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The Debye-Waller factor for copper has recently been determined by Flinn et al. by making x-ray intensity 
measurements from 4-500°K. Flinn et al. were able to explain their results using a central force model for 
the copper lattice. However, it is well known that this model is inadequate in explaining the vibrational 
properties of the copper lattice over the entire wavelength region. Since various sets of force constants have 
been proposed for copper, we calculated the Debye-Waller factor for these sets. It is found that with the 
present experimental accuracy it is impossible to select between them. Calculations are also given for 
aluminum using Walker's atomic force constants. 

INTRODUCTION 

RECENTLY, Flinn et al.1 reported on the x-ray 
determination of the Debye-Waller factor for 

copper. They were able to interpret the experimental 
results in terms of a central force model (C.F.) including 
first- and second-neighbor interactions. Since the fre­
quency spectrum is known for copper and was analyzed 
first by Jacobsen2 using a full tensor model and second 
by Lehman et al? using a special case of the full tensor 
model, it is interesting to compare the Debye-Waller 
factor predicted from these various sets of force con­
stants. We have also calculated the Debye-Waller 
factor using the tensor force constants computed by 
White4 from what amounts to a first-principles calcula­
tion using Feynman's theorem. Calculations of the 
Debye-Waller factor for aluminum are made using 
Walker's5 tensor force constants which were determined 
from experimental dispersion curves. The method of 
calculation with the results is presented in Sec. II. 

RESULTS 

The Debye-Waller factor for a cubic crystal can be 
written in the following manner: 

f=e~™, (1) 

TABLE I. Atomic force constants for copper (in units of 
104 dyn cm"1). 

Force 
constant 

Oil 

0i 
7 i 
G!2 

02 
« 3 

03 
73 
h 

Jacobsen 

0.87 
0.48 
1.25 
0.35 

-0.072 
0.09 

-0.022 
-0.015 

0.06 

White 

1.71 
-0 .24 

1.66 
-0 .13 
-0 .07 
-0 .01 
+0.005 
+0.02 
+0.01 

A-S 

1.12 
-0.001 

1.12 
-0.0227 
-0.0105 

0.1122 
0.00345 
0.03625 
0.0725 

C.F. 

1.477 
0 

1.477 
-0.2753 

0 
0 
0 
0 
0 
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where 

and 

2W=RC(T), 

2 1 
C(T) = — T,(fi++h)—. 

3N * fa* 

(2) 

(3) 

$ stands for two indices (q,j) where q is the propagation 
vector and j the vibrational branch. n$ is the average 
number of phonons in a given mode <j>. N refers to the 
total number of unit cells. R is the recoil energy of a 
free emitting atom. 

TABLE II. Atomic force constants for aluminum 
(in units of 104 dyn cm"1). 

Force constant Walker A-S 

a i 
01 
71 
a2 

02 
CK3 

03 
73 
S3 

0.845 
-0.093 

1.067 
0.214 
0.04 
0.027 

-0.031 
0.01 

-0.019 

0.845 
-0 .09 

0.935 
0.2 

- 0 . 1 
0 
0 
0 
0 

In order to calculate the constant C(T) the vibra­
tional frequencies for an arbitrary propagation vector 
and branch are determined using a full tensor force 
model including third neighbors. The A-S (axially 
symmetric) calculation is done as a special case of the 
full tensor model. 

