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Perturbation Theory of Scattering Amplitudes at High Energies 

JAMES D. BJORKEN* AND TAI TSUN Wuf 

Institute for Advanced Study, Princeton, New Jersey 
(Received 13 February 1963) 

The asymptotic behavior of Feynman-Dyson graphs for elastic scattering at high energies is studied by 
means of the Mellin transform. The leading terms of a set of graphs involving three-particle intermediate 
states are summed. Under certain conditions the asymptotic behavior of the sum is found to contain a factor 
Qns)~sl2. This is incompatible with Regge behavior, but is consistent instead with a cut in the complex angu­
lar momentum plane. 

1. INTRODUCTION 

IN view of Regge's detailed analysis1 of potential 
scattering for large (and unphysical) momentum 

transfers, it has been conjectured that similar behaviors 
also hold for elastic scattering in field theory. By 
crossing symmetry, this conjecture leads to definite 
predictions for elastic differential cross sections at high 
energies. To gain a better understanding of these 
predictions, several authors2-"5 have studied the elastic 
scattering amplitude at high energies by perturbation 
theory. In each case the result is found to be consistent 
with Regge behavior. 

In the cases considered by these authors,2"-5 two-
particle intermediate states seem to play a predominant 
role. Thus, these cases are perhaps in closer analog to 
potential scattering than the more general situations in 
field theory. I t is the purpose of this paper to study a 
different special case where two- and three-particle 
intermediate states play comparable roles. Because of 
the inclusion of three-particle states, the computation 
becomes more complicated. To reduce this complication, 
a more streamlined procedure is proposed where the 
Mellin transform is essential. After a short discussion of 
the Mellin transform in Sec. 2, the proposed procedure 
is applied to the simple case of the ladder graphs in 
Sec. 3. The special case of interest is worked through 
in Sec. 4, and discussed in Sec. 5. The result is that 
Regge behavior is not obtained in the present case; 
instead, it is consistent with a branch cut in the angular 
momentum plane. 

2. MELLIN TRANSFORM 

The Mellin transform consists of the pair of integrals 

and 

F(> : « )= / " 
Jo 

f(s)s-a~1ds, (la) 
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where the contour C is a straight line from c—i <*> to 
c+i<x>, provided that F(a) is analytic on this line. 
Equations (1) are merely the Fourier integral formula in 
the variables Ins and —ia. In particular, when 

M= 
-"(Ins)6 

0 

for 
for 

s>l, 
s<l, 

(2) 

(3) 

F(a) is given by 

F(a) = r ( i + l ) ( a + a ) - * - 1 . 

Here c can be taken to be any number larger than — a, 
and, when b is not an integer, the branch cut in (3) may 
be taken to be the straight line from — <*> to — a. 

3. LADDER GRAPHS 

Throughout the present consideration, spins are 
ignored and the Lagrangian density is taken to be 

L=L0+Lh (4) 
where 

and 
^ i = i ( 2 7 r ) 3 ^ 3 + i ( 2 7 r ) 2 ^ 4 . 

(5) 

(6) 

Here units have been so chosen that fi=c=m=\. For 
this Lagrangian density, the Feynman-Dyson rules are 
as follows: —i{k2+m2—ie)~l for a propagator, ig/w for 
a three-point vertex, and iG/ir2 for a four-point vertex. 

In this section, let G=0 and consider the ladder 
graphs as shown in Fig. 1. The contribution from such a 

FIG. 1. The ladder graph. 
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graph, expressed in terms of Feynman parameters, is N+l N 2 1 
given by 

/ • • • / dxv'dxt^idyv'dyn t / V \ V \ V 

XdzvdznA-2eiC*, (7) 

where A is the network determinant, Q is a linear 
function of s and t, and K is a constant independent of n. F l G ' 2« A tmss-bndge graph. 
I t is desired to obtain the behavior of <£„ for large s 
but fixed U The function Q has the form Since (12) is valid only near a = - 1 , it may be simplified 

to 
S1

 T , Q v Ln(a)^-^g8("+1)(a+l)" , ,r"1[T-i(0]n. (14) Q^sA-iJlxi+J, (8) 
i = i By (13), T - I ( 0 is given by 

where J is independent of s. Let Zn(a) be the Mellin /.I 
transform of £n as defined by (1), then 7 - i ( 0 = / *y [ l - ^ l - ^ ) ] - 1 

