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Crystal field theory has been used to examine the origin of magnetic anisotropy in C0CI2 and NiC^. These 
salts are antiferromagnets in which the metal ions form ferromagnetic layers with alternate layers oriented 
in opposite directions. An exchange Hamiltonian is derived for ions in the ground state taking account of a 
ferromagnetic in-layer interaction Ji and an antiferromagnetic between-layer interaction J\, and it is found 
that the anisotropy may be approximately represented by including a single extra parameter. The coopera­
tive problem is then treated by molecular field theory at extremes of high and low temperature, and by 
Green function techniques (using the results of the previous paper) for temperatures near the Neel point. 
Fitting low-temperature experimental results with the theory, the exchange interactions are calculated 
showing, in particular, that the ratio /1 / /2 is large in both salts (11.6 for C0CI2, 13.1 for N iCy . Using these 
estimates the high-temperature susceptibility is derived and a good agreement between experiment and 
theory observed. For C0CI2 the anisotropy is considerable and g values gn = 3.38 and gi=4.84 are estimated. 

1. INTRODUCTION 

THE anhydrous chlorides of iron, cobalt, and nickel 
are members of a class of substances which have 

been widely referred to in the literature as metamag-
netics. Their somewhat unorthodox magnetic properties 
have been investigated experimentally in some detail, 
and we may mention, in particular, the work of Starr, 
Bitter, and Kaufmann1 on powder susceptibility; 
Trapeznikowa and Schubnikow2 on specific heats; and 
more recently, the single-crystal susceptibility measure­
ments of Bizette, Terrier, and Tsai3; and the neutron-
diffraction experiments of Wilkinson, Cable, Wollan, 
and Koehler.4 

For each of these salts the magnetic susceptibility in 
small magnetic fields shows a maximum at a tempera­
ture close to that at which a lambda-type anomaly 
occurs in the specific heat. This kind of magnetic be­
havior suggests the appearance of antiferromagnetic 
ordering for temperatures below the anomaly. The 
salts, however, are conspicuous among antiferromagnets 
in that the low-temperature susceptibility is quite 
markedly field-dependent while the paramagnetic Curie 
temperature @ [obtained by applying the Curie-Weiss 
law x = C/(T— ©) to high-temperature susceptibility 
measurements] is positive. 

All three salts have a crystal structure of the CdCl2 
type (see Wyckoff5) in which the metal ions are ar­
ranged in hexagonal layers, where each layer is sepa­
rated from an adjacent one by two hexagonal layers of 
chlorine anions. As long ago as 1933, Landau6 suggested 
that the magnetic properties could be qualitatively ex­
plained if there were present a strong ferromagnetic 
intralayer interaction together with a much smaller 

1 C. Starr, F. Bitter, and A. R. Kaufmann, Phys. Rev. 58, 977 
(1940). 

2 O. N. Trapeznikowa and L. W. Schubnikow, Physik. Z. 
Sowjetunion 7, 66 (1935). 

3 H . Bizette, C. Terrier and B. Tsai, Compt. Rend. 243, 1295 
(1956). 

4 M. K. Wilkinson, J. W. Cable, E. O. Wollan, and W. C. 
Koehler, Phys. Rev. 113, 497 (1959). 

6 R. W. G. Wyckoff, Crystal Structures (Interscience Publishers 
Inc., New York, 1948). 

6 L . Landau, Physik. Z. Sowjetunion 4, 675 (1933). 

antiferromagnetic interlayer interaction. Thus, in the 
ordered state, this would give rise to ferromagnetically 
ordered layers with the magnetic moments of alternate 
layers oriented in opposite directions. The weakness of 
the antiferromagnetic exchange could account for a 
field dependence of susceptibility in the ordered state, 
and the dominant ferromagnetic exchange would lead 
us to expect a ferromagnetic "internal field" and, thus, 
a positive value of ©. 

