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A Green function method has been used to investigate antiferromagnetic ordering in a layer structure. 
Taking a lattice with an in-plane ferromagnetic exchange interaction and a between-plane antiferromagnetic 
interaction, the method is used to consider a Hamiltonian which there is reason to believe is applicable to 
the 'metamagnetic' salts C0CI2 and NiCl2 and which includes a uniaxial anisotropy. It is shown that the 
Green function techniques are well able to deal with Hamiltonians of this more complex type, and an ex
pression is derived for the sublattice magnetization as a function of temperature. In particular, the anti
ferromagnetic transition temperature is calculated as a function of the exchange parameters. In the follow
ing paper these results are used to assist in the calculation of the actual exchange interactions which are 
present in C0CI2 and NiCl2. 

1. INTRODUCTION 

IN the paper which follows the present one (we shall 
refer to it as paper B), we consider the magnetic 

properties of the metamagnetic substances C0CI2 and 
N1CI2. These salts have the CdCk crystal structure, in 
which the cations are arranged in hexagonal layers, and 
they become antiferromagnetically ordered at low 
temperatures. The order is one in which the hexagonal 
layers are ferromagnetic with alternate layers oriented 
in opposite directions. In both salts the preferred 
direction of ordering is contained in the hexagonal 
layers. The magnetic properties of these salts indicate 
that there exists a strong intraplane ferromagnetic 
exchange interaction J\ together with a much weaker 
interplane antiferromagnetic exchange 72. In paper B 
we examine, in some detail, the origin of anisotropy in 
the salts; and we find, to a reasonable approximation, 
that the exchange Hamiltonian may be written 

nn 

+ E USi-Si-D&jSj,-}, (1.1) 
nnn 

where ]£nnGCnnn) is the summation over all pairs of 
spins Si and Sj which are nearest neighbors (next-
nearest neighbors), where x is the hexagonal (c0) axis, 
where D\ and D2 are positive anisotropy parameters, 
and where the 'effective' spin quantum number is \ 
for the cobalt salt and 1 for the nickel salt. We also 
find that we are able to estimate the magnitudes of both 
isotropic and anisotropic exchange parameters provided 
only that we can obtain, by some approximate method, 
a theoretical expression for the antiferromagnetic 
transition temperature TV in terms of the exchange 
parameters. Finding a suitable approximate method is 
not, however, a simple matter since most of the well-
tried methods are unable to deal with a Hamiltonian 
as complex as (1.1) in a simple way. The molecular field 
theory may, of course, be applied and quickly gives 

kTN=UziJi+Z2J2)S(S+l), (1.2) 

where %\ and 22 are the number of nearest and next-
nearest neighbor spins, respectively, for the salts in 
question Si=s2=6. We note that in the molecular field 
approximation the Neel temperature is independent of 
the anisotropy. 

It is well known, however, that the molecular field 
theory is at best only semiquantitative giving values for 
transition temperatures which are too high. Moreover, 
for the present case we should expect it to be particu
larly poor since we are concerned primarily with the 
problem of weakly interacting layers of spins and it is 
known from spin-wave theory1 that for the case of 
isolated two-dimensional arrays no long-range order 
is possible at nonzero temperatures, whereas the 
molecular field theory predicts a finite transition 
temperature for this case [see (1.2) with /2=0] . 

The use of a cluster theory such as the Bethe-Peierls 
method2-3 is extremely difficult for Heisenberg-type 
Hamiltonians with more than one exchange parameter 
even excluding anisotropy, so that it is not convenient 
to attempt such an approximation with a Hamiltonian 
as complex as (1.1). Similar difficulties would also be 
encountered in a high-temperature expansion method, 
and moreover, such approximations are not suited for 
the calculation of antiferromagnetic transition tem
peratures (see for example Brown and Luttinger4). 
Spin-wave theories, on the other hand, are well suited 
to deal with the more complex Hamiltonians,5 but 
since they are only valid for temperatures well below 
TN it is difficult to draw from them more than quali
tative conclusions concerning the value of the transition 
temperature. 