Jo 

Ln(a) = K(ig^le-i^T(~-a)f • • • ( ^ • • • f e + i = [ - l * ( l - t ' ) ] - 1 / 2 t a n h - H l - V O - 1 7 2 - (15) 
J o J o 

n+i Comparison of (14) with (2) and (3) then yields the 
Xdyi" -dyndzv • •^2nA_2_Q!( I I %ia)eiJ. (9) desired result that for large s 

£tt($) ^ f ^ ^ T - i W l ^ W V w ! . (16) 
The asymptotic behavior of £n is determined by the . . 
behavior of £ . («) near a= -1. By (9), it is sufficient This is the result obtained by Polkinghorne^ Federbush 
to consider the region where * are all small. Hence, a n d G r i s a r ^ f n e n summed over », 16) is found to be 
Ln(a) may be approximated by consistent with the idea of Regge poles. In particular 

w it agrees with the earlier result obtained by Lee and 
/-00 r°° Sawyer6 using Fredholm theory. 

Ln(a)~K{ig*)n+le-iX*a«T(--a) / • • • / dyv • -dyn 

Jo Jo 4. TRUSS-BRIDGE GRAPHS 

*n[ " J I i i , The purpose of this paper is to apply the method of 
Xdzv "dzn • • • / <**!•• -^n+i t h e M e l l i n t r a n s f o r m t 0 t he "truss-bridge" graphs, as 

n + 1 shown in Fig. 2. 

XA<r2~a( I I a / V 0 , (10) A. 
Consider first the special case where there is no two-

where r is a small but fixed quantity, A0 and Jo are the particle intermediate state, as shown in Fig. 3. Similar 
values of A and / , respectively, for all x ;=0 . More to (7), the contribution from this graph is given by 
explicitly, 

Ao= fi <*+«>, ("a) ^ « = ^ 2 G " j o • • • I **- • •*•» 
Xduv - -dun AW"VQ, (17) 

and 

r _ ~ [" / 3 ^ \ . 1 , , v where A and Q are those functions pertaining to the 
^ i I V .JLZJ ^jyyi-rZi) j - \ ) present graph, and are, of course, in no way related to 

\y 

Equation (10) leads immediately to 

^ . ( ^ - ^ ( ^ ^ ^ - ^ ^ ( - ^ [ ( a + l ) - 1 ^ 1 ] ^ 1 

X[-*7«( f l ] w , (12) —*• *n+./ *n> 
where 

Ya(t) = i[ I 
Jo Jo 

dydz(y+z)~2~a 

XexpU 
yz 

t (l-ie)(y+z) 
Ly+z 

(13) 

FIG. 3. The truss-bridge graph without two-particle 
intermediate states. 

6 B. W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962). 



2568 J . D . B J O R K E N A N D T . T . WU 

those of (7). However, the s dependence of Q may again the procedure of the last section. However, this does 
be given explicitly by (8). Let Mn(a) be the Mellin not lead to any meaningful result. More precisely, in 
transform of 5D?W. Then the present case, what corresponds to ya(t) is 

Mn(a) = iKg2Gn &-****? (--a) ... 
Jo Jo 

dxv • -dxn+i r 
i I du u~2~a exp[—i(1—ie)u], 
Jo 

_ ^ W r ( - l - a ) . (19) 
n+i or simply 

Xduv -dun AW" 2 -«( I I Xi")eiJ. (18) 

This expression (19) is not bounded near a= — 1. This 
This is in close analog with (9). Again, the behavior of means that the contribution to Mn(a) for a near — 1 
9WW for large s but fixed / may be found by studying comes mainly from the region where all Xi and all m are 
Mn(a) for a near — 1 . small. Hence, A cannot be approximated by A0 but / 

In view of the close analog, it is tempting to follow may be replaced by 0. This consideration leads to 

Mn(a) Kg2G f"7' 
Jo Jo 

n+l 
dxv ' -dxn+idui' - -dun A(n)~2~a J J xf 

-Kg2Gnrl+a\ ••• J 
Jo Jo 

dxv - -dxn+iduv - -dun A(n)~2~a I I xf1 

-Kg*G«\ . . . ( 
Jo Jo 

dxy • -dxn+iduv • -dun A(n)~2-a I I Xia. (20) 

This integral may be evaluated by using recurrence and moreover B(n,p) satisfies 
formulas. If A'(n) is the network determinant for the 
graph shown in Fig. 4, then p+i 

and 
A(n) = xn+1A(n-l)+Af(n), 

A'(n) = unA(n- l)+xnA'(n-1). 

