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TABLE III. C(T) for copper (in units of 102 eV"1). 

r(°K) 
4 

20 
80 

300 
400 

Flinn et al. 
Experimental values 
0D C(T) 

320±10 
320±10 
320±10 
315±10 
300±10 

0.544T0.02 
0.588=F0.02 
0.755=F0.04 
2.17 =F0.14 
3.14 =F0.25 

C.F. model 

0.552 
0.566 
0.762 
2.10 
2.77 

Jacobsen 

0.579 
0.593 
0.808 
2.29 
3.02 

White 

0.537 
0.548 
0.733 
2.03 
2.67 

A-S 

0.570 
0.582 
0.779 
2.18 
2.87 

Debye model 
0 D = 3 3 5 ° K 

0.520 
0.532 
0.697 
1.93 
2.50 

for aluminum determined by Walker from his experi
mental dispersion curves. The experimental and calcu
lated temperature dependence of C(T) for copper is 
given in Table III. For comparison we calculated C(T) 

TABLE IV. C(T) for aluminum (in units of 102 eV_1). 

T(°K) Walker 
Debye model 
(0z>=382°K) 

4 
20 
80 

300 
400 

0.471 
0.478 
0.598 
1.54 
2.02 

0.459 
0.464 
0.583 
1.50 
1.96 

using a Debye model, the results of these calculations 
are also shown in this table. 

From the results in Table III we conclude that the 
experimental determination of the Debye-Waller factor 
for pure host lattices of cubic symmetry is not sensitive 
enough to distinguish between the various models. 
Models inconsistent with experimental dispersion curves 
such as the C.F. model and White's full tensor model 
give essentially the same Debye-Waller factor. 

The results of the calculations for aluminum using 
Walker's force constants are given in Table IV. Using 
the A-S force constants the values of C(T) are higher 
than Walker's by 1% at 0°K and by 4% at 400°N. 
Only a small difference is expected since Walker's 
constants are essentially axially symmetric. 
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The Debye-Walker factor, e~2W
i for tin is calculated using the A-S (axially symmetric) lattice dynamics 

model described in an earlier paper. The Debye continuum approximation is found to be unsatisfactory 
because the optical modes contribute significantly even at low temperatures. Calculated and experimental 
values determined from Mossbauer measurements are in excellent agreement in the temperature range 
from 0 to 300°K. Discrepancies above 300°K are attributed to higher order corrections such as anharmonici-
ties and diffusion effects. In tin, the Debye-Waller factor depends upon the direction of gamma ray emission 
with the ratio 2WX/2W, varying from 1.1 to 1.2 for r = 0 ° K and r=300°K, respectively. The calculated 
anisotropy in 2W is compared with available experimental data. Dispersion curves and values of 2W calcu
lated using Rayne and Chandrasekhar elastic data are compared with those calculated using Mason and 
Bommel elastic data. The effect of the relative motion of the two sublattices on the elastic properties of tin 
is discussed and found to be important for the elastic constants of Rayne and Chandrasekhar. 

I. INTRODUCTION 

THE probability of a gamma-ray emission without 
energy transfer to or from the lattice1-2 and the 

temperature dependence of the atomic structure factor 
in the reflection of x rays3 is given by 

1 R. L. Mossbauer, Z. Physik 151, 124 (1958). 
2 W. E. Lamb, Jr., Phys. Rev. 55, 190 (1939). 
3 R. W. James, The Optical Principles of the Diffraction of X-Rays 

(G. Bell and Sons, London, 1953). 

f=e -2W (1) 

where 2W is related to the mean square displacement of 
an atom along a definite direction. 

Since the experimental determination of / for tin 
has only been investigated through a study of the 
temperature dependence of recoil-less y emission the 
constant 2W is denned for this specific case. Hence, 

2W=R E« Ey L9a'^(qjm^(qjn (2) 
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FIG. 1. Dispersion curves for white tin along [100] direction in the 
Brillouin zone using Rayne and Chandrasekhar elastic data. 