Recently, the cooperative problems in magnetism 
have been attacked by making use of the properties 
of the double-time temperature-dependent Green 
functions.6-10 In particular, Tahir-Kheli and ter Haar11 

1 J. Van Kranendonk and J. H. Van Vleck, Rev. Mod. Phys. 30, 
1 (1958). 

2 P. R. Weiss, Phys. Rev. 74, 1493 (1948). 
3 Yin-Yuan Li, Phys. Rev. 84, 721 (1951). 
4 H. A. Brown and J. M. Luttinger, Phys. Rev. 100, 685 (1955). 
6 D. ter Haar and M. E. Lines, Trans. Roy. Soc. (London) 

A255, 1 (1962). 
6 N. N. Bogolyubov and S. V. Tyablikov, Dokl. Akad. Nauk 

SSSR 1, 53 (1959) [translation: Soviet Phys.—Doklady 4, 589 
(1959)]. 

7 K. Kawasaki and H. Mori, Progr. Theoret. Phys. (Kyoto) 25, 
1045 (1961). 

8 N. A. Potapkov and S. V. Tyablikov, Fiz. Tverd. Tela 2, 2733 
(1960) [translation: Soviet Phys.—Solid State 2, 2433 (1961)]. 

9 B. G. S. Doman and D. ter Haar, Phys. Letters 2, 15 (1962). 
10 D. ter Haar, in Fluctuation, Relaxation and Resonance in 

Magnetic Systems (Oliver and Boyd, Edinburgh, 1962), p. 119. 
11 R. A Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 and 

95 (1962). 
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have used this method to investigate the properties of 
the Heisenberg ferromagnet extending the work of 
Bogolyubov and Tyablikov6 to higher spin values. They 
find that a formula may be obtained which is valid over 
the whole temperature range and which is in reasonable 
agreement both at low temperatures with spin-wave 
theory, and at high temperatures with the results of 
high-temperature expansion methods. The method of 
Green functions has also been applied to the Heisenberg 
antiferromagnet, though only for the case of spin half, 
by Fu-Cho Pu,12 who also finds that the method gives 
reasonable results. In the above papers, however, the 
calculations have been performed with only the simplest 
of Heisenberg Hamiltonians. We shall show in the 
present paper that the method is well able to cope both 
with more remote exchange interactions and with 
anisotropy. 

In this paper we shall use the Green function method 
to treat the Hamiltonian (1.1). Since the low-tempera
ture results of Green function methods show reasonable 
agreement with spin-wave approximations we may 
anticipate a theoretical value for TN which goes to 
zero as J 2 —•» 0, at least for the isotropic case. 

2. THE THEORY 

The double-time temperature-dependent Green func
tions have been discussed in detail by Zubarev13 and by 

Bonch-Bruevich and Tyablikov.14 For the present 
work we shall need only one or two of the relations 
concerning them and we shall write these down without 
discussion, referring the reader to the paper by Zubarev13 

for their derivation. If we denote the Fourier transform 
of the Green function involving the Heisenberg 
operators A(t) and B(t') by ((A(t); B(t'))) then it 
satisfies the equation of motion 

E((A (0; B(t')))= (1/2*)<£A (OMOl-) 
(2.1) 

where the double-pointed brackets indicate Fourier 
transforms of the Green functions, where the single-
pointed brackets indicate averages over a canonical 
ensemble 

<..->=Tr[exp(-5e/Ar)«- • ] / 
Tr[exp(- •ae/j&r)], (2.2) 

and where [A,B~]- is the comutator (AB—BA). We 
work throughout with a system of units in which ft= 1. 
From the analytical properties of the Green functions, 
through the intermediary of spectral functions, the 
correlation functions (B(t')A(t)) and (A(t)B(f)) may 
be shown to be 