In particular, 

(21a) 

(21b) 

B(n,p)= E B(n-\,m) for p>0, (27) 
m=l 

together with 

and 

A(0) = A ' (0 )=1 , 

A(l) = Xi+X2+Ui, 

A'(l) = xi+ui. 

In order to get the recurrence formula, define, for p any 
non-negative integer, 

A(a,n,p)= I - — I dxv -dx„+\duv • -dun 
Jo Jo 

B(p,p) = l for p>0. (28) 

(22) The difference equation (27) with (28) as the boundary 
C23a) condition is solved in Appendix II . 

A comparison of (25) with (3) gives that for large s 

(23t )) Win Kg2G-B (nfi)s~1 {\nsf-/n I (29) 

As in the case of the ladder graphs, it is now assumed 
that the asymptotic behavior of the sum for large s 

i = E %fin{2-hno) (30) 

r AW T 
X A ( » ) - ^ * i a ' • -tfn+1* In . 

L Xn+iAr(n)A 

(24) 
Xr+iA'in)-

Then it follows from (20) that near a= — 1 

Mn(a) Kg2GnA (a,nfi). (25) 

I t is shown in Appendix I by using (21) that near a — — 1 

A (a,n9p)^pl(l+a)--2n--p-1B(n9p)9 (26) 

Un-. 

FIG. 4. The graph that defines A'(n). 

is given by the sum of the leading terms. Under this 
assumption, the Mellin transform of 99? is given by 

M(a) Kg2(l+a)-1 £ (2-8no)B(nfl)lG(l+a)-22n 

71=0 

= - J f i T g 2 ( l + « ) - 1 { 2 / [ G ( l + a ) - 2 ] - l } 

= - X g 2 G - 1 { l + Q : - C ( l + a ) 2 - 4 G ] - 1 

- G ( l + « ) - 1 } , (31) 

where / is given by (B7). Thus, M(a) has branch 
points at 

a = - l ± 2 ( ? ' l (32a) 

When G<0, the dominating terms for2ftn alternate in 
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sign, and thus the present result must be considered 
to be more unreliable. Thus, it is assumed hereafter 
that G > 0 . From (31), the inverse Mellin t r a n s f o r m ^ 
can be explicitly computed to be 

m Kgh^Z- 1+2(&I* liw)-1Ji(2G1'2 In*)], (32b) 

where / is the modified Bessel function. If G = 0 , then 

m Kgh~l (33a) 

as expected. If G > 0 , then for s sufficiently large 

Wl i T g V V"1+2V(? (G1'2 lny)"3'2. (33b) 

B. 

Attention is now turned to the more general case of 
the truss-bridge graph with possibly two-particle 
intermediate states. Since in the case of Mn(a), only 
the region where all x and all u are small is significant, 
here it is possible to follow the procedure of Sec. 3. With 
reference to Fig. 2, consider a case where there are N 
two-particle states in the t channel, and hence there are 
N+l "sections." Let Ah A2, • • -AN+I be the network 
determinants, and n±, fi2, • • • fiN+i the numbers of 
G's of the N+l sections. Then, the contribution from 
this graph is given approximately by 

Wd(nhn2, - -nN+i) 

Xdzv • dzN / • • • / 
Jo Jo 

7 "7 
Jo Jo 

dyv - -dyN 

day - -da.N+1 

N+l 
X Ao~2 exp[«( I I fOMo] exp(iJo), (34) 

where 
N N+l 

Ao=[n (*+*)] n A* 

= £ { )-
i-i L Vy»+z»/ 

•(1— ie)(yi+Zi) 

(35) 

(36) 

and doti and ft- are, respectively, ( H dx) (XI du) and 
I I x for section i. For a near — 1, the Mellin transform of 
(34) gives 

M ( a ; wi, n2, - • -fiN+i) 

~iK(ig2)N+1Gnl+~ '+nN+1 

Jo 
• / dyv 
Jo 

•dyN 

Xdzi- - -dz, •f-f 
Jo Jo 

day - -daN+i 

X A<r2-afia- • ^N+ia exp(iJo) 

N+l 
-K n l-M{nd/Kj_y^{tW, (37) 

where 7_i(/) is given by (15). Let 501 be the sum of 
3ft (#i, • • •, fiN+i) over all possible truss-bridge graphs, 
then by (31) 