# [ > ( ? j ) ] = -
1 

Nha>(q,j) I e x p p k o ( g j ) / ^ ] - 1 
M , (3) 

where N is the number of unit cells, R is the recoil 
energy of a free emitting atom, fi is Planck's constant 
divided by 2T, k is the Boltzmann constant, T is the 
absolute temperature, q is the propagation vector, and 
j is the polarization of a vibrational wave of the crystal. 
a refers to the specific lattice from which the y ray is 
being emitted or absorbed, ga is a unit vector in the 
direction of emission of the y ray, ea(q,j) is the polariza
tion vector of the vibrational wave. 

The purpose of this paper is to provide accurate 
theoretical values for the Debye-Waller factor for white 
tin in the temperature region of the harmonic approxi
mation. Calculations of this type are necessary in order 
to determine the extent to which the existing theory 
agrees with experimental results.4 In this paper, Eq. (2) 
is evaluated using the theoretical frequency spectrum 
and polarization vectors for white tin calculated from 
the elastic data. 

In a previous paper,5 referred to as WLD, the fre-
4 A rough order of magnitude calculation of the anisotropy ratio 

for tin in agreement with our results has been reported recently 
by Yu. Kagan. [Dokl. Akad. Nauk SSSR 140, 794 (1961) [transla
tion: Soviet Phys.—Doklady 6, 881 (1962)]]. However, in view 
of the methods used by Kagan in evaluating this ratio, we con
clude that this agreement is accidental, inasmuch as the optical 
modes were not included. Kagan's expressions require a detailed 
knowledge of the density of states—a quantity not to be obtained 
in any simple manner analytically for a real crystal. His density 
of states is derived from a simplified nearest neighbor lattice dy
namics model in which the dynamical matrix is diagonal and conse-
quently inconsistent with the elastic-dynamic matrix. In addition, 
the model does not apply to the actual structure of tin. Having 
omitted the optical mode contributions, the expressions derived 
are not valid since the optical modes contribute significantly, 
particularly at low temperatures as is shown from specific heat 
data and by our detailed calculations. 

5 T. Wolfram, G. W. Lehman, and R. E. DeWames, Phys. Rev. 
129, 2483 (1963). 

quency spectrum for white tin was calculated using the 
elastic constants reported by Mason and Bommel.6 

In this paper we also calculate the frequency spectrum 
using the elastic constants of Rayne and Chandrase
khar.7 In Sec. II the dynamic matrix for the acoustic 
frequencies is obtained including the interaction of the 
optical motion. In the long-wavelength limit this matrix 
reduces to an effective elastic matrix in which the effect 
of the relative motion of the two sublattices is retained. 
The method of calculation with the resulting dispersion 
curves is also presented. 

In Sec. I l l , the constant 2W is expressed as a quad
ratic function of the components of pa. The method and 
results of our calculations are presented in Sec. IV. 

II. EFFECT OF OPTICAL MOTION ON 
THE ACOUSTIC MATRIX 

In this section we consider the interaction of the 
optical and acoustical modes and show that the acoustic 
frequencies are in general depressed. This depression 
can be understood in terms of a mixing of relative sub-
lattice motion into the "pure" acoustic motion in which 
the two sublattices are moving as a unit. In the long-
wavelength (L-W) limit the optic-acoustic interaction 
is proportional to qA for crystals with an inversion center 
but proportional to q2 otherwise. Consequently, the 
elastic properties of crystals without an inversion 
center, such as white tin, will contain an optic-acoustic 
interaction term while crystals with an inversion center 
will not. In this section we obtain the corrected L-W 
acoustic matrix. 

