF THE REAL 
GAS MOLECULAR FIELD THEORY 

OF CONDENSATION 

Following the treatment of the Ising model and the 
lattice gas, we first take the zeroth-order diagram as 
the only contribution to the pressure. We call this the 
molecular field because in this approximation, each 
particle feels the same interaction with all other par­
ticles regardless of the configuration of the system. This 
in effect neglects fluctuations in the local density due 
to the attraction. It will be exact in the limit of in­
finitely long, infinitely weak attractive forces. The 
pressure is given by 

(1/N) \n5=(3pV/N= (1/N) \nW(pva)+ipvafiv(0)+^ 
=lnw (flva)+hvapv(0)+fr*, (5.1) 

where 

va) / v 

8 J. G. Kirk wood, J. Chem. Phys. 3, 300 (1935). 

v(0)=(l/va)h(r)gW(r)dr 

and \nw(pva)=(l/N)lnW(pVa) is the free energy per 
particle for hard cores alone, ftu is determined from the 
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saddle condition 

fo= (dt3F/dN)p,v=-Ld(pva \mv(pva))/dpva~] 

= (d/dpva)(pva \mu)—pVaPv(0) 

-h(pva)2dv(0)/dpva. (5.2) 

ppV d \nw dv(0) 
= pVa—hpVaPv(0) — %(pVa)

2l3 
N dpVa dpVa 

= (0pV/N)n.c-hpVapif(P) 

-Upva)
2d(3v(0)/dpva, (5.3) 

where the subscript H.C. denotes a quantity evaluated 
for hard cores alone. The critical temperature is deter­
mined by setting the isothermal compressibility equal 
to infinity. This gives the equation 

V(dp/dV)NtT= -p(dp/dp)T=0, (5.4) 

the solutions of which are p = 0 which is uninteresting, 
and (dp/dp)T=0 which we rewrite as 

Q=-p/pva{dp/dpva)T 

= 2(d lnw/dpva)+pvaZd2 lnw/<9(p<)2]+/^(0) 
+ 2pvapldm/dpVal+Hp^)2Pld2m/d(pva)

2']. (5.5) 

The function p(p$) as written in Eq. (5.1) will show 
loops as a function of p for t3>/3c since it is analytic, 
whereas the true pressure consists of three analytic 
parts for £>&• This, of course, is due to the fact that 
the pressure, as written, is not valid in the region inside 
the loops for the same reason in the Ising case. Equation 
(5.5) will necessarily show spurious zeros (minima and 
maxima of the loops) when the temperature is below 
the critical value. Hence, to determine the critical tem­
perature and density, we must take the smallest value 
of /3 for which it is possible to find a root of Eq. (5.5). 
We get 

0 = d / 3 / d p » o = - {v(0) + 2pValdv(0)/dpVa] 

+ i (pVaKd2v(0)/d ( P ^ a ) 2 ] } - ^ 3 ( p V a l n w ) / d {PVaf 

+ {3 (dv(0)/dpva)+3pvaZd2v(0)/d (P^)2] 
+^pva)

2ld'm/d(pvayi}{m+2pvZdv(0)/dpVal 
+UpVaKd2m/d(pva)

2l}-2d2(pValnw)/d(pva)\ (5.6) 

In order to solve Eq. (5.6) for pc, it is necessary to 
know lme; and v(0) as functions of p. As we shall see, 
the critical density (pva) is in the neighborhood of J so 
that good values are given by the density (virial) ex­
pansions of the pressure and the pair correlation func­
tion from which we can determine the density expan­
sions for \nw and z/(0). Using the virial coefficients for 
the pressure and the tabulated values of the coefficient 

TABLE I. Comparison of some dimensionless constants in the 
theory of condensation evaluated by three methods. 

Expt. 
K-L-A 
Molecular field theory 

Ve/a? 

3.09 
2.59 
3.04 

C^e]"1 

1.28 
1.43 
1.42 

PcpcVc 

0.292 
0.358 
0.418 

of (pva)
2 contributing to g{2)(r),9 we find 

(0PV/N)n.c. 
= l+PlPVa+p2(pVa)2+Pz(pVay+fa(pVay+ • • ' ( 5 . 7 ) 
= — pva (d hiw/dpva), (5.8) 

v(0)==<xotl+a1pva+a2(pva)
2+ • • • ] , (5.9) 

where 

01=2.9615, 02=5.4816, 0 8 = 7.4519, 0 4 = 8.846. (5.10) 

In order to compare the answers obtained from the mo­
lecular field approximation with previous work on the 
subject and also with experiment, we take the negative 
part of the Lennard-Jones potential,10 4e[(a/r)12 — (a/r)6] 
for the attractive tail; v(r) = 0 for r<a. We find 

ao=15.797€, ^ = 0 . 6 9 2 4 1 , a2= -0.12439. (5.11) 

The last coefficient was obtained by numerical integra­
tion. Equation (5.6) becomes 

l/(pva)
2+6a1/pva- ( 3 f t - 16a 2 -6f ta i ) 

- (S^-2^1a2)pva- (15jS4+12ftai- 24/?2a2) (pva)
2 

- (30^al-16fiza2)(pvay+O(pvaY=0. (5.12) 

Putting in the values for the coefficients, we find 

l / (p^a)2+4.155/(pO-6.131-68.46pt; a 

- 2 1 1 . 0 ( p ^ ) 2 - 1 9 8 . 6 ( p ^ ) 3 + 0 ( p O 4 = 0 . (5.13) 

Since the terms with positive sign in Eq. (4.13) de­
crease monotonically for positive pva and the terms with 
negative sign increase monotonically for positive pva, 
there is only one positive real root which is pcfl«= 0.233. 
Assuming that all the truncated series are essentially 
geometric, we estimate the error in the above result 
to be about 3 % . 

We now use the value of pcva in Eq. (5.5) to obtain 
/5ce and in Eq. (5.3) to determine j3cpcvc. The values are 
listed in Table I together with those obtained by 
Kirkwood, Lewinson, and Alder11 for the modified 

9 See B. R. A. Nijboer and L. Van Hove, Phys. Rev. 85, 777 
(1952). 

10 In the above calculations we have used the so-called Lennard-
Jones (6-12) potential where the numbers in parentheses denote 
the exponents of the attractive and repulsive parts. See, for ex­
ample, J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular 
Theory of Gases and Liquids (John Wiley & Sons. Inc., New York, 
1954), p. 162. 

11 J. G. Kirkwood, V. A. Lewinson, and B. J. Alder, J. Chem. 
Phys. 20, 929 (1952). This kind of theory, as usually presented, 
gives little qualitative understanding of the condensation phe­
nomenon but is based on the observations that the pressure-
volume isotherms as calculated turn out to have loops. In the 
present theory, the advantage is that the qualitative physics of 
the phenomenon is "fed" into the theory at the outset. 
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FIG. 2. Pressure-volume iso­
therms of the real gas in mo­
lecular field approximation. 
The abscissa is (v/va). 

9.0 10J0 11.0 12.0 13.0 H.O 15.0 16.0 110 18,0 

Lennard-Jones potential (Lennard-Jones potential with 
hard core) and experimental results.12 The theory of 
Kirkwood et al. is based on recursion relations of dis­
tribution functions and the Kirkwood superposition 
approximation. 

The discrepancy of the molecular field value of 
PcpcVc with the experimentally determined value is due 
to the very strong dependence of this quantity on the 
value of the critical temperature. (3cpcVc is of the form 
A(pcVa) — pcB(pcVa), where A and B are themselves not 
very sensitive to pcva and 0C. If the true Tc were only 
10% lower than the molecular field value, the value of 
PcPcVc would be reduced by about 40% which brings it 
into line with experiment. Note that this correction is 
to be expected. On the basis of Ising model calculations, 
the Curie point as calculated in molecular field theory 
is indeed about 10% too high for near-neighbor 
interactions. 