M(a)^>M(a)tl+K-1M(a)y-1(t)']-1. (38) 

This is the desired result. 
I t only remains to obtain some simple properties of 

the right-hand side of (38). Since the right-hand side 
of (31), with the factor — K removed, is monotonically 
decreasing for a> — 1+2G1/2, and by (31) 

M(~ 1+2G1'2) f Kg*G~li\ (39) 

the quantity in the brackets of (38) has a zero 

ao(t)>-l+2G^, (40) 
if and only if 

Y - i ( 0 > ! r 2 G 1 / 2 . (41) 

Note that (41) is always satisfied if G = 0 . If G > 0 , (41) 
can be satisfied only for sufficiently small momentum 
transfer. If (41) is satisfied, then for large s 

9W~ const saoit). 

On the other hand, if 

(42) 

(43) 
then for large s 

Wl KgWtl - ig2G-ll27-1 ( 0 ] 
X ) y _ 1 + 2 v( ? ( G : i /2 l n ^-3/2 ) (44) 

by (33b). The transition between (42) and (44) is 
complicated. 

5. CHOICE OF GRAPHS 

The choice of the truss-bridge graphs still need to be 
discussed. Only the motivation can be described, and 
such a discussion is at best heuristic. In the considera­
tions of Polkinghorne,4 Federbush and Grisaru,5 in 
each case a small number of graphs for elastic scattering 
is first selected, and then these graphs are iterated in 
the t channel to give all the graphs taken into account. 
Hence, in their work, two-particle intermediate states 
play an exceptionally important role. I t is the purpose 
here to treat the three-particle intermediate states in an 
analogous way. More precisely, the procedure followed 
consists of the following steps: (1) Choose the six ele­
mentary graphs shown in Fig. 5 ; (2) combine all per­
missible sequences of these elementary graphs in the / 
channel to get graphs for elastic scattering; (3) for 
each order of the coupling constants g and G, compute 
the leading term for large s; and (4) add up these leading 
terms. 

FIG. 5. The six elementary graphs. 
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fs fs 

(a) lb) 

FIG. 6. Two graphs of the same order. 

The question is immediately raised that, in step (2), 
graphs other than the truss-bridge graphs are obtained. 
A simple example is shown in Fig. 6(a). This graph is 
divergent, but renormalization is simple. In Appendix 
I I I , it is shown that the contribution from this graph is 
very small when s—>oo as compared with that from 
the graph of Fig. 6(b), a graph of the same order in the 
coupling constants. Thus, by step (3), the graph of Fig. 
6(a) may be omitted. Although a rigorous proof is still 
lacking, in general, for the purpose of step (3) only 
truss-bridge graphs need to be considered. 

6. DISCUSSIONS 

Numerous questions may be raised with respect to 
the procedure outlined in the last section. Although the 
idea of summing the dominating terms of a series has 
been used successfully in a number of physical problems, 
the validity has only been established in cases where an 
independent calculation is available.6 The choice of 
graphs is a difficulty peculiar to the present problem, 
and the relevance of the particular choice can by no 
means be taken for granted. However, if the procedure 
is assumed to be valid, then under the condition (43) 
the asymptotic behavior of the scattering amplitude at 
high energies contains a negative fractional power of 
the logarithm of the energy, as given by (44). 

Although the Mellin transform plays an essential 
role in the present consideration, it is introduced for 
mathematical convenience rather than on physical 
grounds. Indeed, the complex a-plane does not seem to 
have any direct physical interpretation. However, when 
a branch cut is found in the complex a plane for the 
case studied, this implies a certain asymptotic behavior 
for the elastic scattering amplitude at high energies, and 
this in turn necessitates the presence of at least a branch 
cut in the complex angular momentum plane. 

Branch cuts in the angular momentum plane have 
also been found in the case of potential scattering for 
particles with nonzero spin. However, these branch 
cuts are kinematical in nature. Moreover, they do not 
lead to logarithmic dependence on the energy for 
differential elastic scattering cross sections.7 Hence, 

7 J. M. Charap and E. J. Squires, Ann. Phys. (N. Y.) (to be 
published). We would like to thank Dr. J . M. Charap and Professor 
R. Oehme for helpful discussion on this point. 

these branch cuts may be thought of as a peculiarity of 
the definition of the S matrix. Oehme8 has also found 
branch cuts for a Klein-Gordon particle in a static 
Coulomb potential; however, his cuts are related to the 
existence of a r~~2 potential and is consequently of a 
dynamic origin. The branch cut for the present case 
comes from detailed properties of Feynman-Dyson 
graphs, and is, therefore, also directly related to the 
dynamics of the system under consideration. 