(B(t')A(t)}-

(A(t)B(t'))= \im 

-a 

im i I 
-H-o / 

{{A (Q; B (f)))B-+u- ((A Q); B ( * Q ) W 

eo>/kT_ I 

((A (Q -.Bim^+u-dA (!); B{t')))B^it 

1 —p-o>lkT 

-e~iu)(t-l,)dco, 

•e-wtt-t^doL 

(2.3) 

(2.4) 

In the present work we shall investigate the motion of the functions {{Sgx\ f(Sh))) and ((Sgy; f(Sh))), where 
Sgx, Sgy refer to the x, y components of spin on a lattice site g at time ty where f(Sh) means any function of Shx, 
Shy, ShZ where these operators refer to spin components on a site h at time t', and where we have defined an orthog
onal coordinate system x, y, z, in which x is the hexagonal (c0) axis and z is the direction of spin alignment in the 
ordered state. We note that (1.1) does not fix absolutely the direction of z but simply constrains it to be in the CQ 
plane. We shall be interested only in the case /—tf —> 0 (the retarded and advanced Green functions are not defined 
for the case /= / ' although the correlation functions, of course, are). 

Using the Hamiltonian (1.1) together with the familiar commutation relationships for the components of spin, 
we may write down the equations of motion for these two Fourier transforms. They are [compare (2.1)] 

E({Sgx; f(Sh))) = —<Fx)+i«(E ' / » - E i Ji)(SgsSjy-S9ySjs); /(5»)», (2.5) 

E((Sgy; / ( 5 » ) » = — CF2>+*«(E>'/i-E' Ji)(SexSi 
2TT

 n n n n n 
SM; /(5»)»+*'«(Z:'Dt-X*DdSBtS„i /(5*)», (2.6) 

where Enn'"(E J) means that j is to be summed over all nearest (next-nearest) neighbors of g, and where 

^ i = D W ( ^ ) ] - , and F2=[SgV9f(Sg)J-. (2.7) 
12 Fu-Cho Pu, Dokl. Akad. Nauk SSSR 130, 1244 (1960); ibid. 131, 546 (1960) [translation: Soviet Phys.—Doklady 5, 128 and 

321 (I960)]. 
13 D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [translation: Soviet Phys.—Usp. 3, 320 (I960)]. 
14 V. L. Bonch-Bruevich and S. V. Tyablikov, The Green Function Method in Statistical Mechanics (North-Holland Publishing 

Company, Amsterdam, 1961). 
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In an exactly similar way we could generate equations of motion for the more complex Green function transforms 
which appear on the right-hand side of (2.5) and (2.6). These equations in turn would involve more complex 
functions still. We, therefore, need to decouple this set of equations and, following Tahir-Kheli and ter Haar,11 

we do so at the first stage. We write 

«S„S/.; /(•&)»= <S*>«SW; /(£*)», 

«S,A„;/(S4)»=<5..X<SW(S0», 8 3 

and similar equations for the functions containing x components of spin. In this way we find 

E({Sgx; f(Sh)))=—(F1)+i(Z' J2-Z
i /i)[<S„>«S„; /(5*)»-<5y.)«5w ; /(£»)»], (2.9) 

2ir n n n n n 

Sgh 

E((Sgv; / ( S * ) » = — < i W ( E ' / . - £ ' JdZ<Si,X(Sa,;f(Sk))y\-i{Zi ( / * - 2 > . ) - £ ' (Ji-Dfi 
1lT nnn. nn nnn nn 

X[<5a,>«5yx;/(5»)»]. (2.10) 