To put these ideas on a more rigorous basis, Neel7 

applied the molecular-field theory to the problem, and 
was able to give a semiquantitative explanation of 
many of the magnetic properties. The major difficulties 
which present themselves when one attempts a more 
quantitative theoretical treatment of the problem are 
twofold. Firstly, we must necessarily include two dif­
ferent exchange parameters in order to describe the 
interactions between nearest neighbors (in-plane) and 
between next-nearest neighbors (between-plane). This 
makes any cluster treatment of the problem difficult. 
In addition, however, the magnetic properties indicate 
that the salts are, by no means, isotropic, and that, in 
particular, the anisotropy for FeCl2 and C0CI2 is very 
considerable. This means that before we can attempt 
the cooperative problem, it is necessary to examine the 
microscopic origin of the anisotropy in order to deter­
mine the form of the anisotropic part of the Hamil­
tonian. This has been done for FeCl2 by Kanamori,8 

who concludes that at temperatures near or below its 
Neel point this salt behaves, to a good approximation, 
as an Ising antiferromagnet with the hexagonal axis CQ 
as the preferred direction of spin alignment. Thus, for 
this case, the inclusion of anisotropy provides a relative 
simplification of the problem, and both Yomosa9 and 
Heap10 have used the Bethe-Peierls cluster method to 
attack the Ising problem. They are able to obtain a 
good agreement between theory and experiment if the 
ferromagnetic intralayer exchange, Jh is considerably 
larger than the antiferromagnetic interlayer exchange, 

7 L. Neel, Suppl. Nuovo Cimento 6, 942 (1957). 
8 J. Kanamori, Progr. Theoret. Phys. (Kyoto) 20, 890 (1958). 
9 S. Yomosa, J. Phys. Soc. Japan 15, 1068 (1960). 
10 B. R. Heap, Proc. Phys. Soc. (London) 80, 248 (1962). 
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J2. Heap10 finds that the best fit is obtained when 
/ i / / 2=12.4. 

Kanamori8 also gives a brief outline of the situation 
for C0CI2 and N1Q2. In both these salts he indicates 
that the anisotropy is such that the preferred direction 
of spin alignment is normal to the Co axis. Such a direc­
tion is also indicated by the magnetic-susceptibility 
experiments, and has been confirmed in the case of the 
cobalt salt by neutron-diffraction experiments (Wilkin­
son et a/.4). 

In the present paper we shall make a detailed in­
vestigation of the microscopic origin of the anisotropy 
energy for CoCl2 and NiCl2 (using crystal field theory) 
and in this way we shall find the form of the exchange 
Hamiltonian in each case. The cooperative problem, 
using a Hamiltonian of the derived form, we have 
treated by the method of double-time Green functions 
in the preceding paper. Using the experimental in­
formation which is available concerning low-field, low-
temperature susceptibility and the Neel temperature, 
we find that we are able, by fitting theory to experiment, 
to deduce values for the isotropic and anisotropic ex­
change interactions in the cobalt and nickel salts. Using 
these values, we go on to evaluate the high-temperature 
susceptibility and find good agreement of theory with 
experiment. 

2. CRYSTAL FIELD THEORY, C0CI2 
Using the one-ion approximation and the weak-field 

coupling scheme, we consider a single CO++ ion in the 
crystal field of the rest of the lattice. The crystal struc­
ture is such that the cobalt ion is surrounded by a dis­
torted octahedron of Cl~ ions, in which the distortion is 
a trigonal one (along the Co axis). The lowest orbital 
states of the free Co++ ion (derived from the electronic 
configuration 3d7) are 4P and 4P in that order, the energy 
separation being ~ 14 000 cm-1. No other terms of the 
same symmetry arise from 3d7, and other configurations 
give terms which are energetically far higher so that we 
may neglect them. 