In Fig. 2, we have plotted isotherms in the p—v 
plane for various values of kT/e. Below the critical 
temperature, the isotherms show the familiar loops 
which are inherent in a canonical ensemble calculation 
when the attractive part of the potential has infinite 
range (molecular field). I t must be emphasized, how­
ever, that the replacement of the loops by a straight 
line cutting off equal areas (Maxwell construction) is 
not an ad hoc procedure but is actually dictated by the 
theory itself. In the grand ensemble, the loops are 
immediately eliminated because steepest descents have 
been used to evaluate the integral (sum) over the 

12 The experimental results quoted in the text are the mean 
value for Ne, N2j Ar, and CH4 taken from T. L. Hill, Statistical 
Mechanics (McGraw-Hill Book Company, Inc., New York, 1956), 
p. 232. 

number of particles and the formal equations are not 
valid for values of the density inside the loops. The 
reasoning here is the same as for the Ising model mo­
lecular field theory in Sec. I I . This agrees with the 
theorem that dp/dv is negative for a grand ensemble 
calculation whether the canonical ensemble partition 
function used is correct or not.13 

In general, we may conclude that the molecular field 
theory using the hard-core metric gives all the quali­
tative features of condensation as well as surprisingly 
good quantitative features. We clearly have a successful 
zeroth approximation to the phenomenon together with 
qualitative understanding. The entropy is essentially 
that of the hard-core gas and the energy that of the 
tail. At low temperature (below Te), the latter wins 
out and condensation occurs. 

Spherical Model of Condensation 

We have seen that in the theory of the lattice gas it 
is possible to take account of microscopic fluctuations 
in the density by summing a set of ring graphs (spherical 
model). In the case of the real gas, we shall show that 
this theory again leads to fluctuations of the Ornstein-
Zernicke type.3 The motivation will be, as in the Ising 
case, to obtain the first-order correction (coefficient of 
va/vs in the pressure) to the molecular field theory. 
We make the tacit assumption that such an expansion 
of the pressure in powers of va/vs is possible and yields 
physically consistent results when truncated at any 
order. I t is unfortunate that the spherical model graphs 
summation at this point has not led to such simple 
results as for the lattice gas. Nevertheless, we include it 
here to illustrate how our cluster method works. 

13 See, for example, T. L. Hill, reference 12, p. 166. 
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If it were not for the following complication, we 
could transcribe the results for the spherical model in 
the Ising case as we did for the lattice gas. Consider 
the diagrams of Fig. 23 in Appendix C. In the case of 
the lattice gas, they add up to the value shown in Fig. 
24. For the real gas, the three diagrams of Fig. 23 are 
not equivalent in absolute value. We, therefore, make the 
approximation that they add up to the single diagram 
as in Fig. 24 for the lattice gas. I t is virtually impossible 
to estimate with any accuracy the error involved in 
this approximation but it appears reasonable if the 
range of the potential is large compared with the size 
of the hard core (large z). This is evident from Fig. 23 
where we see that vertices 1, 3, and 5 are relatively 
close together compared with the other vertices whether 

there are two dotted lines or three. Note that this 
approximation does not depend on the density of the 
system but rather on va/vs since p enters only as a factor 
multiplying each diagram. 

We can now eliminate the external dashed lines from 
ring diagrams containing internal dashed lines. We de­
note, as with the lattice gas, the sum of all external 
dotted line ring graphs (with or without internal dashed 
lines) by a skeleton ring graph in which each ' Vertex" 
stands for pva[p(xi~r/)—pvaf(xi— r / ) ]=Af^ ( 2 ) . The 
term "vertex" is used to denote two points, n and rj 
connected by an Mu>{2) (r ~ r4>) bond. We can now sum 
the set of all ring graphs with noncrossing internal 
dashed lines as before in the Ising model. We look at 
the pressure first. 

l3pv=\nw{pva)+^v(0)p^+(l/2N) £ j f (Pn/n)[zn>M2^ZvZ- • - ^ M n ^ ] fl dxdU' 
n=3 { J i=l 

+ (/32/4i\T) I dixdTvdxdxv v12,M2>2i2)V2vMri
i2)+(fi2/4:N) \ dxxdxvdxtdxv 

Xe(r1-r20M2 ,2<2>€(r2-r10Mr1
( 2 )+iSM, (5.14) 

where 

z{xi- Xj) = v(u— Xj)g(2) (Xi- xj)- c(ry- Xj). (5.15) 

The saddle parameter e(xj—Xj) is now a function of the 
positions of the vertices since /(r*— ry) is not a delta 
function as in the lattice gas. 

In the expression for the pressure, the first two terms 

FIG. 3. Ring graph which is recounted by the 
third term of Eq, (5.14). 

are the hard sphere entropy and the molecular field. 
The third term is the sum of all rings starting with the 
triangle and with the v bonds replaced by z bonds. The 
fourth term is simply the single second-order diagram 
in the cluster expansion. This would appear to give the 
sum of all rings with noncrossing internal dashed lines 
but graphs of the type of Fig. 3 are counted twice. This 
is because we can look at the bonds on either side of the 
dotted line as contained in the saddle parameter. Other 
graphs of the type of Fig. 3 are also overcounted by 
various amounts. The fifth term in Eq. (5.14) subtracts 
just those terms which are overcounted. The last term 
is the chemical potential. Using Fourier transforms, the 

FIG. 4. Diagram con­
tributing tO €ij. A-n-N 

pressure becomes 

fipv=\nw {pva)+hvafiv (0) 

-(l/2N)Zln[_l-pM^(q)z(q)-] 
q^O 

+ ( l / 2 i \ 0 £ A ( q ) M « > ( q ) 
q^O 

+ (V2A0 E 0H>(q)A(q)[M<» (q) J 

+ WW) E [A(q)e(q)-A2(q)][M«>(q)]s 
q^O 

- G8/2A0 E «(q)AfO> ( q ) + / V (5.16) 

Here e(q) is the Fourier transform of the saddle pa­
rameter and A(q) is the Fourier transform of Ujjij 
which is Y^q' / (q—q 'Mq ' ) - Equation (5.16) reduces to 
Eq. (3.18) for the lattice gas when it is remembered 
that / (q) = 1, so that ( l / iV)L *(q) = A(q) = 8. Instead of 
looking at the energy as in the Ising model, we deter­
mine the sum rule by calculating e(q) directly. e»y is the 
sum of all irreducible ring graphs attached to two points. 
This is shown in Fig. 4. Replacing each v bond by a z 
bond counts all graphs correctly. The reason is that two 
points are fixed and there is no ambiguity about which 
side of a dotted line to consider as contributing to a z 
bond. We thus get for €»y 

e ( r i - r 2 ) 

= £ / IldXidXi'Zn'M^^'Mn'nWZnZ. ( 5 . 1 7 ) 
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The Fourier transform of Eq. (5.17) is 

«(q) 

FIG. 5. Correction dia­
grams for the pressure. 