I t is the original purpose of this work to study the 
effect of three-particle intermediate states on high-
energy behaviors. The detailed connection between the 
three-particle intermediate states and the appearance 
of a cut is not understood by the authors. If these 
three-particle states are indeed responsible for the 
appearance of the branch cut in the angular momentum 
plane, then it is perhaps reasonable to conjecture that 
the scattering amplitude, as a function of the complex 
angular momentum, has many branch points, even 
apart from the kinematic ones, in the case of relativistic 
field theory where the number of particles is not a 
constant of the motion. 
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APPENDIX I 

In this Appendix, (26) and (27) are to be derived. If 
<t> and yp are two positive constants, then it is easily 
verified that 

/-00 dxx" r <j)X+\f/~]p 

Jo (<^+^)2 + aL r/sx J 

= 1 ^ t y - i - ^ ! £ (l+a)-v+k-l[\n(<t>/rfr)J/k\, (Al) 
&=o 

and 

rl du r 0 T 

/ l n 

Jo <j>u+\f/L (j>u+\l/J 

With these equalities (21) may be substituted into 

8 R. Oehme, Nuovo Cimento 25, 183 (1962). 
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(24) to yield 

r1 r1 r1 dxn+ixn+ia r x n + i A O - l ) + A ' 0 ) i * 
A (ayn,p) = / • • • / d#i- • • dxnduv • • rfwn #ia • • • #na / \ In [ 

Jo Jo Jo [ a ^ i A ( w - l ) + A ' ( » ) ] * M xn+1A'(n) J 

- / * • • • / ' fe- • •<&«<*«!• • - ^ x ^ - • •* n « />!A ' (» ) - 1 A(n- l ) - 1 ^£ ( l + ^ - ^ - H l n C A ^ - l V A ' W l J V ^ I 
Jo Jo *=° 

d#i • • • dxndui - - - dun-i Xia" • xn
ap !A (n— l ) - 1 - " 

- / ' - / • 
Jo Jo 

1 rl dun r A 0 - 1 ) ~\k 

- i _ / J l n 

k\Jo unA(n— l)+xnA'(n— 1)L unA(n— l ) + x n A ' 0 — 1)J 

• / ' - / ' 

7 o Jo 

f X In-

fc=o fc!70 wnAO—l)+#wA'(n—-1) 

p 1 
dxv • 'dxnduv • - ^ n - i #ia- • -Xn^lACw—l)-2-" L ( l + a : ) - ^ - 1 

*-o ( * + l ) ! 

A 0 - 1 ) "f+1 r A 0 - 1 ) - i ^ i 

xnA'(n—l). 
l n -

L A ( w - l ) + s » A ' ( w - l ) J 

P+I 
^ S E l l + a ^ ^ f e w - l ^ V w L . (A3) 

On the other hand, it follows from setting n=0 that of (B4) must also vanish when (B6) is satisfied. 
Therefore, 

A(afi,p)= / dxx«(-\nxy=:(l+a)-v-lpL (A4) / M ^ i ^ C l - ( 1 - 4 M ) 1 / 2 ] , (B7) 

and, consequently, 
Equation (26) follows from (A3) and (A4); (28) from 
(A4) and (26); and the substitution of (26) into (A3) 6(/x,X) = 2 [ l + ( l - 4 M ) 1 / 2 - 2 X ] - 1 . (B8) 
gives (27). 

APPENDIX III 
APPENDIX II . 

The graph of Fig. 6(a) contains a four-point vertex 
In this Appendix, the difference equation (27) is to be insertion which is divergent. After renormalization, 

solved with the boundary condition (28). First, it the contribution from this graph is 
follows from (27) and (28) that 

0<B(n,p)<V+*. (Bl) W = iKfG2 r . . . I"" dxdx'dudydz 

Therefore, the function ^ ° ^ ° 

oo oo X{Ar2expi[_xxf(y+z)A-1s+Ji']—(x+xf+u)-2 

n~o p = =o ' X(y+z)~2expi[xxr(x+x'+u)-ls+J2~]}, (CI) 

is analytic in the region where 

| M | < 1 and | X | < * . (B3) A= (x+x'+u)(y+z)+yz, (C2) 