In WLD, the form of the dynamic matrix for white 

FIG. 2. Dispersion curves for white tin along [110] direction in the 
Brillouin zone using Rayne and Chandrasekhar elastic data. 
6 W. P. Mason and H. E. Bommel, J. Acoust. Soc. Am. 28, 930 

(1956). 
7 J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 120, 1658 

(1960). 
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tin in the center-of-mass system was discussed. The 
dynamic equations in this system are 

°<o-o (4) 

where S)(q) is the dynamic supermatrix in the center-of-
mass system with elements 

£>ii(q) = £>n+Re£>i2, 

S0i2(q)=3)2i(g)=-ImD12, 

a)22(q) = £n -Re I> i2 , 

(5) 

and the Ay are 3X3 supermatrices described in WLD. 
The vector xx is the "pure" acoustical (in-phase) motion 
of the two sublattices and x2 is the "pure" optical (out-
of-phase) motion. Using partitioning, we obtain the 
dynamic equations for the acoustic frequencies 

{(^n-^)-^12(^22-^)-1^n}oci=0. (6) 

This equation is exact and shows that the acoustic 
frequencies are lowered by the presence of optical 
modes. The eigenvalues of £>n and SD22 are the "pure" 
acoustical and optical frequencies, respectively. SD12 
is the optic-acoustic interaction matrix. As q —> 0 the 
eigenvalues of SDn and £)i2 vanish. The matrix 3D22, 
however, approaches a diagonal form with large constant 
eigenvalues, the optical frequencies. (3D22— a*2)"1 can 
be expanded in a power series in 3D22-1, 

(SD22-0)2)-1= a)2 2-1 + O>2%2-2+C04X)22-3+ • ' (7) 

This series converges very rapidly in the L-W limit since 
[o> —>0] while the eigenvalues of SD22 approach 1026 

sec-2. In the elastic limit one retains only terms of order 

FIG. 4. Dispersion curves for white tin along [100] direction in 
the Brillouin zone using Mason and Bommel elastic data. 

(f so that the acoustic matrix reduces to 

{ ( £ > n - a > 2 ) - SDi2SD22-1SDi2}q-»o. (8) 

The interaction matrix, £>i2, is proportional to q2 

for crystals with an inversion center and consequently 
the second term in Eq. (8) is proportional to q* and 
may be neglected. On the other hand, for crystals with
out a center inversion, SD12 is proportional to q so that 
the optic-acoustic correction must be retained. Physi
cally, however, we expect the correction to be small 
compared to "pure" acoustic frequencies. In WLD, the 
frequency spectrum for white tin was calculated using 
the elastic constants reported by Mason and Bommel 
(see Table I). In this case the correction term could be 
ignored since it caused only negligible corrections 
(about 3%). The elastic constants reported by Rayne 
and Chandrasekhar,7 (see Table I) also by House and 
Vernon,8 imply in our model a much larger optic-acoustic 
interaction. In addition, these constants give rise to a 
much lower transverse acoustic branch along the [110] 
direction. Consequently, it is necessary to use Eq. (8) to 
determine the atomic force constants. Equating Eq. (8) 
to the elastic matrix as discussed in WLD yields quad
ratic algebraic equations relating the atomic force con
stants to the elastic constants. The value of aw and t 
were chosen according to the procedure in WLD. The 
A-S atomic force constants for the two calculations are 
given in Table II. 

Using the elastic data of Mason and Bommel it was 
possible to satisfy all equations within the experimental 
error in the elastic constants. However, with the elastic 
data of Rayne and Chandrasekhar, it was not possible 
to obtain total consistency among all the equations. 
This resulted because the A-S model implies that 

C44~"Ci3— C66+C12 — 0. (9) 

FIG. 3. Dispersion curves for white tin along [001] direction in the 
Brillouin zone using Rayne and Chandrasekhar elastic data. 

8 D. G. House and E. V. Vernon, Brit. J. Appl. Phys. 11, 254 
(1960). 
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TABLE I. Room temperature elastic constants for white tin 
(in units 1011 dyn cm-2). 

FIG. 5. Dispersion curves for white tin along [110] direction in 
the Brillouin zone using Mason and Bommel elastic data. 

This condition is well satisfied for the constants of Mason 
and Bommel, but for Rayne and Chandrasehkar's 
data it is not. 

The effect of the inconsistency is to lower the quasi-
transverse branch by 40% and raise the quasilongitudi-
nal branch by 10% along the [101] direction. All other 
branches along the principal directions including the 
pure transverse branch along the [101] direction are 
unaffected. 

