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Localized Mode Detection by Means of the Mossbauer Effect* 
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The Mossbauer effect in a simple cubic crystal, disordered by light isotopes was studied for the possibility 
of observing the localized mode vibrational spectrum over the background of the continuum. 

I. INTRODUCTION 

A GREEN'S function solution for the motion of a 
three-dimensional crystal with defects and har­

monic, nearest neighbor forces has been presented by 
Montroll.1 The solution contains an integral which 
arises frequently in mathematical physics, and has 
consequently been tabulated in a short table for values 
of the argument in the neighborhood of the defect.2 Its 
use in lattice defect problems is restricted, however, to 
solutions whose frequencies lie above the maximum fre­
quency of the perfect crystal. With the tables, the con­
tribution to the motion of a light isotopic defect from 
its localized mode has been obtained. It has been stated3 

that since the amplitude of this contribution is larger 
than that of any propagating mode in a large crystal, a 
considerable recoil in a Mossbauer type nucleus, of 
energy equal to the excitation energy for a phonon of 
this localized mode (LM), is probable. The presence of 
such modes would become observable by means of this 
recoil, as an additional peak in the cross section, shifted 
from the recoilless part by the LM excitation energy. 
A calculation of this alteration in the Mossbauer single 
phonon spectrum has already been performed, for the 
case of a single such impurity in a crystal. The calcula­
tion gives a value of 104 b for absorption with LM ex­
citation.4 This paper performs that calculation in a 
different manner, which directly demonstrates the 
effect of the LM coupling on the recoilless and nonrecoil-
free spectrum. 

The question of observability, however, is not settled 
on this basis. Additional considerations are first the 
fact that in a real crystal the phonons interact anhar-
monically, thereby attributing to each lattice vibration 
a natural width, considerably greater than that of the 
nuclear transition. Estimates of this width have been 
made from data on the thermal conductivity, leading 
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to the conclusion that at absolute zero, the lifetime of a 
localized mode is only of the order of 100 periods,5 a 
width of 10~3 or 10~4 eV, compared with 10~9 eV for 
the 14.4 keV level of Fe57. Secondly, in a real crystal the 
situation to be treated is one of a certain concentration 
of defects. Considerable attention has been given to the 
treatment of disordered distributions of defects in 
linear chains, by means of perturbation theory, which 
demonstrates that the vibrational motion of such a 
system can be described by a superposition of phonon 
states, only for a brief interval, due to the scattering 
of phonons from the perturbing defects.6 The spectrum 
of a disordered linear chain, of light impurities, has been 
given in orders of the concentration by means of a 
diagrammatic perturbation theory in which only proper 
diagrams need be considered.7 This method is directly 
generalizable to the three-dimensional case, yielding a 
usable expression for the impurity band spectrum, 
which is simply related to that of the perfect crystal. 
Again reference is made to the tables mentioned above. 

In Sec. II, the case of a single light Mossbauer isotope 
is developed for the absorption cross section at T=0. 
The amplitude of the LM motion, Do, is calculated in 
Appendix I. In Sec. I l l , the spectrum for the LM band 
of a disordered cubic crystal is found for a concentration 
dilute enough to permit one to neglect superposing the 
localized mode of the nearest neighboring impurity. 
The cross section for absorption with such a concen­
tration of Mossbauer isotopes is found in Sec. IV, by a 
procedure which underestimates, not too seriously, the 
cross section. The numerical evaluation of the cross 
section is discussed in Appendix III. 