«(q) = 
l-j3z(q)Af(«(q) 

0(q)+A(q). (5.18) 

From Eq. (5.18), it follows that the pressure is sta­
tionary with respect to A(q) regarded as an inde­
pendent variable. We have 

2d$pv/dA(q) 

-/8AfO>(q) 
|3Jlf<2>(q)+/3z>(q)[>f<2>(q)]2 

l-/33(q)3f<2'(q) 

-^A(q)[Jfe>(q)]2+i[a/3A(q)] 

XE^A(g)e(g)Clf2(q)]2. (5.19) 

The last term of Eq. (5.19) appears to give trouble. 
However, it must be noted that the sum in the last 
term must be read symbolically in the following sense. 
Since the term [Mi(q)22 appears in the sum, it causes 
an asymmetry since it puts e(q) and A(q) on an equal 
basis. This is shown more clearly when we write the 
sum as Zq,q' €(q)/(q~ qf)e(q%M^ (q)]2. What should 
be subtracted in order to correct for overcounting in 
the expression for the pressure is the sum of the dia­
grams of Fig. 5 where the circles denote Mu>(2). The 
sum, on the other hand, denotes the graphs of Fig. 5 
but with half of them having the dashed lines on the 
other side of the circles as shown in Fig. 6. When this 
correct procedure is done, it is seen that the derivative 
with respect to A(q) is actually 2e(q)[lf(2)(q)]2 since 
the argument of M{2) changes from q to q' depending 
on which e is referred to. With the help of the foregoing 
argument, Eq. (5.19) becomes 

2dppv/dA(q) 

0h(q)ZMW(q)J 
-^v{q)[_M^{q)J 

l-pz(q)MM(q) 

-^2A(q)[M(2>(q)]2+/32e(q)[lf(2)(q)]2. (5.20) 

Comparing Eq. (5.20) with (5.18), we see that the 
equation 

dppV/dA(q) = 0 (5.21) 

is shown below to be equivalent to a sum rule reminis­
cent of the spherical model. 

To see the connection between the sum rule and 
fluctuations, we look at the microscopic density. This 
is defined by 

p(r)=Z«(r-r , - ) , 
£=1 

(5.22) 

or 

which is a quantity analogous to €* of the lattice gas. 
The Fourier transform pq is defined as 

P q - C W V ^ E e x p f a - r , ) , (5.23) 

E | p , | 2 = (P/N) Z E exppq- (r 4-r y)] . (5.24) 

The right-hand term is zero when i^j since for hard 
cores, TiT^rj when ij£j. This is not true if the repulsive 
part of the potential is not infinite inside a finite volume 
(hard core), Eq. (5.24) then becomes for hard cores 

(5.25) 

(5.26) 

This is the spherical condition which corresponds to 
Eq. (3.21) for the lattice gas. Using the above ex­
pansion, we can evaluate (|pq|2) from the sum of all 
spherical model graphs attached to two fixed points, 
i and j . From (5.24) we see that this latter is just the 
Fourier transform of the sum of all spherical model 
graphs attached to this two points. We thus have 

<U2>=p-pW(q)+- £ 0nE [z(q')]"-1CMe)(q)]» 
No n = 3 «' 

+ (V#o)/3 E Hq')C^(2)(q)]2g(2,(q-q') 

E9 |Pq |2=LqP, 

Z,CIP,I2-P]=O. 

1 
=p-pW(q)+—Z 

M«(qO 

No i' U-/3Jif<2)(q')z(q') 

-4f<2>(q')+i3A(q')[lf(2)(q')]2 g<2>(q-q'). 

(5.27) 

Summing over g, we obtain the sum rule in the form 

Z[<U 2>-(l /<>M< 2>(q)]=0, (5.28) 

since £ g(2) (q) = 0. It is easy to see what Eq. (5.27) 
reduces to for the lattice gas. In this case 

g W f o - r y J - l - t a r , , (5.29) 

g (2)( q )=^ o 5 o q - l . (5.30) 
Also 

A(q) = E«(q ')g(q-q ')=<, (5.31) 

j|f<2>(q) = p( l -p ) , (5.32) 

so that'Eq. (5.27) becomes 

( [6 , | 2 )=p( l -p) / [ l - /3p( l - P ) S (q) ] , (5.33) 

FIG. 6. Diagrams subtraced in Eq. (5.10) to correct 
for overcounting. 
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where the lattice gas sum rule, Eq. (3.19), was used. 
Equation (5.33) is equivalent to Eq. (3.22). 

To see what ( | eq|2) looks like in the lattice gas for 
small q near the critical temperature, we expand v(q) 
as a function of q. 

*>(q) = H0)[l-«<z2] , (5.34) 

where a is 0(2). Putting this into Eq. (5.34) we find 
for T^TC 

<|eq|»> = p ( l - p ) / { l - / J p ( l - p ) & ( 0 ) ( l - a j » ) - 6 i } 

= 1/4 J(T/yTc) (5.35) 

l-(P/4)t4&Te--afv(0)'] \2+q2 ' 

where 7=fl(0)/*(0) and \ = = 7 ~ 1 / 2 ( ^ / ^ W ) 1 / 2 . Equation 
(5.36) holds for p^pc^h- This shows how the correla­
tion length, X-1 becomes infinite near the critical tem­
perature for p—pc-

By writing 
g(2)(?) = ^ o 5 0 q - / ( q ) (5.36) 

for the real gas, we find a form similar to Eq. (5.36). 
For small q, we have 

/ ( q ) ^ / ( q = 0 ) + ^ , (5.37) 

g ^ ( q ) ^ i V o 5 o q - / ( q = 0 ) - ^ 2 , (5.38) 

M^(^)=pva{l-LK^0)+Vq^pva}, (5.39) 

where / ( q = 0 ) stands for limq_>0/(q). Note that / ( q = 0 ) 
is not equal to / (0) ( = 0 ) as defined in Eq. (4.21). This 
is a consequence of the normalization we need for 
g(w) (ri, • • • ,rn) which is the most convenient for deriving 
the cluster expansion. / ( q = 0 ) is easily evaluated by 
noting that13 

/ ( r ) ->( l -p*r ,CH.s . ) / t f . (5.40) 
r-*oo 

Then 
/ (0) = / ( q = 0 ) - ( l / p - * r K H . B . ) = 0, (5.41) 

or 
/ ( q = 0 ) = l/p-*riCH.Bo (5.42) 

where KH.S. is the isothermal compressibility for hard 
cores alone. If we had chosen the grand ensemble nor­
malization for g ( n ) ( r r • -,rn) we would have obtained 

/ (0) = / ( q = 0 ) = l /p -&rK H . s . . (5.43) 

I t is important to note that the quantity with physical 
meaning is f(q=0) and not / (0) which is arbitrary to 
within an additive Kronecker delta. 

I t should also be noted that for the lattice gas, 

«L .a .=0 ( l -p ) /p , (5.44) 

so that /(<z=0)= 1 as it should. 
From Eq. (5.27), we see that the principal con­

tribution to ( |pq |2) is 

< |p q | 2 )^J f»>(q) / [ l -^M< 2 ) (q ) 2 (q ) ] . (5.45) 

From the denominator of Eq. (5.45) we see that the 
critical temperature is given by 

i f W(0)2i(0) = p » o [ l - / ( q = 0 ) p » a > ( 0 ) = 1, (5.46) 

and since the form of v(q) is given by Eq. (5.34), the 
form of (|pq |2) will be given by Eq. (5.35). However, 
because of the complexity of the spherical model in the 
present case, we cannot show that the value of the 
critical temperature as determined by infinite com­
pressibility is the same as Eq. (5.46). 

We have shown that the form given by Eq. (5.35) 
is a reasonable conjecture but at present we do not 
have a rigorous proof for this; these results are of the 
Ornstein-Zernicke type. 

Note also that in analogy to the lattice gas the ex­
pansion for (|pq |2) for small q is in powers of pva 

X [ l - / ( q = 0 ) p v o ] where f(q=0)= l-pkTun.s, In the 
liquid range, KH.S. —> 0 and one recovers the expansion 
coefficients similar to pfla[l—pflj of the lattice gas. In 
other words, whereas our expansion in the gas phase is 
an expansion in density of particles, in the liquid it is 
an expansion something like the number of holes. In 
the critical region the parameter is mixed. The reason 
for the unsymmetric isotherms {pva9^\) is that the real 
hard-core gas has interesting variation of compressi­
bility with density. 