In a cubic crystal field, the 4P state is split into two 
orbital triplets and one orbital singlet, with a triplet 
lowest. If the trigonal c0 axis is chosen to be the axis of 
quantization with wave functions 0W, where mh denotes 
the component of angular momentum in the direction 
of the axis, then the states may be written (see, for 
example, Bleaney and Stevens11) 

Energy Symmetry Wave function 

6A M2 (v2/3)(4>3-<M- (V5/3)*o 
f(l/v2)(03+0-3) 

A 4P2 ^ (1 /V6)0 2 - (V W 6 ) 0 - i 
l(l/V6)0-2+(x/5/V6)0i , (2.1) 
f (2/3)0o- (VV3V2) (03-0-s) 

- 3A *TX ^(V5/V6)02+(l/ \ /6)0-i 
L ( V W 6 ) £ - * - (V\/6)0i 

11B. Bleaney and K. W. H. Stevens, Rept. Progr. Phys. 16, 
107 (1953). 

where we have labeled the states according to their 
symmetry group (see Griffith12) and where A is an 
energy parameter which is positive for C0CI2. The mag­
nitude of A may be obtained by interpreting optical-
resonance data and for C0G2 is in the region 1600 cm"1 

to 1700 cm-1 (Jones13). The free-ion 4P term is not split 
by the cubic field and remains an orbital triplet with 
symmetry group 47\. Since the 4P term and the ground-
orbital triplet have the same symmetry, however, the 
cubic field mixes a little of the former into the ground 
state. 

The result of this 4P admixture is to reduce the 
matrix elements of the orbital angular momentum L 
from the values which would be obtained by using the 
pure 4Pi(4P) wave functions (see, for example, Abragam 
and Pryce14). This reduction, however, will not be an 
isotropic one for C0CI2 since there exists in this salt a 
considerable trigonal distortion which we have not yet 
introduced. A further considerable reduction of L is 
caused by the bonding of the cation orbitals with those 
of neighbor chlorine anions resulting in the distortion 
of the pure d orbitals of 4Pi(4P). This effect has been 
considered in some detail by Tinkham15 who replaces 
L by k\j where the value of k is less than but of order 
unity. In this paper we shall take a factor k to include 
all the reduction thus neglecting any anisotropy intro­
duced by the 4Pi(4P) admixture. We shall, therefore, 
replace L by kL in the matrix elements which will be 
evaluated by taking the ground-orbital state to be 
4Pi(4P). 

Consider this ground-orbital triplet. Let us write 

| - 1 ) = (V5/V6)02+ (l/V6)0-i, 
I 0)= (2/3)0o- (VV3V2) (03-0_3), (2.2) 
| + 1 ) = ( v W 6 ) 0 - 2 - (1/V6)0i. 

We may easily verify that 

<± l |£ , |± l>==Ft , <0|Z.|0> = 0 (2.3) 

and, in fact, we may further show that all the matrix 
elements of L within the above states of 4Pi are exactly 
the same as the matrix elements of — 3L/2 between the 
associated P functions. In group theoretical language 
we refer to the structural isomorphism of 4Pi with 4P 
(Griffith12). 

So far we have included in the calculation only the 
cubic part of the crystal field. We are now in a position 
to introduce the trigonal distortion, together with the 
spin-orbit coupling, as a perturbation within the twelve 
states of the effective P state which we shall label 
I wiL,tris) where the spin S is f. 

The trigonal distortion is defined by its eigenstates 

12 J. S. GrifEth, The Theory of Transition Metal Ions (Cambridge 
University Press, London, 1961). 

13 G. D. Jones (private communication). 
14 A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London) 

A206, 173 (1951). 
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and eigenvalues which we shall write 

<0,«B|F(trig)|0,«s>=28/3, 

( ± l,ms | F(trig) | ±l,ms) = -5/3. 

tonian in the form 

3C=~PXL-S-5 (L , 2 - | ) , (2.5) 

(2.4) 

Including both the spin-orbit coupling and the trigonal 
distortion, we may now write our perturbing Hamil-

where X is the spin-orbit coupling constant and may 
differ from its free-ion value of —180 cm-1. The matrix 
of spin-orbit coupling and trigonal field within the 
ground 4Ti term is, therefore, found by evaluating the 
matrix elements of the Hamiltonian (2.5) within the 
effective P state |wz,,ms). We find, where \'=k\y 