The resulting dispersion curves are shown in Figs. 
1-3. For comparison Figs. 4-6 show the dispersion curves 
obtained in WLD. The value of the optical frequencies 
at q = 0 are larger than in WLD. This is necessary in 
order to keep the optic-acoustic interaction small. In 
order to remove the condition on the elastic constants 
imposed by the A-S model one needs to consider a full 
tensor force model. This, however, will introduce more 
parameters which obviously could not be determined 
without experimental dispersion curves. In WLD it is 
shown that, for any atomic force model, it is necessary 
to include at least fourth neighbors in order to be con
sistent with elastic theory. 

III. 2W FOR WHITE TIN 

White tin has a body-centered tetragonal structure 
with two atoms per unit cell. The structure is two inter
penetrating body centered tetragonal lattices with lat
tice basis (0,0,0), (0,J, |) . The superscript a is left out 
in what follows since the constant 2W must be the same 
for either lattice. 

Equation (2) can be expressed as an inner product 

2W= R (p,HP), 

P = (Px,Py,Pz), 
(10) 

where the elements of the H matrix are given by 

Hn,m=lLq £ / gD»(q,j)]en(q,j)em*(q,j). (11) 

Constants 

Cn 
C33 
C44 
^ 6 6 

C12 
Cn 

Mason and 
Bommel 

7.33 
8.74 
2.19 
2.25 
2.38 
2.48 

Rayne and 
Chandrasekhar 

7.23 
8.840 
2.203 
2.400 
5.94 
3.58 

When the coordinate axes are chosen to lie along the 
principal axis of the crystal, 2W must be a quadratic 
function of the components of Q. Hence, 

or 

2W=R{p.*H9X+p*Hyv+p*H„}9 (12) 

= R{ (p**+py*)HM+p*H„}, (13) 

since the crystal has a fourfold axis of symmetry. I t is 
convenient to express Eq. (13) in the form 

2W=RHZ2(T){e(T)-tf\:e(T)-l-]}, 

where e(T) = Hxx(T)/Hes(T), ju=cos0, 6 is the angle 
between p and the principal axis. 

IV. RESULTS 

In order to calculate the constant 2W the vibration 
frequencies and polarization vectors for an arbitrary 
propagation vector q were determined using the axially 
symmetric lattice dynamics model described in a previ
ous paper.9 

The Hxx and Hzz matrix elements [Eq. (11)] were 
evaluated by integrating over Y$ of the Brillouin zone 
appropriate to white tin. This portion of the Brillouin 
zone was divided into two regions which were trans
formed into unit cubes by nonlinear transformations. A 
triple Gaussian quadrature was used to evaluate the 
resulting integrals. 

The 6X6 dynamical matrix for white tin was diago-
nalized by a 2X2 Jacobi rotation procedure at 1024 
points in each region. The polarization vectors for 

TABLE II. A-S force constants (in units of 104 dyn cm-1). 

Constants 

Ki (1,12) 
C2 (1,12) 
Ki (2,11) 
C2 (2,11) 
Kx (3,12) 
C2 (3,12) 
Ki (4,11) 
C2 (4,11) 

I a 

0.9183 
1.515 
1.757 
0.7575 
1.276 

-0.736 
0.4206 

-0.1979 

a Using Mason and Bommel elastic data. 
a Using Rayne and Chandrasekhar elastic data. 

IIb 

0.2945 
1.472 
1.551 

-0.7362 
2.446 
0.7404 
0.7054 

-0.6688 

9 G. W. Lehman, T. Wolfram, and R. E. DeWames, Phys. Rev. 
128, 1593 (1962). 
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TABLE III . Comparison of experimental and calculated values for the polycrystal Debye-Waller factor. 

533 

r(°K) 
4 

20 
77 
90 

150 
300 
400 
500 

Wiedemann1* 
et al. 

(0.53), (0.60) 
(0.52), (0.59) 
(0.39), (0.40) 

Boyle 
et al. 

(0.40) 

0.22 
0.035 
0.009 
0.002 

Barloutandb 

et al. 