The isothermal compressibility is given by the fluc­
tuation in the microscopic density. We have 

<P(0)) 2 V ' 

K can be calculated directly from its definition using 
the spherical model value for the pressure. Also, the 
relative fluctuation in Eq. (5.47) can be calculated 
directly. From the analysis of the spherical model in 
the Ising case, it will be seen that the two quantities 
will not be equal as they should from Eq. (5.47) al­
though they will become infinite at the same value 
of T. We, therefore, have the same inconsistency which 
obtains in the spherical model of the Ising model. For 
this reason we postpone further analysis of the present 
treatment until some of these difficulties are cleared up. 

VI. CONCLUSION 

We have seen that it is possible to derive a cluster 
expansion for the lattice gas without recourse to (al­
though the formalism is the same as that of) the Ising 
model. Using this derivation plus the fact that the 
quantity p(l—p) occurs in the expansion of the pressure 
of the lattice gas, we conjecture that the hard core 
plays a predominant role in the theory of condensation 
since it allows a formulation of the equation of state 
of the gaseous and liquid states together. To this end, 
we have developed a cluster expansion for a classical 
system of particles with hard cores and weakly attract­
ing long tails with the hard core treated exactly as it 
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is for the lattice gas. We have seen that in the limit of 
infinitely long and infinitesimally weak attractive tails 
(molecular field), we obtain a theory of condensation 
which has the same essential features as the Weiss 
theory of ferromagnetism. Noting the partial success of 
the spherical model of ferromagnetism, we attempt an 
analogy for the real gas and find essentially the same 
results although it is very difficult to perform any 
numerical calculations. We do, however, gain some in­
sight into the mechanism of condensation since we ob­
tain a series in the density which diverges for a critical 
value of the density when T<TC and converges again 
after condensation is completed because of the occur­
rence of factors of the form p(l—p). We have shown 
that by a reformulation of Mayer's original cluster ex­
pansion using a hard-core metric, it is possible to obtain 
a qualitative understanding of the mechanism of con­
densation and to calculate quantitative results from a 
simple approximation to the rigorous theory. It is 
hoped that a consistent first-order correction to this 
molecular field theory will be obtained by the possible 
summation of all convolution graphs (nodal expansion)14 

in the present cluster expansion. 
Note added in proof. It has been kindly pointed out 

to us by Professor A. Siegert that the molecular field 
approximation is very close to the van der Waals 
approximation to the equation of state. In particular, 
if W(pva) in Eq. (5.1) is approximated by (V/N—va)

N 

and the dependence of g{2)(r) on p is neglected, the re­
sulting theory is that of van der Waals. The parameter 
a is v(Q) and the parameter b is (va). It is remarkable 
that the two corrections included in our version of the 
theory bring the van der Waals theory into such close 
accord with experiment. 

It may be pointed out here that this whole develop­
ment is completely rigorous for a one-dimensional sys­
tem of hard bars and an infinite-range potential whose 
integral over the whole real axis exists [and is called 
fl(0)]. In this case the van der Waals equation of state 
is rigorous. Of course, in one dimension, condensation 
only occurs for infinite-range forces. 

Note added in proof. If instead of summing spherical 
model rings, one sums simple rings one finds 

<kl2>= 
(|pq|2)H.S. 

i-iMoXklVa. 

where 

<U2>H.S. = 1-P fdyi-'dr. •f> 
In particular, 

lim < | Pq | 
«-»0 

=PkTKB 

The critical point is then where f?Kn.s.v(0) = 1. This is 
the same as the critical temperature obtained from 
Eqs. (5.4) and (5.5) if one neglects the density de­
pendence of g(2)(r) in v(0). For application of this 
result to the theory of freezing see a forthcoming publi­
cation of R. Brout, Physica (to be published). 

APPENDIX A 

Our point of departure is the expansion Eq. (3.10).15 

We first recall the fundamental theorem of semi-
invariants. Let Mn

(x\ Mn
{y) be the semi-invariants 

generated by x and y, respectively. Then 

J|f n(^») = M »<*>+Jf »<»>, (Al) 

x, y independent. 
To get an idea what the expansion (3.10) looks like, 

we write out the first two semi-invariants explicitly. 
The average is written in the following way. Since the 
«'s are functions of the positions, r, of the particles on 
the lattice sites, we write them as u%j=uTitr Then the 
average becomes 

No N / No N 

< « r < r y > = E Utlt* H guxf / ( E Hgnti), 

(A2) 

where grtry=l —5rirr The purpose of the g's is to take 
account of the hard core by preventing two particles 
from occupying the same lattice site. That Eq. (A2) is 
equivalent to Eq. (3.9) is evident when it is observed 
that the numerator in Eq. (A2) is equivalent to the 
sum on configurations without permutations and the 
denominator is W(p). The denominator in Eq. (3.12) 
can be written 

No N 

E I I grit, 
TI...TN=1 i<3=l 

No N-l 

= {Nt-N+l) E II gur, 
ri-..rjv-i i<j=l 

= (N0-N+l)---(No-n) £ J ?r,; (A3) 
r i - . - r n i<]=l 

for 2<n<N. If we take n=2 in Eq. (3.13), then the 
common factors in the numerator and denominator 
cancel and we are left with 

<*o=-

No 

E Untzgnv 
rir2 No 

E£r i r 2 No(No-l) 
MO), (A4) 

14 See E. Meeron, Phys. Fluids 1, 139 (1958). 

15 Many of the graphical ideas introduced here such as re-
ducibility are assumed known to the reader from standard works 
on statistical mechanics [e.g., T. L. Hill (reference 12)]. The 
general pattern of development is similar to the works of refer­
ence 1 with which the reader is assumed to be familiar. 
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where u(q) is defined by The first semi-invariant is given by 

Na J f l = i .E^ <«r,r,> = i [ W - l ) / ( t f o - l ) > ( 0 ) 

«(q)=(l/iVo) E Wr^exppq-^ - ry ) ] . (A5) ** * =iiVo«(0)p2+0(l). (A6) 
n ^ n _ 1 For the second semi-invariant, we have 

M2=ll( £ S r i ^ r J - d M r i ^ l K , , , , ) ] 

= 1 E [<«r i ry«r i b r l >-<Wriry><«r f c r i>]+ E [ { " r ^ t t r y r fc>- < ^ r , - > ( ^ r , } ] + § E [ < « r < r , 2 > - < ^ r y > 2 ] . ( A 7 ) 

The motivation for writing Eq. (A7) will be seen when we consider the individual terms. We start with the first. 

4 

E ^ r 1 r 2 ^ r 3 r 4 I I gr<ry 

^ -rr E g*m E gr3r4 

E I I grit, 

4 4 

E E WrirjWrjrX I I (gr ir ;)gr1 'r2 'gr3 'r4 '-gr,r2grsr4 I I (gr^T/')] 
ri'- • -r4' ri- --n *<j= l *'<j=l 

= , (A8) 
4 

E I I (gr;ry)gri'r2'gr3'r4' 

where we have used the reduction 
No N No N 

< ^ ( r i , r 2 , - - T n ) ) = E FlLgvij/ E I l g r ^ r y 

iVo n iVo n 

= E ^IIgr«ry/ E TLgtiTj. 
xi'"in i<3 r i«»-rn *< / 

We now expand the products of g's in the numerator of Eq. (A8) into sums of products of 5's keeping, however, the 
g's associated with u's in unexpanded form; i.e., we write gr iri= (1 —5^) for all g's except those having the same 
indices as the u products. For example, we write 

Mn^rsiigti^gfiiHgtiTsgtingwzgWi— ur1T2^tSTAgt1T2gtiti ( l -5 r i r 3)( l-5 r i r 4)( l-5 r 2 r 3)( l-5 r 2 r 4) . (A9) 

The diagrams in Fig. 7 denote how this is done. A solid line represents a factor uXixjgtixi and a dashed line a factor 

—dTitr The diagram of Fig. 7(d), for instance, represents the following expression (forgetting the denominator 
for the moment): 

2 ^ ^'TiT2/^TZtigtiT2gT3T^OTlTzOl2Ts 2 ^ gr i ' r 2 ' g r 3 ' r 4 ' 2w ^rir 2^r 3r 4gr lr 2gr 3r4 2 ^ gr i ' r 2 ' g r 3 ' r 4 ' 0 r i ' r 3 ' d r 2 ' r 8 ' 

= E 5r1r2«rir2«r3r4gr1r2gr8r4 E gr i ' r 2 ' g r 3 ' r 4 ' — E ^ri r 2^r 3 r 4grir 2gr 3 r 4 E g r i ' r 2 ' g r 2 ' r 4 ' 5 r i ' r 2 ' = 0 . ( A 1 0 ) 

In fact, the last three diagrams in Fig. 7 are identically zero because they contain at least one 5 and u in parallel. 
When a diagram has two joined dashed lines coming from the ends of a single solid bond, it is identically zero. The 
first and second diagrams are also zero but for a different and more important reason. This is seen immediately 
when the numerator is written out. 