II. RESONANCE ABSORPTION BY A LIGHT 
ISOTOPE AT THE ORIGIN 

The amplitude for a transition of the vibrational state 
of the crystal when a photon of momentum p is ab­
sorbed by the light isotopic impurity is 

<{&} lexp^p.u(0)]|{a s}), (1) 

where u(0) is the displacement of the center of mass of 
the Mossbauer impurity from its equilibrium position 
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at the origin and where | {as}) and | {/3S}) are the initial 
and final-phonon states of the crystal. The amplitude 
is expressed in normal modes of a crystal of N atoms, 

P "1 
exp -p-u(O) 

Ui J 
r Dk i 

= exp tY< (ab+a^+tDoiao+ao*) I 
L k ̂ JN J 

(2) 

where D*/\/N and Do are the contributions to the dis­
placement from the propagating and LM's, respectively, 
and the a's are creation and annihilation operators. In 
finding the cross section, the analysis is similar to that 
in the original work by Lamb8 on neutron resonance 
absorption in a perfect crystal: the propagating modes 
are still those of the perfect crystal as are the corre­
sponding initial and final states. The use of these un­
perturbed modes as an approximation is based on the 
fact that the nonlocalized, perturbed normal modes 
have amplitudes which are of the same order l/\/N, in 
determining the displacement, u(0). The analysis de­
parts from Lamb's in summing over the initial and final 
states of the LM. These sums must be done separately, 
because the amplitude of this mode is not weakened, 
as are the amplitudes of the propagating modes, by the 
factor, l / \ / iV. The independence of the modes allows 
the separation. The cross section is then 

W0(S,T) 

or„T 

A 1H .ifiS-\p\-+g(/i,T) M 

ao,|3o 

(p-e s)
2 

g(/*,r) = £ [ ( 5 . + 1) exp(-^co s M) 
s 2MtiusN 

+as e x p ( ^ o ) s j u ) - 2 a s - l ] , as= ( ^ W - l ) , 
(3) 

where a</ is the resonance absorption cross section for 
the first excited state, energy £ 0 , of the impurity nu­
cleus; E, the energy of the incoming photon; T, the 
total width of the nuclear excited state; 8=E—Eo, 
d(a0)= ( l_e(-«W)0-«o(^o/TO a n d COQ i s t h e L M f r e . 

quency. For T=0, we may set aQ~0 and 

| ^ 0 | ^ o ( a o + « o t ) | 0 ) | 2 

= ( 0 J ^ ( X a o + a o t ) \PoX/3o | tf^oUo+aot) | Q ) . 

The sum over final states is performed by means of 
their completeness. 

y ^ e-ilifio)0po I /aQ I eiD0(ao+ao}) I Q \ I 2 

= ( 0 I g"~*J5o(aO+oot)g"~*/*^«OOOtaOg*Oo(oo+oot) I Q\ ( 4 ) 

The evaluation of this expectation value (Appendix II) 
gives 

( )o,o=e- i )o2exp[Z)o2e-^W0]. 

The absorption cross section, at T = 0 , is 

W0(8fl) 

(5) 

o-oT 
-Do2 ! / exp ipS- \fi\ ~+g(fxfi)+Do2e-i^° L* 

D0
2n 

= 1 ^ W(S-ntio>o, 0), (6) 
n=0 n\ 

where W(S,0) is the cross section for a perfect crystal. 
In Appendix I, D0

2 is found to be 7X10 - 3 , so that the 
first two terms in the sum predominate, 

Wo(S,0) = e-D*W(6fl) 

+Do2e-D«2W(8-tiuo 0),+O(JD0
4). (7) 

Thus, the LM resonance is about 1/100 of the recoilless 
absorption, or about 104 b. 

III. THE LOCALIZED MODE SPECTRUM OF 
THE DISORDERED CRYSTAL 

Langer has calculated the vibration spectrum of a dis­
ordered linear chain, #(co), from 

2w 1 
g (w) = — lim lim — Im TrZ) (a>2+ie), (8) 

7T €-*° *-*» 3N 

where D(o)2) is the inverse of the secular matrix of the 
disordered chain, by a perturbation theory in orders of 
the concentration, q, of impurities of mass M' , less 
than M, the mass of the host atoms. To first order in q, 
a diagonal element of D is, for the simple cubic crystal, 

5k=[«k
2-o)2+Gk<1>(««)]-1 , (9) 

where oik2 is an eigenvalue of the unperturbed secular 
matrix of the simple cubic crystal, with nearest neighbor 
forces and force constants, yy, 