The substitution of (27) and (28) into (B2) gives and Jx and J2 are independent of s. Again it is sufficient 
to consider the region of integration where all Feynman 

&(M,X) = [ M / ( M ) ~ X ] / [ M - X ( 1 - X ) J , (B4) p a r a m e t e r s are small. For a close to - 1 , the Mellin 

where transform of (CI) is approximately 

/G*) = E B(nfih\ (B5) i ! 
n==0 M' (a) ~ - Kg2G2 / • • • / dxdx'dudydz xax'« 

The denominator of (B4) vanishes when 

X = J [ 1 - (1-4/x)1 '2], (B6) X [ A - 2 " « ( y + 2 ) « - (x+x'+u)-+~(y+z)-*J (C3) 

which intersects the region (B3). Thus, the numerator The integration over x can be carried out by (Al) to 
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give 

M '(a)- Kgt&il+a)-1 f • • • f dx'< 
Jo Jo 

dudydz 

r ( yz \~l n 
Xx'a(y+z)-2\ lx'+u+ ] -~{xf+u)-l\. (C4) 

LA y+z/ J 

The integration over u gives simply 

f1 dx'dydz x'a 

M'(a)^Kg2G2(l+< arf-f 
Jo Jo 

Xln 

(y+z)2 

r > 
1+— 

L x'(y 
(y+z)J 

Next the integration over x' yields 

M'ia^Kgt&il+a)-** 

Jo Jo 
dydz yl+<*z1+a (y+z)-8~a. (C6) 

The right-hand side of (C6) is easily evaluated to give 
finally 

M'(a)-iTg2G2(l+a)-4, (C7) 

for a near — 1. Hence, as s —»co y 

(C8) 

(C5) w m c n is negligible when compared with the corre­
sponding quantity for the graph of Fig. 6(b). 
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Higher Random-Phase Approximations and the Theory of the Electron Gas* 

Giu Do DANG AND ABRAHAM KLEIN! 

University of Pennsylvania, Philadelphia, Pennsylvania 
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Using the example of the degenerate electron gas, it is shown how the operator equations of motion for a 
many-particle system may be exploited to generate systematically a sequence of nonperturbative approxi­
mations of which some version of the random-phase approximation is the first. Some questions left unsettled 
by previous attempts in this direction are resolved by close attention to the structure of the spectrum of the 
system. The solution of the equations is carried only so far as to make contact with previously substantiated 
results. Finally, a rigorous proof is given that the plasmon frequency approaches the classical plasmon fre­
quency in the long-wavelength limit. 

I. INTRODUCTION 

THERE have been several attempts recently to go 
beyond the extreme high-density limit in the 

treatment of the problem of the degenerate electron 
gas in a uniform background of positive charge.1 Using 
the diagram techniques developed for the electron gas 
by Hubbard2 and DuBois,3 Osaka4 has shown how to 
sum an infinite but well-defined class of higher order 
diagrams not previously included in the calculation of 
the polarization propagator2,3 or effective interaction 
and has applied the results to obtain corrected values 
of the screening constant, plasmon dispersion relation, 
and low-temperature specific heat. We shall not be 
concerned here with this kind of technique, though as 
we shall show in a sequel to this paper, Osaka's theory 
coincides with an accurate solution of a suitably defined 
extended random-phase approximation (RPA). 
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It is, in fact, well known that the results based on 
the lowest order polarization propagator are completely 
equivalent to those which can be obtained from the 
equation of motion method in the RPA without ex­
change. It is also well known that the next approxi­
mation in the diagram method is equivalent to the 
partial inclusion of the exchange interaction and ex­
change self-energy effects in the equations of motion 
i.e., in the use of an extended RPA method as the basis 
for the theory.5 In consequence, several authors have 
felt that the equation-of-motion method warranted 
deeper investigation as the foundation for a non­
perturbative approach to the many-body problem. 
Here we mention first the work of Suhl and Werthamer,6 

whose technique has been applied to nuclear physics 
by Sawicki.7 Their method is based on the extended 

5 We shall, thus, distinguish between the simple and extended 
RPA, respectively, where the latter includes exchange and 
exchange self-energy corrections. 
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should also be made to the work of K. Sawada, ibid. 119, 2090 
(1960). 

7 J. Sawicki, Phys. Rev. 126, 2231 (1962); G. Fano and J. 
Sawicki, Nuovo Cimento 25, 586 (1962). 