F i g u r e 7 ( a ) = E ^ r ^ r ^ g r ^ g r ^ E g r i ' r 2 ' g r , ' r 4 ' - E «r l r a«r , r 4gr 1 r 2grsr 4 E gr i ' r 2 ' g r , ' r 4 ' = 0 , ( A l l ) 

F i g u r e 7 ( b ) = E ^r^Ux^gt^gx^r^ E g r ^ g r , ' * ' — E ^x^Ux^gt^gtzH E g r i ' r 2 ' g r , ' r 4 ' 5 r i ' n ' 

= 2 ^ ^r1r2^r2r3grir2gr2r3 2 ^ g r i ' r 2 ' g r 3 ' r 4 ' ~ Zs ^r i r 2^r 3 r 4grir 2gr 3 r 4 2-, g r i ' ^ ' g ^ ' r a ' 

= ( V # o ) E ^r1r2^r3r4gr1r2gr3r4 E g r i ' r 2 ' g r 8 ' r 4 ' - ( V # o ) E «r 1r a«r,r 4gr 1r 3gr 8r 4 E g r i ' r 2 ' g r 8 ' * ' = (). ( A 1 2 ) 
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The factorization occurring in Eq. (A12) is a result of the translational invariance of the u*s. By this we mean 
that Zr^ i^ 0 uXixigriri is independent of r». Hence, any term represented by a reducible graph will factorize in a 
manner similar to Eq. (A 12) so that the full semi-invariant corresponding to such a reducible term will vanish. 
Finally, we are left with the third diagram which represents for the full expression in Mi 

F i g u r e 7 (c) = 1 / D [ Z UxiTiUthTigtitigthx$tit$xiri Z gr<'r,'gr*'r,' 

— UritjUrjtngtiTjgtkTi Z gri'ry'grfc'rj'8rt-'r*'5ryTi'l ( A 1 3 ) 

where 
JV0 4 iVo 

^ = 2 1 I I gr<r, Z gn 'r j 'gn 'n ' . 
ri-..r4 *</=l n ' . . . r4 / 

Equation (A13) is rewritten 

1 N(N-l)(N-2)(N-3) 

2 No(N0-l)(No-2)(No-3)No2(No-l)2 

XlN0
2(No-l)2 Z ^ r 1 r 2 ^ r 3 r 4 ( - 5 r i r 3 ) ( - 5 r 2 r 4 ) ^ r i r 2 g r 3 r 4 - i V r o ( i \ r o - l ) E UXingxin Z " r ^ n r j 

ri«..r4 n,r2 rz,n 

= J ^ 0 p 4 E g r 1 r 2 % r 1 r 2
2 . 

The second term in the numerator of Eq. (A13) is 
clearly 0(1/No) smaller than the first term. 

The second term in Eq. (A7) yields the linked dia­
grams of Fig. 8. Figure 8(a) is zero through the argu-

(o) tb) it) id) (t) (ft 

FIG. 7. Diagrams arising in Mi from W12W34. 

ment following Eq. (A12) and Fig. 8(b) contributes 
to Af2; 

F i g u r e 8 ( b ) = p 3 £ ^ r j r ^ n r ^ r ^ r , 
rir2r3 

X (-Srir3) = p3 £ « . i « ,W- (A14) 

rir2 

Finally, the third term in Eq. (A7) contributes to M2, 

Figure 8 (c) = Jp2 £ utlxHri^ (A1S) 
nr2 

3 3 

2 1 2 1 
(.0) (b) FIG. 8. Diagrams 

arising in Mi from 

(O 

If we adopt the convention of calling a diagram irre­
ducible if the irreducibility refers to dashed and solid 
lines together, then we have the result that for M2, only 
irreducible diagrams contribute to the free energy. To 
prove the theorem that in general, only irreducible 
diagrams contribute to the free energy, we make use 
of Eq. (Al) for semi-invariants. Consider an unlinked 
diagram such as Fig. 9. Its contribution to M6 is a 
cross term in the expression 

M^Ungu+Uiigii+Uzigu+Ungn+Uwgse-du). (A16) 

But 5̂6g56 is independent of all the other terms in the 
argument of MQ and, hence, by Eq. (Al) the cross term 
is zero. For clarity, we write out the cross term explicitly 
for M2(ui2gi2+uz4gzi)^ This is 

2 ^ ^rir2grir2^rxr4gr3r4 
ri . . -r2 

(A17) 
rir2 r3r4 

For reducibly linked terms, the above argument also 
holds, for consider the diagrams of Fig. 10. The con­
tribution of Fig. 10(a) to Me is the cross term in 

M6(Ui2gl2+U24g2±+Uz4gsi+Uugi3 — 8u+U2bg26). 

Again 2̂5̂ 25 is independent of the other terms in the 
argument of M% in the sense that 

2~, ^rir2^r1r2^r2r4^r2r4^r3r4^r3r4^rir3^rir3Orir4Wr2r5 gr2n 

= (1/No) Z «rir^r1r2«rsr4gr2r4«r,r4grir4 
ri . . -r2 

X^r1r3gr1r35r ir4 Z ^rfir6
2£r6r6

2. ( A 1 8 ) 

Hence, the contribution of Fig. 10(a) to the free energy 
is zero. The generalization is evident. Unlinked or re-
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FIG. 9. A typical un­
linked diagram occur­
ring in MQ. 6 
ducibly linked terms involve in their reduced parts, 
variables which are statistically independent. Hence, 
cross terms cannot appear involving such terms [Eq. 
(Al)]. Therefore, we have proved that all unlinked and 
reducibly linked diagrams are zero. Finally, it must be 
stated that only the first term of a semi-invariant ex­
pression for irreducible graphs is of 0(N) because all 
the other terms are partially unlinked and contain too 
many factors of da as in the second term of Eq. (A13). 

It is not obvious that the cluster expansion which 
we have just derived is equivalent to the one originally 
obtained by Brout1 for the Ising model since we have 
no semi-invariant expressions of ê ey. However, con­
sider the four diagrams in third order (Fig. 11). When 
these diagrams are added together, we obtain 

(-p6+3p5-3p4+P
3) £ uTlt2uT2r3uTsri 

= 26(-/>H-3p5--3p4+p3) E W W r . r x 
= ( l -^ 2) 3E^ 1r 2Vr 2r 3^r 3r 1 . (A19) 

The factor "three" occurs because there are three 
ways of cutting a triangle and inserting one or two 
dashed lines in the vertices. Clearly, for a ring diagram 

of nth order, there are ( J ways of inserting r dashed 

lines and since a dashed line carries a minus sign as 
well as a factor of p, we get for the sum of all ring graphs 
in nth order 

*rir2 «*rnri 

= [ l - ^ 2 > E ^ r 2 - - ^ r n r i , (A20) 

FIG. 10. Typical reduc­
ibly linked diagrams occur­
ring in M$. 

which is the sum of the two ring diagrams (open and 
closed) in the nth order in Brout's expansion for the 
Ising model. It still appears that we have lost a great 
deal in this method since we have many more graphs in 
a given order than in Brout's expansion. However, we 
now prove the remarkable theorem that all external 
dashed line graphs in a given order belonging to the 
same configuration of ^'s can be summed and yield 
a surprisingly simple result similar to that obtained by 
Horwitz in IV. By way of introduction we first note 
that each vertex of a graph in any order can be broken 
up by inserting dashed lines. This is illustrated in Fig. 
12. This holds regardless of what the solid lines are 

+ 3 

FIG. 11. The set of ring graphs in third order. 