W k 

3 2 7 i / 

E — ( l -
y-i M\ 

2vKA 
cos I, 

(Kj= - W \ -hN^+1, • • . , |i\p/»), (10) 

Gk
(1V) = 

qncc^ 

l+{m2/M) I k ^ W k , 2 - ^ ) - 1 
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K = 1 > 0 . (11) 

M 

Substituting (10) into the sum over the unperturbed 
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FIG. 1. LM spectrum for a dis­
ordered simple cubic crystal, with pa­
rameters K = 0 . 4 , (7=0.01, ot=l . For 
-ho3M, the Mossbauer effect fitted Debye 
energy for Fe67of 4.22X 10~2 eV is used. 
The dashed rectangle is the approxi­
mation employed in Sec. IV. 

4.286 4.295 4.305 4.315 4.325 4.335 4.340 *ho» (I0~2 eV) 

spectrum and passing to an integral as N —•> <*>, 

1 

3N k' 

Mi 1 

2717T3 (2+a)/3— cos&i'—cos&2'—a cos&3' 

(12) 

For values of oo greater than the maximum frequency of 
the perfect simple cubic crystal, the expression in the 
brackets is tabulated as 1(0,0,0;a;£), where y = 
yi=y2j(x=ys/y the ratio of central to noncentral 
force constants, /3= 2OO2/COM2— 1 and coM is the maximum 
unperturbed frequency. Thus, 

and 

Dk(co2+ie) 

where 

qKco^f 

l - (fcco2M/27) / (0,0,0;a; /3) 

P 

CC>0)M (13) 

f\?—pp—i* U>M' 

l-KMo)2I/2y 

C0\f 0T 

A2 = — , / 2 = — , (14) 
C0M

2 

l-KMco2I/2y+qK 
CO>COM. (15) 

To evaluate the trace of D, the squared frequency 
function for the perfect cubic crystal, G(oo2), is used to 
convert the sum to an integral. 

1 
•TrD(co2+ie)--

r1 pG(coM
2h2) 

Jo A2-fp2~i 
dh2. (16) 

3N Jo A2~fp2~ie 

The imaginary part is just, irpG(to2p), and 

C0Mg(0)) = 2fpC0M2G(c0M
2fp2), C0>C0M- (17) 

Referring to the table2 for / and to a graphical represen­

tation9 of ooM2G(coM2f2p),a=l, we find the spectrum 
shown in Fig. 1, for #=0.01, K = 0 . 4 . The dashed 
figure was chosen to have almost the same area as the 
calculated spectrum, but is broadened to underestimate 
the cross section that will result from its use in the next 
section. The lower edge of the pulse coincides with the 
lowest frequency of the spectrum, which is the L M fre­
quency found by Montroll for the case of the single 
light defect. 

IV. ABSORPTION IN THE REGION OF THE 
LM SPECTRUM 

The normalized spectrum found in the last part is 
taken to be a rectangular pulse of height 1/COM over the 
interval (001,002). This is done to make the integration 
below simple. The probability that an absorbing nucleus 
has its LM in the interval (co, co+dco) is 

P(oo)dco = gdco 
"2 dco 

gdoo = —, 
„ Aco 

Aoo = co2—coi. ( 18 ) 

The cross section for absorption of a photon of energy 
Eo+S in the region of the LM spectrum is just the 
integral 

W(S,0)= / Wo(Sfl)P(a>o)da0. (19) 

W(S,0) = e-D°2W(S,0) 

iDQ
2e~D«2 o-oT r 

exp 
Mco 4 

i»S-\n\-+g 
2 . 

X C—T-) dfi+O(D0"). (20) 

The first term is the absorption cross section for proc-

9 E. W. Montroll, Am. Math. Monthly 61, 46 (1954). 
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esses other than LM excitation. The second term repre­
sents processes in which only one LM can be excited. 
Higher orders permit the excitation of more than one 
for a given frequency in the LM band, and are negli­
gible at T=0. The cross section for an £=4.3X10~2 eV 
photon is calculated in Appendix III for LM excitation 
and continuum excitation. 