(0.30±0.07), (0.32±0.015) 

Alekseyevsky 
et al. 

(0.32 ±0.06) 

(0.061±0.015) 

Ic 

0.63 
0.61 
0.40 

0.22 
0.053 

0.008 

IId 

0.61 

0.37 

0.18 
0.036 
0.011 
0.004 

Debye model 
BD = 142°K 

0.73 
0.70 
0.46 

0.07 

0.012 

« W. H. Wiedemann, P. Kienle, and F. Pobell, Z. Physik 166, 109 (1962). 
b R. Barloutand, J. O. Picon, and C. Tzara, Compt. Rend. 250, 2705 (1960). 
0 Using Mason and Bommel elastic data. 
d Using Rayne and Chandrasekhar elastic data. 

points lying outside the fundamental xg- of the Brillouin 
zone were obtained by means of symmetry operations 
of the Dik group. Several checks were made to insure 
that our values of Hm>m were independent of order of 
the Gaussian quadrature. 

The experimental and calculated temperature de
pendence of the polycrystalline Debye-Waller factor 
is given in table III showing good agreement from 0 to 
300 °K. The values calculated using Rayne and Chan-
drasekhar's elastic data seem to give the best over-all 
fit; however, with the present experimental accuracy it 
does not seem possible to select between the two calcu
lations. For comparison, the temperature dependence of 
Debye-Waller factor calculated from the Debye approxi
mation with 0 D = 1 4 2 ° K , as suggested in a previous 
analysis10 is also shown in Table III. Clearly, our results 
indicate that the Debye model does not give a good 
representation of the frequency spectrum of tin and 
that one is not justified in accounting for the difference 
between experimental values and calculated values 
using the Debye approximation by introducing higher 
order corrections such as anharmonicities. The deviation 
of experimental values from calculated values using A-S 
model above 300 °K can now probably be attributed to 
higher order corrections. The effect of anharmonicities 
is presently being investigated. 

TABLE IV. Temperature dependence of HZZ(T) and e(T). 

T(°K) 

4 
6 

15 
50 
77 

150 
300 
400 
500 

H„(T)* 
(in units of 
103 eV"1) 

0.169 
0.170 
0.175 
0.233 
0.304 
0.526 
1.01 
1.34 
1.68 

e(T)» 

1.106 
1.106 
1.109 
1.15 
1.17 
1.19 
1.2 
1.2 
1.2 

a Using Mason and Bommel elastic data. 

HZZ(T)* 
(in units of 
10s eV"1) 

0.174 
0.175 
0.183 
0.260 
0.345 
0.606 
1.17 
1.56 
1.95 

b Using Rayne and Chandrasekhar elastic data. 

«(3Db 

1.106 
1.106 
1.109 
1.14 
1.15 
1.16 
1.17 
1.17 
1.17 

The temperature dependence of the function HZZ(T) 
and the anisotropy ratio e(T) is given in Table IV. The 
anisotropy ratio is found to be only slightly temperature 
sensitive in agreement with Kagan's results.4 

We are currently aware of two recent attempts at 
measuring the anisotropy ratio of fx/fz=e~RHzx/e~RHzz. 
One of these measurements has been attempted by 
Alekseyevsky et al.11 and their conclusion is that 
/*//«= 1-4 over the whole temperature range. Their 
calculated fx/fz was determined from experimental 
data corrected for quadrupole effects. 

It is apparent that the conclusions of Alekseyevsky 
et al. are in disagreement with our theoretical prediction. 
In fact, their conclusions that fx/fz=\A over the 80-
300°K range imply that the ansiotropy ratio e(T), is 
not only strongly temperature dependent but increases 
as the temperature increases, which implies that the 
lattice anisotropy is decreasing as the temperature in
creases. This is difficult to believe because if the mean 
square displacement along the [001] is larger at low 

FIG. 6. Dispersion curves for white tin along [001] direction in 
the Brillouin zone using Mason and Bommel elastic data. 