In the antiferromagnetic state the spins align ferro- N/2 points in the first Brillouin zone of the reciprocal 
magnetically within the hexagonal layers, but adjacent lattice (or sublattice). 
layers are aligned in opposite directions. We are, Noting that the Kronecker delta may be written 
therefore, led to introduce two sublattices into the 2 
problem, the 'up' sublattice and the 'down' sublattice. 5 &=-—£ eiK.(g-h) Q 15) 
In this way we are able to distinguish four different N K 
Green function transforms. Using the translational 
invariance of the lattice we can Fourier transform our a n d writing the average value of Sz on an 'up' site as S 
Green functions with respect to the reciprocal lattice a n d o n a < d o wn' s i t e a s - 5 , we may rewrite the 
when we may define the functions GiK ( i= l , 2, 3, 4) equations of motion (2.9) and (2.10) in terms of GiK. 
as follows: They are 

(a) when g and h, whose sites we represent by position EGIK= (l/2ir)(Fi)+iS(\G4K+iJ<G3K), (2.16) 
vectors g and h, are both on the same sublattice „„ o/\^ 1 ̂  \ ,* *»\ 

£tr 2 K= — 0(\(jrsjn-t-fl(jr4K), (2.17) 

<<S..;fM))=?-XGh*"-<**>i EG^(l/2,)(Fi)-iSl(X-P2)G^ 
N K +(M+PI)O :IKJ, (2.18) 

G i K = E « ^ , ; / ( 5 0 » ^ K - ( i - h ) ; (2.11) EG4K=iSl(\-p2)G1K+(fi+Pl)G2K]y (2.19) 

where we have considered Sh to be on the 'up' sub-
( ( 5 „ ; / W = - E W M H » ; ^ t i c e ; ^ d where 

^ K X= £ / * « • » , (2.20) 
nnn 

G « = S « 5 „ ; / ( 5 » ) » « r « - ( ^ ) ; (2.12) 
o-A M=Zi/i+z2 /2-E/ie t K : '1 , (2.21) 

nn 
(b) when g and h are on different sublattices Pi=Z) DieiK'\ (2.22) 

nn 

2 
«S..; / ( 5 » ) » = - £ G2Ke«-^-h>; P 2= £ £>2^

K-', (2.23) 
TV K nnn 

G 2 K = E «5^;/(5A)»er«-Ce-ii). (2.13) where 1 is the vector joining nearest or next-nearest 
o-h neighbors over which is summed. 

2 Solving Eqs. (2.16) to (2.19) for G1K we find 
«W«»=-Sft.«*-»; <Pi)+iMPt) {Pi)_iMFi) 

G 4 K = E « ^ ; / ( ^ ) » e - i K - ( g - h ) ; (2-14) E-EI E+E1 
Q—h 

where N is the total number of spins in the lattice, and _) 1 I __|_ _ (2.24) 
where K is a reciprocal lattice vector and runs over E—E2 E+E2 
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where £ t 2 = (<S)2(M+A) (M-A+P1+P2), 

»+\ n - \ - E 2 2 = ( S ) 2 ( M - X ) ( M + X + P I - P 2 ) . 
Af= , A2*= , (2.25) 

M—X+P1+P2 M+X+Pi—P2 From Eqs. (2.3) and (2.11) we have 

(2.26) 

( / ( S ^ H - l i m E ; / - ««•<*-»&>, (2.27) 
N*-*+0 K 7 ^ e*/*T_l 

and using the fact that 
r 1 1 -

\=-2wi8(oi-EK) (2.28) 
r x 1 

lim 
6"H~° Lco+ie—£K «—*€-

o+ie—-EK o)—ie—EK-

together with (2.24), we obtain, for the case where g and h are on the same 'up' sublattice 

1 
(f(Sh)Sgx)=— E ( W D 4 i coth(E1/2kT)+A2 coth(E2/2kT)^-2(F1)}eiK-^-hK (2.29) 

2N K 

For the case g= h it, therefore, follows that 

1 
(f(Sg)Sgx)=— E { ^ 2 ) [ ^ i coth(Ei/2kT)+A* co th(£a/2*r) ] -2<Fi>}. (2.30) 

2N K 

In a similar manner, solving the equations of motion for G2K, GZK, and G4K we may derive the relations 