<-l,fl 
(0,11 

<i,-4l 
<o,f| 
<UI 
<i,fl 

1-1,1) 
- |5+(9/4)X' 
- ! (W6)x ' 

0 
0 
0 
0 

|o,l) 
-!(i/V6)x' 

¥ 
- (3/V2)X' 

0 
0 
0 

11,-1) 
0 

- (3/V2)X' 
-|5+fX' 

0 
0 
0 

|o,§> 
0 
0 
0 

p 
- I ( i W 

0 

IU) 
0 
0 
0 

-!(i/V6)x' 
-tf-fX' 

0 

ll,i> 
0 
0 
0 (2.6) 
0 
0 

-§5-(9/4)X' 

the matrix elements for | —m^—wis) being the same 
as those for \niL,nis). The *Ti{AF) state, therefore, 
splits into six Kramers doublets, and we may solve the 
secular equation to give their energies as functions of 
5/X'. The secular equation reduces to three separate 
equations for energy, one linear (Ei), one quadratic 
(EQ), and one cubic (Ec), and we show the solutions 
graphically in Fig. 1. For all values of 5/X' the same Ec 

solution lies lowest and we may write the wave func­
tions for this doublet 

*-i=ci|l,-t>+c»|0,-§>+c,|-l,i>, 
(2.7) 

where the coefficients ci, c2, c3, are determined by the 
value of 8/\' applicable to CoCl2 which we shall esti­
mate later. 

We now introduce an external magnetic field, Ho, and 
examine the resulting shift of the energy levels by 
perturbation theory. We shall consider, in particular, 
the splitting of the lowest Kramers doublet by this 
perturbation operator, which we may write 

|8Ho(-**L+2S), (2.8) 

where 0 is the Bohr magneton. Let us first consider the 
case of Ho parallel to the trigonal axis c0(z). Using per­
turbation theory within the ground Kramers doublet, 
we find energy shifts 

<*±i| (-ikLz+2Ss)\t±1)t3Ho. (2.9) 

If we write this in terms of an effective spin | as 
zk^PguHo, thus defining a g factor for this direction, 
we have, using (2.7) and (2.9), 

g„= (6+3k)c1
2+2c2

2- (3k+2)cz2. (2.10) 

In a similar way, when Ho is perpendicular to CQ} we 
may define a g factor gL which is given by 

g x = ^ ± i | C - t * ( i + + i - ) + 2 ( ^ - + ^ ) ] J ^ = i > , (2.11) 

where L±=LxzkiLy, S±=SxdziSy. It follows that 

gx= W+kJ3cicz-3^kc2cz. (2.12) 

We noted above that the secular equation for the 
ground state was cubic. Following Abragam and 
Pryce,14 we may obtain a parametric solution by intro­
ducing the parameter x, defined by 

Ec= -$/3+fX'(x+3). (2.13) 

l : [V8/ (x+2)] (2.14) 

FIG. 1. The split­
ting of the ground or­
bital triplet *Ti(*F) 
by the spin-orbit 
coupling (A') and the 
trigonal field (5).The 
values of 5/A' which 
occur for Co++ in 
CdCl2 and for Co++ 

in C0CI2 are indi­
cated in the figure. 