V. SUMMARY 

The LM spectrum of the disordered simple cubic 
crystal was related in Eq. (17), to the squared fre­
quency distribution of the perfect crystal, the function 
p(u2) determining the shape of the spectrum. From (8) 
and (16) the width of this spectrum is determined 
since (16) can have an imaginary part only when f2p 
lies between 0 and 1. The lower bound is the Montroll 
localized mode frequency, /o, and the upper end of the 
band is reached when/2^= 1, because of the dependence 
upon the squared frequency distribution. From (15) 
one can see that the band narrows down to /o as the 
concentration q is reduced or as the mass parameter K 
approaches its least permitted value for which a LM 
can appear.2 The value K—OA was chosen to make 
reasonable the appearance of such modes in a real 
crystal. The resulting band has a width at half-maxi­
mum10 of 10-4 eV. 

Although the absorption cross section for LM ex­
citation in the case of a single absorbing light impurity 
is large, about4 104b, the widening of the vibrational 
line produced by concentrations of such nuclei, reduces 
the cross section to the order of a barn. Diluting the 
concentration as a means of narrowing the bandwidth 
would probably not increase the cross section, because 
the anharmonic attenuation of the LM's produces a 
comparable widening of the band, 10~4 or 10~~3 eV.5 The 
ratio of LM band excited absorption to continuum ex­
cited absorption is 103, neglecting the anharmonic 
widening of the LM states. Even without phonon inter­
actions, the background of atomic absorption, 103 b, 
prevents the use of absorbers of sufficient thickness for 
a detectable dip in the transmission through them. A 
1 mm absorber reduces by 1/e of its initial value, the 
intensity of transmitted 14.4 keV photons. The ab­
sorber, assumed to have a concentration of 1020 Fe57 

nuclei, in a host crystal of atomic mass, ^95 , has an 
LM cross section of 0.36 b, which causes only a 0.01% 
dip in the transmitted intensity. 
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APPENDIX I 

The LM contribution to the displacement is 

(M-M')a>oa ( ft \1/2 

Woa(R) = eo<W*(0) §(»)( — ) 
£ Yx \2COO/ 

X (ao+ao*), (21) 

where R is the lattice vector; €oa, the a component of 
the LM polarization and S(R) is the Montroll Green's 
function. The normality of the transformation to normal 
coordinates requires 

i 6 M ^ 0
a ( 0 ) ] v { s 2 ( 0 ) + E — S2(R)]=i. (22) 

For /c=0.4, /0
4= 1.063 and with a= 1 

S2(R)=(9/4)/«(R;l;/30). (23) 

Since fAI is a decreasing function of / in the LM band, 
/o is chosen to calculate ^oa(0). The band is sufficiently 
narrow to permit the use of Uoa(0), underestimated in 
this manner, for all the LM frequencies. The sum in 
(22) is found from the Green's function tables for 
|R| < \ /14 and from an asymptotic expression when 
|R |>V /14: 

u0
<x(0)^0.69/x/M\ 

Because /o satisfies 4/c/o2S(0)= 1, we may write 

9(R)/ ft V'2 

uQ«(R) = 60«(0.69) ( ) (ao+Off). (24) 
S(0)\2AfW 

The amplitude of the LM is of order 1, whereas that of 
a propagating mode is of order l/\/N. From the esti­
mate above of u0

a(0), we find for ZV,W=[>o a(0)]2 

X(p2/6M/ftco0) = 7X10-3 for the 14.4-keV photons of 
Fe57 in an isotropic crystal. 

APPENDIX II 

Let 
v 10>=expftJPofco+aot)] 10). (25) 

Since [a0,ao t]=l, the identity,11
 e

x+y=e-^x^ex-ey, 
where the commutator [_%,y~} is a c number, may be 
used to factor (25); 

v | 0) = e-Wl2)eiDoa1feiDoaQ | Q)# (26) 

Expanding the last factor on the right, we have 

V|0>=6r^O>/2^Doaot|0>, (27) 

11H. F. Baker, Proc. Math. Soc. (London) 3, 24 (1905); F. 
Hausdorff, Die Symbolische Exponentialformel in Gruppentheorie, 
Berichte der Saechsischen Akadetnie der Wissenschaften (Math. 
Phys. KL, Leipzig, 1906), Vol. 58, pp. 19-48 (1906). 
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S 5(fia>D)2 

oo (iDoY 
v\0) = e~

D^2 £ — y / r ! | r). 
X i cos x-

l L 1 
r=o r! 