1 
(f(Sg)Sgy)=— E { - W D * f * coth(E1/2ftr)+-42""1 c o t h ( V 2 * r ) ] - 2 < F 8 » . (2.31) 

2N K 

and, for g and & on different sublattices, 

1 

(f(sh)sgx)=—E {«D*2 coth(E2/2^r)-^! coth^^r) ]^-^-^}, (2.32) 
27V K 

1 
<f(sh)soy)=—E { W C ^ r 1 coth(E2/2^r)-^r1 coth(Ei/2*r)>* •<*-*>>. (2.33) 

2iV K Using Eq. (2.4) in place of (2.3) in the above analysis Brillouin zone of the reciprocal lattice. We shall write 
we may also deduce expressions for (Sgxf(Sg)) and for brevity 
(Sgyf(Sa)). We find that the former is obtained from (AX coth(E1/2kT)+A2 coth(E2/2kT))K=P, (2.37) 
(2.30) by replacing (Fi) by ~(Fi), and the latter from , 
(2.31) by replacing (F2) by - (F2). For g^h we can, of a n c l 

course, reverse the order of the operators in the ensemble (Ar1 coth(E1/2kT)+A2~
1 coth(E2/2kT))K=Q. (2.38) 

average since they will commute. ^ ^ ^ ^ s i n c e 5 . ' + S , » + S . « = S ( S + l ) , we 
We may now choose specific functions to insert into , 

the theory in place of f(S). Putting f(S) = Sx we have, / C 2 \ _ cfc_i_n f<S/A.\fP-L.rn O W> 
from (2.7), </?x>=0 and (F,)=-i8. Similarly, putting ^ J - H - M - i ; WV^W- V-^) 
f(S) = Sv gives (F1)=iS, (F 2 )=0 . I t follows from Since for the case of spin half SJt= \, it follows that 

(2.30), (2.31) that 8=2/(P+Q). ( S = J ) . (2.40) 

(Sx
2)=(B/4:)(Aicoth(E1/2kT) _ , . , , , . , , .. 

. / 0 , ,x For higher values of spin we may proceed as follows. 
+^ 2 coth( J E 2 /2^T)) K , (2.34) g i n c e ^^Qs^+l)-^2-^2] , i t follows that 

<S„»>= (S/4)<4r» co th(E, /2*r ) <5 ,»>=SS(5+1) -<5A*>-<SA»>. (2.41) 
+ ^ 2 - 1 c o t h ( E 2 / 2 £ r ) ) K , (2.35) N 

The last two terms may be calculated from (2.30), 
(S*Sy-SySx)=iS, (2.36) (2.31) by putting f(S) equal in turn to SZSX and S,Sy. 

where (• • • )K indicates an average for values of K e n 

running over the N/2 allowed values in the first (SZSX
2)= &L*S(S+ 1 ) P + 4 S - 2 8 I » - 8 P Q L \ (2-42) 
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FIG. 1. The unit cell and basic vectors for the cations 
in the C0ICI2 crystal structure. 

(S zSy
2)=^[4S(S+1)0+45- 2SQ*-SPQ1, (2.43) 

and, therefore, from (2.41) 

(Ss*)=l\:S(S+l)(8S-2P-2Q) 
-4S+S(P2+Q2+PQn (2.44) 

For spin one, however, (Sz— 1)SZ(SZ+1) = 0 and, 
therefore, 

S=4(P+Q)/(4+P2+Q2+PQ). (5=1). (2.45) 

Since we are here primarily interested in the salts 
C0CI2 and N1CI2 with spins half and one, respectively, 
we have already generated the results which will be of 
use in paper B. We could, however, proceed to derive 
an expression for S in terms of P and Q for any value of 
spin, although the labor involved rapidly increases. 
In this paper we have gone only as far as spin f for 
which we find 

V=S((1/A1E1)+(1/A2E2))K 

= ( 1 / ( M - X ) + 1 / ( M + X ) ) K . (3.5) 