Equation (3) is then evaluated by integrating over 
1/48 of the Brillouin zone appropriate for the fee 
structure. This portion of the Brillouin zone was divided 
into two regions. A triple Gaussian quadrature was 
used to evaluate the resulting integrals. The 3 X 3 
dynamical matrix was diagonalized by 2 X 2 Jacobi 
rotation procedure at 1024 points in each region. Several 
checks were made to insure that the integration was 
independent of the order of the Gaussian quadrature. 
Table I gives the atomic force constants presently known 
for Cu which were used in the calculation of the Debye-
Waller factor. Table II gives the atomic force constants 
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TABLE III. C(T) for copper (in units of 102 eV"1). 

r(°K) 
4 

20 
80 

300 
400 

Flinn et al. 
Experimental values 
0D C(T) 

320±10 
320±10 
320±10 
315±10 
300±10 

0.544T0.02 
0.588=F0.02 
0.755=F0.04 
2.17 =F0.14 
3.14 =F0.25 

C.F. model 

0.552 
0.566 
0.762 
2.10 
2.77 

Jacobsen 

0.579 
0.593 
0.808 
2.29 
3.02 

White 

0.537 
0.548 
0.733 
2.03 
2.67 

A-S 

0.570 
0.582 
0.779 
2.18 
2.87 

Debye model 
0 D = 3 3 5 ° K 

0.520 
0.532 
0.697 
1.93 
2.50 

for aluminum determined by Walker from his experi­
mental dispersion curves. The experimental and calcu­
lated temperature dependence of C(T) for copper is 
given in Table III. For comparison we calculated C(T) 

TABLE IV. C(T) for aluminum (in units of 102 eV_1). 

T(°K) Walker 
Debye model 
(0z>=382°K) 

4 
20 
80 

300 
400 

0.471 
0.478 
0.598 
1.54 
2.02 

0.459 
0.464 
0.583 
1.50 
1.96 

using a Debye model, the results of these calculations 
are also shown in this table. 

From the results in Table III we conclude that the 
experimental determination of the Debye-Waller factor 
for pure host lattices of cubic symmetry is not sensitive 
enough to distinguish between the various models. 
Models inconsistent with experimental dispersion curves 
such as the C.F. model and White's full tensor model 
give essentially the same Debye-Waller factor. 

The results of the calculations for aluminum using 
Walker's force constants are given in Table IV. Using 
the A-S force constants the values of C(T) are higher 
than Walker's by 1% at 0°K and by 4% at 400°N. 
Only a small difference is expected since Walker's 
constants are essentially axially symmetric. 
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The Debye-Walker factor, e~2W
i for tin is calculated using the A-S (axially symmetric) lattice dynamics 

model described in an earlier paper. The Debye continuum approximation is found to be unsatisfactory 
because the optical modes contribute significantly even at low temperatures. Calculated and experimental 
values determined from Mossbauer measurements are in excellent agreement in the temperature range 
from 0 to 300°K. Discrepancies above 300°K are attributed to higher order corrections such as anharmonici-
ties and diffusion effects. In tin, the Debye-Waller factor depends upon the direction of gamma ray emission 
with the ratio 2WX/2W, varying from 1.1 to 1.2 for r = 0 ° K and r=300°K, respectively. The calculated 
anisotropy in 2W is compared with available experimental data. Dispersion curves and values of 2W calcu­
lated using Rayne and Chandrasekhar elastic data are compared with those calculated using Mason and 
Bommel elastic data. The effect of the relative motion of the two sublattices on the elastic properties of tin 
is discussed and found to be important for the elastic constants of Rayne and Chandrasekhar. 

I. INTRODUCTION 

THE probability of a gamma-ray emission without 
energy transfer to or from the lattice1-2 and the 

temperature dependence of the atomic structure factor 
in the reflection of x rays3 is given by 

1 R. L. Mossbauer, Z. Physik 151, 124 (1958). 
2 W. E. Lamb, Jr., Phys. Rev. 55, 190 (1939). 
3 R. W. James, The Optical Principles of the Diffraction of X-Rays 

(G. Bell and Sons, London, 1953). 

f=e -2W (1) 

where 2W is related to the mean square displacement of 
an atom along a definite direction. 

Since the experimental determination of / for tin 
has only been investigated through a study of the 
temperature dependence of recoil-less y emission the 
constant 2W is denned for this specific case. Hence, 

2W=R E« Ey L9a'^(qjm^(qjn (2) 