It follows that 

Ci:c2:cs= (\/6/x) 
and 

8/\'=%(x+3)-(9/2x)-6/(x+2). (2.15) 

Using (2.10) and (2.12), we may express gu and gL in 
terms of x and k alone. We find 

r\( units] gl= 

(6/x2)(6+3k)+2-[S/(x+2Yll(2+3k) 

(6/x2)+l+8/(x+2)2 

4[l+12/x(x+2)+3V(*+2)] 

(6/x2)+l+S/(x+2)2 

(2.16) 

(2.17) 



M A G N E T I C P R O P E R T I E S O F C o C l 2 A N D N i C l 2 549 

In these results, however, we have neglected the effects 
of spin-orbit coupling in admixing the upper orbital 
levels into the ground-state orbital triplet 4Ti. The 
largest mixing comes from the AT2(

AF) state, and in the 
simple approximation of no trigonal distortion this 
adds to both the g values a term (—15/2)X//A/ where 
A' is the energy separation between the two triplet 
states of AF and has a value ~6600 cm - 1 (Jones13) for 
C0CI2. A more accurate evaluation of the total correc­
tion can be made (see, for example, Abragam and 
Pryce14) provided that one possesses a detailed knowl­
edge of the optical spectrum. With such a correction, 
a measurement of the g values is sufficient to determine 
x and k. 

At the present time, however, we do not possess a 
detailed knowledge of the optical spectrum for C0CI2, 
neither are we aware of a published measurement of the 
g values. (A measurement of the g values for C0CI2 is 
likely to be difficult since the salt becomes antiferro-
magnetic in that region of temperature where the spin-
lattice relaxation time would be most favorable for the 
performance of resonance experiments.) We must, 
therefore, proceed by a less direct method. 

We shall assume the value &=0.9 (compare Tink-
ham15 for Co++ in ZnF2, and Low16 for CO++ in MgO) 
which should be a fair estimate for the effect of bonding 
with the Cl~ anions but which largely neglects the 
(possibly strongly anisotropic) effect of cubic-field 4P 
admixture. The small spin-orbit correction to the g 
values we shall take to be 0.15 for both gu and gx. We 
are left with only one parameter (x) and we shall show 
that we are able to estimate its value in C0CI2 by 
examining the bulk magnetic properties of the salt. 

We may quickly get some idea of the approximate 
magnitude of x by considering the case of Co"1"1" in 
CdCl2 for which we do have experimental information17 

as follows: gn = 3.04, gj.=4.95. Using the above esti­
mates for k and for the spin-orbit correction to the g 
values we may put gu and gx [from (2.16) and (2.17)] 
equal to 2.89 and 4.80, respectively, and deduce that 
for this case #==3.4, giving, from (2.15), 5/A'=2.37 
(see Fig. 1). 

We should expect the value of d/\' for C0CI2 to be 
not too far removed from this value for Co** in CdCU, 
and thus, from Fig. 1, we see that there is likely to be 
an energy gap of at least 1.5X' (which is probably 
~300°K) between the two lowest Kramers doublets. 
For an analysis of the magnetic properties of C0CI2 
near and below its Neel temperature 2V=25°K, we 
may, therefore, safely assume that the ions are pre­
dominantly in the ground state. For an ion in this 
ground state we may, using Eq. (2.7), readily show 
that the matrix elements of Sx, Sy, and Sz are, 

15 M. Tinkham, Proc. Roy. Soc. (London) A236, 549 (1956). 
16 W. Low, Phys. Rev. 109, 256 (1958). 
17 K. Morigaki, J. Phys. Soc. Japan 16, 1639 (1961). 

respectively, 

fa fai fa fai fa ^-1 

fa: 0 q fa: 0 -iq fa: p 0 (2.18) 
fai: q 0 fai: iq 0 fai: 0 — p 

where 
p=W+W~W, (2.19) 
q=ci+rtcicz, (2.20) 

so that we may formally replace the true spin £ = § , 
within the ground doublet, by a spin-half operator, s, 
where 

Sx—2qsx, Sy—2qsy, Sz=2psz. (2.21) 

We may note that for the case of extreme trigonal 
splitting (£2>\0 £2=1, ci=cz=0; # = § , <7=l, and that 
for the case of negligible trigonal field Cx=l/y/2, c2 

= -l/y8,cz=l/V6;P=q=b 

3. THE MAGNETIC PROPERTIES 

Let us now consider the Heisenberg exchange opera­
tor 3 C # = / ' S r Sy. In the ground doublet we may write, 
using (2.21) 