In a similar manner we find for the higher spin values 

kTN=2(U+V)/(U2+UV+V2) (S=l) (3.6) 

kTN=(15U*+10UV+15V2)/±tU*+V*+UV(U+V)'] 
(5=f). (3.7) 

In order to evaluate U and V we must now consider 
the magnetic lattice of C0CI2 (or NiCl2) specifically. 
The unit cell of this structure is a rhombohedron (see 
Fig. 1). It is essentially a face-centered-cubic lattice 
which has been drawn out along a body diagonal. We 
shall describe the lattice by the basic vectors i, j , k, and 
we shall assume that our crystal has dimensions D 
measured in lattice spacings along the basic vectors. 
The allowed values of the reciprocal lattice vector are 
then, using periodic boundary conditions, 

K = (27r/L)(^ibi+^2b2+^3b3), (3.8) 

where w» are integers —^L^Ui<\L and where b^ are 
vectors reciprocal to i, j , k. If we define 

32+5(3P2+3<22+2P0 

' 16(P+Q)+2[i»+0»+PG(P+Q)]' 

it follows that 
Ki= 2irfi{/L} (3.9) 

( 5 = | ) . (2.46) E eiK-l=2Zcos(K1-K2)+cos(K2-Kz) 

In order to derive this expression it is necessary to 
calculate (Sx

2Sy
2) and (Sy

2Sx
2) which we do by putting 

f(S) = Sx
2Sy in (2.31) (for the former) and by putting 

f(S) = Sy
2Sx in (2.30) (for the latter). From these 

results we find that 

(Sy'Sx*-SjSv*)=itB(Q-P)(4-PQ). (2.47) 

However, application of the simple spin commutation 
relations quickly shows that Sy

2Sx
2=Sx

2Sy
2 so that we 

have here a demonstration of the kind of error which 
is introduced by the decoupling procedure. 

3. THE ANTIFERROMAGNETIC TRANSITION 
TEMPERATURE 

As the temperature nears TV from below, S becomes 
progressively smaller until, very close to TN, we can 
replace coth(Ei/2kT) by 2kT/Ei ( i= l ,2) . It follows 
that 

2kT{ (A 1/E1)+ 04 2 /£ 2 )>K, (3.1) 

QT^TN=2kT((l/A1E1)+(l/A2E2)U. (3.2) 

Let us first consider the case of spin half. Using (2.40) 
together with (3.1) and (3.2), we find 

where 
kTN=l/(U+V), (3.3) 

U=S((A1/E1)+(A*/E2))K 

= (1/(M-A+PI+P2)+1/(M+X+P 1 -P2))K, (3.4) 

+oos(K,-K01, (3.10) 

E eiK'1=2lcos(K1)+cos(Ki)+cos(Kz)']> (3.11) 
nnn 

where —w^KiKir ( i= l , 2, 3) is the allowed range for 
Ki. Putting cos(Ki)=Ci and $>in(Ki) = Si we may write 

Z eiK'l= (^+^ 2 +^) 2 + (*i+S2+*02-3, (3.12) 
nn 

EeiK-1=2(Cl+c2+C3). (3.13) 
nnn 

Consider any octant of K space in the first Brillouin 
zone. By comparing the contributions to U and V from 
the points (ci,£2,C3) and (— ch —c^ — c%) we see that 

< 1 / 0 X - X + P I + P 2 ) > K = <1/(M+X+/>I-P2)>K, (3.14) 

<1/( /X-X))K=(1/ (M+X))K, (3.15) 

and hence, from (2.20) to (2.23), together with (3.4), 
(3.5), (3.12), and (3.13) 

*7=<2/{6(/i+/2)- C/i-A)[( E cd2+( E ^)2-3] 
i % 

±2(J2-Di)CEa)})K, (3.16) 
i 

F=(2/{6( / 1 +/ 2 ) - / 1 [ (E cd2+(E *.-)2-3] 
i i 

± 2 / 2 ( E A ) } ) K . (3.17) 
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From (3.3), (3.6), and (3.7), we see that TV=0 when 
either U or V diverges, and in such a case we shall 
interpret this as meaning that no long-range order is 
possible for nonzero temperatures. From the above 
expressions for U and V we find that such is the situa
tion for the case when J2=0 when the denominator 
inside the pointed brackets in (3.17) is zero along the 
line (£»£*)2+GC*s*)2==9 and, thus, V diverges 
logarithmically. This is the case of isolated layers of 
spins and we observe that no anisotropy of the form 
Dh D2 can stabilize the order. 