T h e expectat ion va lue becomes 

(01 v+e~ifiho>oa^aov 10) 

oo (i)r(-i)sDor+s 

= e-w y ; e-^^islr) (28) 
r,*=0 (H*!)1 '2 

and by the orthonormality of the phonon states the 
expectation value simplifies to 

xT 8(fkMD¥ 

-(x cosx— sinx) \\dx ])< 
r° ( r xv 

+B exp 
Jo ( L 2fio)D 

(x sinx+cos#— 1) \\ 

(31) 

X \ sin x\ ) (x cosx— sinx) 
I L \ fio)D I x2 J 

K S-flO)!\ 
)-

flO)D ' 

fS—fio)i\ 5(&co2>)2 ~\)dx 
+sin | x[ —; )H (x cosx—sinx) f—. 

Choosing the value <S=4.30X10"2 eV, halfway be-
(29) tween coi and W2, we may approximate W(Efl) by 

dividing the range of integration into two intervals, 
(0,0.1) and (0.1, oo). In the first interval the trigo­
nometric contributions to the exponential factor and to 
the cosine and sine factors may be expanded. In the 
second interval Laplace transforms are used to 
advantage. 

The function gQifl) in (20) is obtained by using a The integral whose coefiicient is A in (31), gives the 
Debye spectrum to pass from the spectral sum, shown contribution to W from absorption without LM ex-
in Eq. (3), to an integral. citation. I ts value is determined in the first range of 

integration (32). Absorption by means of LM excita-
3R'(1 —K) t ion is measured b y the integral wi th coefficient B, 

gD(vfi)=—-——— which is de termined in the second in terval (0 .1 , <x>) b y 
a Laplace t ransform. 

r=o r! 

( )o ,o=^~ j D ° 2 exp[Z)o 2 ^ M a ' 0 ] . 

APPENDIX III 

&a>Dy 

•]. (30) ^i~(i.04) r ° J co$(0.993)xdx 

R'=P2/2M' = 0.19X10-2 eV for Fe57. A Debye tem­
perature of 490°K (4.22X10~2 eV), as determined by 
the Mossbauer effect is chosen. For convenience call 

3 £ ' ( 1 - K ) 
5 = ~45.4, 

/.O.l ,.0.1 

A = -

(faDy 

<r0T 
BLT 

x2 cos(0.993)xdx- / cos(1.02)aafo I 

^7 .72X10- 2 [4X10- 3 ]«0 .31 mb, (32) 

2 sin (0.0024)* I 

2fioor> 

ao'T 

e x p [ - W - 6 ( f e i > ) 2 / 2 ] « 7 . 7 2 X l O - 2 , 

B=-
2ftAa> 

F r o m (20) 

W(Sfi) 

Do2 e x p [ - Z > o 2 - 5 ( f e j D ) 2 / 2 ] « 1 . 1 4 X l O - 1 . 

s=5.4XlO 8 

« 1 . 1 4 X 1 0 - V « 0 . 3 6 b . (33) 

The ratio of LM absorption to continuum absorption 
is, therefore, about 103, at T=0. 

Altering V to include the anharmonic width of the 
LM phonons, we find from (33), for r ' = 10~4 eV, 

T' _ f2sin(0.0024)x 
*' = , WLM = B L T 

2flO)D X 

*0.125b, 

r 0 0 / f xY b(fio>D)2 1 \ 
= A / ( exp] 1 (x s inx+cosx—1) [ ) 

Jo \ I 2fcoD x2 1 / 
and 

Tf L M/TF C ONT«4Xl0 2 . 