A 
connected to. Thus, a skeleton graph which contains 
no dashed lines can be used to represent all graphs of 
the same type (i.e., configuration of u's) with dashed 
lines inserted in all the vertices. The value of the graph 
will be given by the product of polynomials with which 
each vertex is now associated times the appropriate 
expression in the w's. We now find the polynomial cor­
responding to a vertex of n lines. To do this, we first 
consider Fig. 12, a vertex with three lines. On the right-
hand side of the arrow, the number of ways of obtain­
ing the first and fourth graphs is one and the number of 
ways of obtaining the second and third graphs is three. 
Adding these together and remembering that a dashed 
line carries a minus sign, we get p— 3p2+2p3. For a 

+ 3 + 3 
L_ 

FIG. 12. Insertion of dashed lines in a three-line vertex. 

four-line vertex, the expression is found to be p— 7p2 

+ 12p3+6p4. We now observe that the expression for a 
three-line vertex is just M3 {e%) = ((e*3)—3(€;2)(€;)+2(e*)3) 
while the expression for a four-line vertex is 

M4(e;)= (<€iV4<e;3><€i>-3<€*^ 

We, therefore, conjecture that the polynomial denoted 
by an w-line vertex is Mn(ei). We will prove this con­
jecture by induction. We first note that the coefficient 
of the term (xni)al(xn2)a2- • • (xns)a* in Mn(x) is 

(-Dr 
n\{r-\)\ 

(nil)al(n2!)
a2- • • (ns!)«*«!\a2l--asl 

(A21) 

where E*'=is«*—^; E ^ i 8 « i = ^ The number of ways 
of breaking up a vertex containing n lines into «i, tii% 
cc2} Ws, etc, is 

n\ 
. (A22) 

(^i!)al(^2 0a2- • • (rcs!)*
8a:i!a:2!- -a9l 
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Q !>• FIG. 13. Two equivalent 
diagrams in fourth order. 

<<0 

Also, 

so that 

(t) (c) 

(€ i»)=<€ <)=p, (A23) 

(€ini)al(€*n2)a2,"" (uns)as=pr. (A24) 

Hence, it only remains to be shown that the number 
associated with the connection of r points by pairs such 
that each points is connected by at least one path to 
all the other points is (—l) r -1(r—1)!. We assume that 
this result holds for r up to and equal to m. Now take 
p = l . This means that X) uij is constant since N=No-
Then all terms in the expansion of the pressure vanish 
except the first semi-invariant. Consequently, the sum 
of the coefficients of each polynomial in p which we are 
considering vanishes and since the sum of the coeffi­
cients of any semi-invariant of higher order than one is 
zero, this implies that in a vertex containing m+1 
lines, the coefficient of pw+1 is (— \)mm\. Hence, by in­
duction, the result is proved in general since it is 
obviously true for r—2. In the above proof, we have 
not considered internal dashed lines connected to the 
vertex under consideration. This introduces a complica­
tion in the proof but does not change the result. (See 
Appendix C.) 

We can now state the general expansion for the 
pressure of the lattice gas. In the nth term, only irre­
ducible solid line diagrams containing n solid lines 
remain. These irreducible solid line diagrams can con­
tain only internal noncrossing dashed lines with the 
proviso that if we pinch a graph together where there 
is a dashed line, then the resulting graph must be a 
reducible one. The reason that only noncrossing internal 
dashed lines appear will be evident from the following 
example. Consider the irreducible diagram in fourth 
order.as illustrated in Fig. 13(a). We can break the 
vertices up in the two manners indicated [Fig. 13(b) 
and Fig. 13(c)]. The equivalence of the two diagrams 
in Fig. 13 is obvious. Thus, in fourth order, the internal 

FIG. 14. Illustrative diagrams 
which appear in the cluster ex­
pansion due to vertex sum­
mation. 

crossing dashed line diagram is already contained in the 
diagram, Fig. 13(a), with the convention that each 
vertex now represents a semi-invariant internal cross­
ing dashed line diagram is contained in some other 
irreducible diagram and thus does not appear further. 
Furthermore, any other internal dashed line which 
when pinched leads to an irreducible diagram is not 
present in the expansion. An example will make this 
clear. Consider the diagram Fig. 14(a). This diagram is 

i + * i [Xr< Z / ' O 
FIG. 15. Diagrams occurring in M%. 

already contained in the diagram, Fig. 14(b) and hence, 
should be omitted from the expansion. Another minor 
complication of vertex summation will be discussed in 
Appendix D. Disregarding this for the moment, we can 
state the final cluster expansion as follows. A diagram 
represents a structure of u's as before and, in addition, 
each vertex denotes a factor which is the j>th semi-
invariant of €»• where v is the number of solid lines 
joined to the vertex. All irreducible diagrams con­
tribute except those with internal crossing dashed lines 
and those with internal dashed lines which when pinched 
yield irreducible diagrams. There are no external dashed 
line diagrams. 

i\ 7* 

I V I 

I 71 
I / ' FIG. 16. Irreducible 
. / I diagrams occurring in 
j / | the cluster expansion of 
• / . the real hard-core gas. 
k. I 

APPENDIX B 

The starting point is Eq. (4.6). As before, we examine 
the first few semi-invariants: 

(Bl) 

since (vij) is invariant for all i^j. Now 

<»12> = 

f N 

/w(ri-r2) I I gfa-rdUdri 
J *<jML 

[ ft g(r<-r,)II<*r< 

^(1/V)fv(r)g™(r)dr, (B2) 

where we have introduced the two-particle hard-sphere 
distribution function g(2) (r) as denned in the canonical 
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ensemble 

/

N N 

II du n m j<»( r) = 

/ 

CB3) 
N N 

Udu n gij 

In the lattice gas, because of the simple nature of 
W(j>), all the integrals (sums) in the numerator and 
denominator except the first two of Eq. (B.2) cancel 
leaving 

(Wl2>L.G.= 

NQ 

E ^rir2gr: 
riV2=l 

E gnr2 

(B4) 

This is just Eq. (A4). In the present case, there is no 
cancellation and it is evident that this will lead to 
difficulties in higher order semi-invariants. The second-
order semi-invariant is 

N 

M2 = i E L(vijVki)-(vij)(vici)'] 

zi E L(vijVki)-(vij)(vki)~] 

+ E l(viMk)-{vij)(vjk)~] 
i^j'^k 

+§£[<»>/>-<^>2]- (B5) 

Let us examine the first term in square brackets in the 
right-hand side of Eq. (B5), 

(vuVu)—^12)^34) 

1̂2̂ 34 n g^ n dti 

/»wng%jndu vsiiigkijidxk 

/ HgisUdiij UgkiUdn 

(B6) 

The canonical distribution function for n particles is 
defined by 

V*[ II duJIgn 

1 (B7) 

n d^ n g^ 

Putting this into Eq. (4.12), we get 

(^12^34)—(^12)^34) 

= (Vv4j H ^ 1 2 . 34[g ( 4 ) ( r ,r>,r3,r4) 

-g(2)(ri,r2)^2>(r3,r4)]J. (B8) 

By a result first proved by Mayer and Montroll16 and 
rederived in a simpler fashion by Meeron,17 the n-
particle distribution function can be written as an 
expansion in the density, 

g(w) = E p v A ! ^ ( r r . . r n ) , (B9) 

where 
n C n+v 

g,in)(tvrn)= I I Hiiu-tj) P(n,v) I I dti, (BIO) 
i<.j—l J i—n~\-\ 

P{n,v) denotes the sum of all products of functions 
fij(ri—Tj) = l — gij(ri—rj) in which each particle of the 
set v is independently connected to at least two par­
ticles of the set n, v and n being mutually exclusive. 
The bonds in this connection are the functions 
~fij(ri~~*j)> A particle is independently connected to 
two others if there are at least two paths, either direct 
or involving mutually exclusive sets of intermediate 
particle, which connect it to the two others. 