3Ctf == J'Lal fcizSjz+ai2 (SizSjz+ SiySjy) ] (3.1) 

in terms of the spin operator, s, where 

an = 3ci2+C22—Cs2, (3.2) 

a i = 2 c 2
2 + 2 v 3 ^ 3 . (S3) 

For treatment of the cooperative problem it is conven­
ient to single out the preferred direction of antiferro-
magnetic alignment as a z axis, and since, for both 
CoCl2 and N1CI2, this direction is normal to the hex­
agonal Co axis, we shall define a new set of coordinates 
as follows: Let the preferred direction of ordering be z', 
the direction of the Co axis be x\ and let y' be chosen to 
complete the orthogonal set. In this notation we may 
write (3.1) as 

oi^ij^^ J S{* Sy USix'Sjx'y Vv # •*/ 
where 

J=a?J', and D= ( a i *-a , ,*) / ' , (3.5) 
giving 

J ax2 

For CoCl2 we introduce a ferromagnetic exchange / 1 , D± 
between nearest neighbors, together with an antiferro-
magnetic exchange J2, D2 between next-nearest neigh­
bors, assuming that the anisotropy introduced by Di 
and D2 is sufficient to provide a fair representation of 
the total anisotropy of the salt; that is, we assume that 
it far outweighs other sources of anisotropy such as 
the dipole-dipole coupling. 
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In this representation, we write the total exchange 
Hamiltonian 

3 C = S [— Ji8i' 8j+DiSix'Sjx'2-{-
nn 

2 [JWsy—Dtftz'Sjz>l, (3.7) 
nnn 

where we have chosen the signs so that all the pa­
rameters are positive for C0CI2. From (3.6) we see that 
we may write 

(A// i)= (#<//»)= W-«..2)M2, (3.8) 

where au and aL are both functions of x, so that we 
have reduced the problem to the evaluation of three 
unknowns / 1 , J^ and x. In order to obtain estimates 
for these quantities, we shall use the experimental re­
sults for the Neel temperature TN and for the magnetic 
susceptibilities parallel (XH) and perpendicular (Xx) to 
Co at temperatures below TN- We shall use the sus­
ceptibility measurements of Bizette, Terrier, and Tsai.3 

They measure xn and xi from very low temperatures 
up to ^300°K using magnetic fields of several kilo-
gauss. Wilkinson et at* shows that the anisotropy 
within the Co plane [which has been neglected in (3.7)] 
is so small that only a few kilogauss is required, at 
temperatures below TV, to align nearly all spins normal 
to a magnetic field applied in this plane. I t is, thus, 
fairly safe to assume that Bizette's in-plane measurement 
is, like the one made along the CQ direction, a measure­
ment of susceptibility perpendicular to the direction of 
spin alignment. For T<TN Bizette3 finds the sus­
ceptibilities almost independent of temperature with 
values (per mole) of X1=0.4, X,, = 0.06. Theoretically it 
is quite simple to evaluate this susceptibility at tem­
peratures below TN since it is well known (see, for 
example, Ziman18) that the spin-wave theory, which is 
a good approximation at very low temperatures, gives 
for this quantity the same result as the simple molecular-
field theory. We shall, therefore, use the molecular-field 
theory, treating the spin as a classical vector. 

Consider first the magnetic field H0 applied parallel 
to Co. In the absence of the field the spins are aligned 
antiferromagnetically in a direction contained in the CQ 
plane. Since each spin has six parallel nearest neighbors 
and six antiparallel next-nearest neighbors, the total 
exchange energy of the lattice of N spins is 

The equilibrium value of <j> is found by making E—E0 

an extremum, giving 

E0=-3N(J1+J2)S2. (3.9) 

When the field Ho is applied, let all the spins turn 
through a small angle 0 towards the direction of c0. 
(We assume that Ho is small compared with the in­
ternal field.) The energy of the system is now, to second 
order in <t>, 