10 A. J. F. Boyle, D. St. P. Bunbury, C. Edwards, and H. E. 
Hall, Proc. Phys. Soc. (London) A77, 129 (1961). 

11 N. E. Alekseyevsky, Pham Zuy Hien, V. G. Shapiro, V. S. 
Shunel, Zh. Eksperim. i Teor. Fiz. 43, 790 (1962) [translation: 
Soviet Phys.—JETP 16, 559 (1963)]. 
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temperatures than that along the £100] direction in the 
harmonic region one would expect their ratio to be an 
increasing function of temperature (since the functional 
dependence on frequency goes from (l/o>) to (1/co2) at 
high temperatures). Furthermore, the thermal expan
sion data show that the thermal expansion coefficient 
along the [001] is higher than along the [100]; this 
should still further increase the difference. 

The other measurement is that of Meechan et al.12 of 
our laboratory who have obtained essentially the same 
value for fx/fz at room temperature but no measurable 
difference for fx/f, at 100°K. 

This experimental discrepancy must be resolved be-

TABLE V. Comparison of experimental and calculated values 
of the Debye-Waller factor along three crystal axes. 

TABLE VI. Comparison of experimental and calculated values 
of the anisotropy ratio e(T). 

e(T) 

T(°K) 
Alekseyevsky 

et al. 
A-S model 

I a I Ib 

77 
300 

0.715 
0.883 

1.17 
1.2 

1.15 
1.17 

a Using Mason and Bommel elastic data. 
b Using Rayne and Chandrasekhar elastic data. 

Between 6-15 °K the calculated values are low. It was 
impossible to raise the lattice contribution to the 
specific heat in that temperature range without chang
ing the low temperature agreement of Cv and the Debye-
Waller factor. 

r(°K) 
Alekseyevsky et al. 

77 293 

A-S model 
I a I Ib 

77 293 77 293 

[001" 
[101" 
[ioo: 

0.24±0.05 0.054±0.01 
0.072±0.01 

0.36±0.06 0.076d=0.01 

0.46 0.074 
0.05 

0.39 0.045 

0.41 0.05 
0.033 

0.36 0.03 

a Using Mason and Bommel elastic data. 
b Using Rayne and Chandrasekhar elastic data. 

fore we can make meaningful comparison between 
theory and experiment. 

The experimental and calculated angular dependence 
of the Mossbauer intensity for several temperatures is 
shown in Table V. The anisotropy ratios are compared 
in Table VI. Table VII gives the calculated and experi
mental specific13 heat from 1 to 300 °K. As expected, the 
calculated specific heat values using Rayne and Chan
drasekhar 's elastic data is slightly higher than that 
calculated using Mason and Bommel's elastic data. 

12 C. J. Meechan, A. H. Muir, U. Gonser, H. Wiedersich, Bull. 
Am. Phys. Soc. 7, 600 (1962). 

13 C. A. Shiftman, The Heat Capacities of the Elements below 
Room Temperature, General Electric Research Laboratory 
(unpublished). 

TABLE VII. Comparison of experimental and calculated values 
for the total specific heat of white tina (in units of cal mole-1 

deg-0. 

r(°K) 

I 
2 
3 
4 
6 
15 
50 
150 
300 

Cr(exp) 

0.00046 
0.0014 
0.0032 
0.0067 
0.036 
0.64 
3.68 
5.85 
6.3 

C„(I)b 

0.00042 
0.0011 
0.0027 
0.0053 
0.015 
0.25 
3.10 
5.55 
5.97 

cv(iiy 
0.00045 
0.0015 
0.0042 
0.0074 
0.021 
0.29 
3.08 
5.53 
5.97 

» 7 =3.5 X10-4 cal mole-1 deg-1. 
b Using Mason and Bommel elastic data. 
0 Using Rayne and Chandrasekhar elastic data. 

ACKNOWLEDGMENTS 

The authors are particularly indebted to C. J. 
Meechan and A. H. Muir for numerous discussions 
concerning the experimental work on Sn. We also wish 
to acknowledge discussions with M. H. Cohen, U. 
Gonser, V. Heine, and H. Wiedersich on the subject 
matter of this paper. 