To make further progress, we shall at this point 
introduce the superposition approximation of Kirk-
wood.8 According to Eqs. (B9) and (BIO), Fig. 17 is an 

«•_• • « • • • • •• • 

FIG. 17. Diagram contributing to 
g(4)frl/2/3/4). 1 v ! 

k ^ 
example of a diagram contribution to g(4). The dashed 
lines denote gij(*i—*j) bonds and the dotted lines de­
note —fijitj—tj) bonds.18 Calling the points 1, 2, 3, 4 
base points and all other points field points, we now 
make the approximation of taking only those diagrams 
in which field points which are connected either di­
rectly or indirectly to two given base points are con­
nected to each other but not to field points which are 
connected to different base points. Alternatively two 
field points connected to two given base points are not 
connected to each other by an intermediate base point. 
This is in fact the superposition approximation for n base 

16 J. Mayer and E. Montroll, J. Chem. Phys. 9, 300 (1941). 
17 E. Meeron, J. Chem. Phys. 27, 1238 (1957). 
18 The reader should note that this use of the dashed line is 

unique to the discussion of superposition as illustrated in Fig. 17. 
All other dashed lines in this section will mean /(r<—fy). 
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s 

: J • FIG. 18. A nonsuperposition 
• : * diagram. 
• • • 

i»L _js / 
*•- -•" _•• 

points. In superposition approximation, g(n)(iy • -rn) is 
given by IL<;g;;(2)-

To get an idea of the order of magnitude of what we 
are throwing away, consider the graph Fig. 18. If we 
define the cube of the range of the potential v(r) to 
be the volume vs> then vs/va is comparable to the pa­
rameter 2, the number of nearest neighbors in the 
lattice gas. Taking vs/va to be large, we see that the 
diagram of Fig. 18 is 0(va/vs)

2. This is so because each 
solid bond (i.e., a factor pv) is 0(va/vs) [i.e., (l/z)2 as 
we shall see from the molecular field theory. The inte­
gration over ri, r2, r8, r4 gives a factor of 0(v8/va). 
Furthermore, since points 5 and 6 are connected, this 
limits the range of points 3 and 2 to the neighborhood 
of points 1 and 4. This further reduces the order of 

FIG. 19. Diagram con­
tributing to v(r)g(2) (r). 

magnitude of the diagram by a factor so that we obtain 
OQflaAs)2^ ^or the diagram. This is evidently the 
simplest type of diagram which we are not including 
in the expansion. 

To see that more complicated nonsuperposition 
graphs are 0\\(va/vs)

2^ we first notice that according to 
Eqs. (B9) and (BIO) a solid line which carries the 
totality of dotted lines drawn between its ends simply 
becomes Vij{xi—Xj)g{2){ti—Xj) (Fig. 19). We then note 
that the set of graphs in Fig. 20 yields the function 
— [1—g(2)(rt— x3)~] which we denote by — / ( r~ ry ) . 
From now on, solid lines will be used to represent 
Vijiu—tfigWiti—Tj) and dashed lines to represent 
~~J(ri~~rj)- If w e n o w replace the dotted line con­
necting points 5 and 6 in Fig. 18 by a dashed line, then 
the reasoning following Fig. 18 still holds since f(x) is 
just /(r) with a highly damped oscillating tail. We have 
thus shown that a particular class of nonsuperposition 
graphs is of 0{_{va/v^f~}. As it is easy to construct other 
geometries in lowest order where this is the case, we 
may then surmise that there are no nonsuperposition 

+ \ * ( + '( \ 

FIG. 20. Diagram contributing to a graph containing fir). 

graphs of order greater than (va/vs)
2. We have not 

attempted a general proof at this point. 
We now outline the method whereby irreducible 

graphs are obtained for the free energy in superposition 
approximation. The first few graphs from Eq. (B8) 
which arise in the density expansion of g(4) (^1/2/3/4) 
are presented in Fig. 21 where we temporarily use a 
solid line to denote v(x)g(x). Consider now Fig. 22 
which is contained in the sum represented by Fig. 21. 
It would appear at first that this diagram would con­
tribute to »i2(ri— r2)»84(r8—r4)/(ri—r8)/(ri— r4) but 
since vu(ri— r2) can be integrated out (i.e., the diagram 
is reducible), it actually contributes to 1̂2(1*1—r2) 
X^34(r3— r4)g

(2)(r3— r4). It is then obvious that there 

FIG. 21. Density expansion of Eq. (B8). 

are no diagrams which will contribute to vu(xi— r2) 
X ̂ 34 (1*3— r4)/(ri— r3)/(ri— r4) or any other reducible 
combination involving two / ' s . This is a general result. 
Whenever there are two or more pieces connected by 
a reducible combination of dashed lines, such a graph 
is to be discarded. See Appendix E for the proof of this 
statement. The first term in Eq. (B8) is now seen to be 

^I2f34gl2 ( 2 )g34 ( 2 )[gl3 ( 2 )^14 ( 2 )g23 ( 2 )g24 ( 2 ) 

— / l3 /14—/13 /23—J23/24— / 1 4 / 2 4 ] 

= W34 I I ' gij&\ (Bll) 

where the prime over the product indicates that we 
must subtract all the reducible combinations involving 

FIG. 22. Reducible diagram contained in 
the density expansion of Eq. (B8). 

two f's from the product of g(2),s indicated. Equation 
(B8) can now be written 

-—{iUduvnVulTL' gaV-guPgu^. (B12) 

As in the case of the lattice gas, we expand the 
product (primed) of g(2),s into sums of products of f's 
keeping the g(2)?s associated with v's. Thus, the possible 
graphs which may arise in Mi are given by Fig. 15. 
Notice that in Eq. (B12), there are no denominators 
as there were in Eq. (A8) for the lattice" gas. This is a 
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consequence of the definition of g(n)(ri---rn) by Eq. 
(B7). According to this definition, 

/ 
g™(*i-*2)diidt2=V\ (B13) 

or 

gW(r)dt=V, (B14) 

JdrKr) = J(l-g™(r))dt=0. (B15) 

It is an immediate consequence of Eq. (B15) together 
with the factorizability properties of unlinked and re-
ducibly linked portions of a graph that all unlinked 
and reducibly linked diagrams are zero. The proof is 
the same as that for the lattice gas. 

We thus find that using the generalized superposition 
approximation, the expansion for the pressure contains 
all irreducible graphs of solid and dashed line bonds 
where a solid line denotes a Vij(ri— Xj)g®){ti— r3) bond 
and a dashed line denotes the f(ti— ry) bond. A graph 
represents an integral over the bonds which it contains 
multiplied by pm times a combinatorial factor which is 
the number of ways of obtaining the graph in the semi-
invariant expansion. Here, m denotes the number of 
vertices and n the number of solid lines in the graph. 
The expansion is thus the same as the lattice gas cluster 
expansion before vertex summation with the addition 
of irreducible diagrams of the type in Fig. 16 and with 
the pair correlation function, g(2)(r*~~ *V) u s ed in place 
of gTiTj and jiti— tj) used in place of 5rirr 

APPENDIX C 

One complication arises in the proof that each vertex 
of a graph denotes a semi-invariant. This complication 
exists when there is an internal dashed line connected 
to a vertex as in the graph of Fig. 23 which shows one 
of the vertices containing a dashed line being opened 
up. If the dashed line were not present, there would be 
only one external dashed line diagram. However, we 
see that the three external dashed line diagrams in 
Fig. 7 add up to the same value (1+1—1=1) as an 
external dashed line diagram with a single dashed line 
connected to it. This is shown in Fig. 24. Furthermore, 
when there are n internal dashed lines connected to a 
vertex, each intenral dotted line gives rise to three 
graphs (if the vertex contain two solid lines) when the 
vertex is opened up. There are thus 3n graphs formed 
when a vertex containing two dashed lines is opened up. 