E=E0-NgumQS<l>+3NS2<l>2(2J2+D1-D2). (3.10) 

<t>=gupHo/(2J2+D1-D2)6S. (3.11) 

But the total magnetization is NS(j>guP and, hence, the 
susceptibility is given by 

X„=iVSn2/J2/6(2/2+Z)i-.D2). (3.12) 

In an exactly similar way we may evaluate the in-plane 
susceptibility and we find 

X^NgW/UJ* (3.13) 

18 J. M. Ziman, Proc. Phys. Soc. (London) A65, 540, 548 (1952). 

In order to obtain a theoretical estimate for TN in 
terms of Jh 72, and D/J we use Fig. 2 of the preceding 
paper (which we shall refer to as paper A) which has 
been obtained by applying the method of double-time 
Green functions to a Hamiltonian of the form (3.7). 
Experimentally TN is found to be close to 25 °K. 

We now consider values of x in the region x^3 since 
we anticipate that the value of x applicable to C0CI2 
will not be far removed from the value (=3.4) which 
was found for C o + + in CdCl2. Choosing a particular 
value (#=3.0, say) we may calculate D/J using Eqs. 
(2.14), (3.2), (3.3), and (3.6). We find that D/J= 0.446. 
But we may also calculate this same quantity using the 
experimental values for X,„ Xx, and TN together with 
the theoretical results of (3.12), (3.13) [where for gu 

and gi we use Eqs. (2.16), (2.17) not forgetting to in­
clude the correction for the second-order spin-orbit 
coupling] and the Green function graph from paper A. 
We find J D / J " = 0 . 4 1 and, therefore, the methods are 
not consistent for this particular value of x. Trying 
other values for x we may again obtain values for D/J 
by these two methods, and we obtain the results shown 
graphically in Fig. 2. We find consistency for a value 
of x close to 2.92. We, therefore, use this value of x for 
C0CI2 and proceed to estimate, 

from (2.16) g„ = 3.23+0.15=3.38 

from (2.17) £j = 4.69+0.15=4.84 

from (2.14) ci:c2:c8= 0.839:-1:0.575 

from (2.15) 8/X'= 1.68 (see Fig. 1) 

from (3.13) / 2 = 1 . 7 9 0 K 

from (3.6) D/J= 0.425 

from (3.12) Z>i=8.82°K 

and, hence, 7i=20.8°K, Z)2=0.76°K, and 7 i / / 2 = 1 1 . 6 . 

4. NiCl2 

We now consider the situation in N1CI2 which, like 
C0CI2, has the CdCl2 crystal structure, and almost 
certainly has the same antiferromagnetic spin pattern 
as the cobalt salt. The task of predicting the exchange 
interactions for this salt is somewhat simpler than was 
the case for C0CI2. This is primarily because, as we shall 
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see below, the Hamiltonian is far less anisotropic in 
this case. 

The free N i + + ion has a ZF term lowest and this 
splits in the cubic field exactly as did the *F state for 
the cobalt salt, except that for nickel the energy pa­
rameter A is negative, which makes the orbital singlet 
term lowest. In this ground-orbital singlet, the mean 
value of orbital angular momentum is zero and the 
value of spin S= 1. The level is, thus, triply degenerate 
and would remain so under the influence of either spin-
orbit coupling alone, or trigonal field alone. Anisotropy 
arises only as a second-order effect though the combined 
effect of spin-orbit coupling and trigonal field within 
the upper states which are linked with the ground state 
in the second-order perturbation. The problem of 
describing the splitting of the ground term for nickel in 
a distorted octahedral environment has been con­
sidered by Stevens.19 For a trigonal distortion, we expect 
the anisotropy to be adequately represented simply by 
a term DSg

2. For N i + + in CdCl2 we have experimental 
information (Orton20) who reports that Z>=1.41 cm -1, 
favoring the c0 plane. For MCI2 itself we should expect 
a very similar result. 