In paper B we show that for C0CI2 the anisotropy 
is such that Di/Ji—D2/J2 [see Eq. (3.8) of paper B] 
and we also find that for N1G2 the anisotropy is very 
small and to a fair approximation may be neglected 
in the calculation for TV. In this paper we shall, 
therefore, compute U and V only for the case 

D1/J1=D2/J2=D/J. (3.18) 

With this restriction we have computed U and V for a 
range of values of / 1 , J2, and D/J using the Oxford 
University Mercury computer. From (3.3), (3.6), and 
(3.7) we have calculated the Neel temperature for 
the cases 5 = § , 5 = 1 , 5 = § , and the results are shown 
graphically as kTN/J\ versus J2/J1 for various values 
of anisotropy D/J in Figs. 2 and 3. Also shown in these 
figures is the molecular field result 

£TV=2( / 1 +/ 2 )5(5+l ) . (3.19) 

We see that the Green function transition temperature 
is always less than the corresponding molecular field 
one, the factor being close to 0.7 in the isotropic case 
except for very small values of /2//i(<0.1) when it 
decreases rapidly to zero as J2/J\ —>0. We also see 
that, whereas the molecular field result is independent 
of D/J, the method of Green functions indicates that 

FIG. 2. The Neel 
temperature plotted 
as a function of the 
exchange parameters 
for the cases, 5 = } 
and 5 = 1 . 

FIG. 3. The N£el 
temperature plotted 
as a function of the 
exchange parameters 
for the case, 5 = f . 

J«A 

the presence of anisotropy will increase TV, a value of 
D/J of 0.1 increasing TV by nearly 10%. Finally, we 
note that the Neel temperatures for spin 1 and spin f 
are very closely, though not exactly (except in the 
isotropic case) equal to 45(5+1)/3 times the equivalent 
spin \ temperatures. 

In closing we may deduce from the general equations 
above, the transition temperatures for the simple 
isotropic Heisenberg ferromagnet and antiferromagnet 
showing that we obtain the results previously derived 
by Tahir-Kheli and ter Haar11 for the former, and by 
Fu-Cho Pu12 for the latter. 

Consider the case where D1 = D2=J2=0. Using 
Eqs. (2.20) to (2.23) and (3.3) to (3.7), we find that 
for this case, which is equivalent to the Heisenberg 
ferromagnet with nearest neighbor isotropic exchange 
interactions only, we obtain 

where 
(kTN) 

ferro 5(5+1)7,73*, 
$ = ( i / ( 2 - S ^ " ) k 

(3.20) 

(3.21) 

where £ runs over all nearest neighbors I, and % is the 
number of nearest neighbors. This is the result obtained 
by Tahir-Kheli and ter Haar11. 

In a similar way, putting Di=D2=Ji=0 gives us the 
result for the simple isotropic Heisenberg antiferro
magnet; it is 

(&TV) 
antiferro S(S+l)zJ2/3% (3.22) 

^ = ( 2 V C ^ 2 - ( E ^ K - 1 ) 2 ] ) K (3.23) 

which for the case of spin half reduces to the result ob
tained by Fu-Cho Pu12 and also by Ginzberg and Fain.15 

where 

15 V. L. Ginzburg and V. M. Fain, Zh. Eksperim. i Teor. Fiz-
39, 1323 (1960) [translation: Soviet Phys.—JETP 12, 923 
(1961)]. 