FIG. 24. Value of the 
diagrams of Fig. 7. 

But the value of the renormalized vertex is simply the 
product of the values of the graphs formed by each of 
the n dotted lines which is (— l)n . This is just the value 
of an unrenormalized vertex containing n internal 
dashed lines. Hence, for a vertex containing two solid 
lines with any number of internal dashed lines con­
nected to it the value obtained when we renormalize is 
just the semi-invariant, ¥ 2 ^ ) . In the case of a vertex 
containing more than two solid lines, we again consider 
one internal dashed line connected to it. When the 
vertex is broken up, we must replace the single internal 
dashed line by 1 • • • r, dashed lines if the vertex con­
taining n solid lines is broken into r pieces. The number 

Sum-of ways of arranging m lines or r vertices is ( ]. 

ming this on m gives the value of an w-line vertex 
broken up into r pieces. This is just 

£ (-i)-(r y - 1 , (CI) 

which again is just the value of the vertex with only 
one dashed line connected to it. If we consider I internal 
dashed lines connected to an n-line vertex, we simply 
get (— l)1 regardless of how many pieces the vertex is 
broken into. This shows that the procedure of renor-
malizing each vertex of a diagram by summing all 
external dashed line diagrams having that vertex is 
unaffected by internal dashed lines connected to the 
vertex. 

APPENDIX D 

A minor complication occurs in connection with the 
vertex summation of lattice graphs. Consider the dia­
grams of Fig. 25. They each have the same configura-

(a) (b) 
FIG. 25. Unrenormalized diagrams contributing to Mi. 

tion of u's and also the same symmetry factor of f. 
This is arrived at for the diagram of Fig. 25 (a) by 

FIG. 23 Insertion of a dashed line in a vertex containing 
an internal dashed line. QQQ /\0/\J,/\2/\2 — 8) (Dl) 
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and for the diagram of Fig. 17(b) by 

QQQxQx2=i ^ 
Now it is possible by inserting dashed lines at vertices 
1 and 2 of each diagram to arrive at the same diagram. 
This is done in the manner indicated in Fig. 26. Con-

FIG. 26. Identical dia­
grams produced by break­
ing up diagrams 17(a) and 
17(b). 

sider Fig. 26(a) occurring in the cluster expansion. This 
diagram has a symmetry factor of J which is obtained by 

7! \5/2 
-X5X2= (D3) 

But Fig. 26(a) can be obtained in four ways and Fig. 
26(b) in two ways so that it appears that we have over­
counted this diagram by our method of breaking up 
vertices. That this is not the case will now be shown. 
Consider the points 1, 2, 3, and 4 in Figs. 26(a) and 
26(b). In Fig. 26(a), points 1 and 4 must be connected 
together as well as points 2 and 3. In Fig. 26(b), the 
same thing holds. Consequently, in order to have 

K 

4 

2 
-71 

3 

2 
A 

/ 1 
/ I 

1 
\ I 

\ I 

3 

FIG. 28. Ways of joining vertices to produce identical diagrams. 

identical diagrams, we must have at least the vertices 
indicated in Fig. 27 joined together in Fig. 26(a). 
Therefore, identical diagrams occur only for those dia­
grams obtained from Fig. 26(a) in which the vertices 
are joined as in Fig. 28. But the sum of the four dia­
grams in which the vertices are joined as in Fig. 28 is 
zero. Therefore, in breaking up Figs. 25(a) and 25(b) 
at least, there is no overcounting. We therefore con­
jecture (but cannot prove) that the vertex summation 
as stated in Appendix A does not lead to overcounting. 
In any case, any given class of graphs can be examined 
as we have done above. 

APPENDIX E 

In connection with Eq. (Bll) it was stated that the 
diagram of Fig. 22 contributed to fli2^34g34(2)- The proof 
of this statement and a general proof for reducible dia­
grams in all orders follows. We consider first the fol-

2 3 
(a) 

jr~lvr"vr 

FIG. 29. Diagrams con­
tributing to second and 
third orders. 

2 1 
(b) 

! \ 

2 
A 

y i 

V 
v 

\ i 

3 

FIG. 27. Vertices in Fig. 18(a) which 
must be joined to have identical diagrams 
from Figs. 17(a) and 17(b). 

lowing diagrams in second and third order. If the dia­
grams of Fig. 29(a) are considered together, then the 
contribution is to v^ugz^ and the full semi-invariant 
expression is zero. To see this we write down what the 
diagrams of Fig. 29 (a) stand for being careful with the 
factors of N involved. The two diagrams of Fig. 29(a) 
are 

N(N-l)(N-2)(N-3) 

F4 
2 / dhy-dhtvuvufufu 

1 N 1 N r l N r 
H — Z / dhidhv -dhtVnVufzifiA L / d*r%4*ri ••• d3r4 v^i/ufa 

V *=5 J V i=2J 
N(N-l)(N-2)(N-3) 

V5 - / 
» i * W W v • - ^ 5 [ 2 + ( ^ - 4 ) - ( ^ - 2 ) ] = 0 . (El) 
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Similarly, for the diagrams of Fig. 29(b), we have 

8 / ^12^34^56/13/35/25 I I d\r 
V6 [J *-i 

8 N r 6 I N 8 N r e l N r e 
— S / VuVziVstfufufn I I dhjdhA ]£ / v12VziVwfufijfj2 I I d3rkdhidzrj 
V *=7 J /=i V i^i^iJ k=i 

4: N r 6 \ N r 6 
— 2 X — Z / vuvuvstfufizfto I I dhjdhA—£ / vvl-oz^uji3J^Yi.dhhdhidhj 

1 N r 6 2 N r 6 

Z) / n2n^h%fufijfnJl.dhkdhidhj-\— X) v 12V uv^fufijfall d^hd^d^^ 

N(N-l)(N-2)(N-3)(N-£)(N-5) f s 
I I d3riVuVUvbGfi7f78fS2 

Vs J «-i 

X { 8 + 8 ( t f - 6 ) + ( t f - 6 ) ( i V - 7 ) - 2 [ 4 ( ^ ^ (E2) 

In fact, it is obvious that we are dealing with semi-invariants of independent variables. For instance, Eq. (El) 
can be written as 

N(N-l)(N-2)(N-3) N 
E [(Wl*/t-2fl34>— (Vl2fufi2)(VZA)2 = 0, (C3) 

F 4 i=3 

while Eq. (C2) can be written as 

N(N-l)(N-2)(N-3) N 
Z , L(Vl2VSAVwflifijfj2)— (Vl2flifij'f}2VZi)(vM) 

i = i j =4 * =5 j =61 pv r ln r1pH 
* =4 i =3 i = 6 j =5 J e x c l u c l e a 

~ (Vl2flifijfj2VM)(vU) — (Vi2fiifijfj2)(VMVto)+ 2{vnfiifijfn){vU){Vw)~] = 0. 

Consequently, every diagram involving reducible combinations o f / a n d v bonds is zero when the full semi-invariant 
is taken into account. We must consider these diagrams then to contribute to some g(2) bond rather than to a 
product of / bonds as in the above examples. 