The other main source of anisotropy in NiCl2 is the 
interspin dipole-dipole interaction. This amounts to 
^ 0 . 5 cm_1/spin between the Co axis and the plane 
(Kanamori8) again favoring the plane. Experimentally 
the g value is found to be isotropic21 (g= 2.25±0.02; 
anomalous values reported for T<50°K are probably 
due to the onset of long-range order), and also, no 
anisotropy is detected in susceptibility experiments.3 

This suggests that the anisotropy energy is extremely 
small compared with the isotropic exchange interaction 
energy. We, therefore, neglect it entirely, using the 
Hamiltonian (3.7) but putting Di=D2=

:0. Using the 
experimental results for Neel temperature (50 °K) and 
for the magnetic susceptibility below TV (xn = Xi 
= 0.107) and comparing them with the theoretical 
results of Eq. (3.13) and the isotropic spin 1 curve of 
Fig. 2 in paper A, we obtain estimates for the exchange 
interactions in NiCl2, as follows: 

o.6r 

giving 

7 1 = 1 9 . 0 % 7 2 = 1 . 4 5 % 

/ j / / 2 = 1 3 . 1 . 

Thus, the results obtained in the present paper, to­
gether with the results of the Ising theory for FeCU by 
Heap,10 would seem to suggest that the ratio of ferro­
magnetic to antiferromagnetic exchange is very similar 
in each of the metamagnetics FeCU, C0CI2, and NiCl2. 
The theories give, respectively, J1/J2 equal to 12.4, 
11.6, and 13.1. 

FIG. 2. Curve (i) 
shows the values of 
D/J calculated from 
crystal field theory 
as a function of the 
parameter x of Eq. 
(2.13). Curve (ii) 
shows the same quan 
tity calculated from 
the bulk magnetic 
properties of C0CI2. 
The point of inter­
section, giving the 
value of x applicable 
to C0O2, is at x 
= 2.92. 

5. HIGH-TEMPERATURE SUSCEPTIBILITY 

Having made estimates of the dominant exchange in­
teractions in both C0CI2 and NiCU, we may now proceed 
to check these values by calculating the high-tempera­
ture magnetic susceptibility in each case and comparing 
the results with experiment. Since we shall be concerned 
mainly with temperatures many times the transition 
temperature, we shall expect the simple molecular field 
theory to be adequate. We shall first calculate the sus­
ceptibility assuming all ions to be in the same state, a 
state for which we may write a Hamiltonian of the 
form (3.7). This will be an adequate approximation for 
the nickel salt, but will be very poor for C0CI2 for 
temperatures much above 100°K. 

We introduce a magnetic field H0 in a direction r 
making an angle 6 with the CQ axis. In the molecular-
field approximation we may write the Hamiltonian for 
the ith. spin 

3Ci= ( E J2-Z Ji)sir*j+(E Di- E D2) 
nn nnn 

X COS2dstrSj—g8l3HoSir), (5.1) 

nnn nn 

19 K. W. H. Stevens, Proc. Roy. Soc. (London) A214, 237 (1952). 
20 J. W. Orton, Rept. Progr. Phys. 22, 204 (1959). 
21 J. W. Leech and A. J. Manuel, Proc. Phys. Soc. (London) 

B69, 210 (1956). 

where Enn(Ennn) means the sum over all spins Sy which 
are nearest neighbors (next-nearest neighbors) of Si, 
where the §j are now average values in the direction of 
Ho, and where 

g9=gu cos20+gi sin20. (5.2) 

The ith spin is now in an ''effective field" Hi given by 

H^Ho-Vi/gepSir, (5.3) 
where 

Vi= ( E / 2 - E Ji)siA+(Z Di- E Dt) 
nnn nn nn nnn 

XcO&dSirSj. (5.4) 

For temperatures above the Neel point where gefiHiS 
<ZikT (S is the spin quantum number and k Boltzmann's 
constant) the simple theory of paramagnetism for 
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spins Si in a field H, gives 

Si=gepS(S+l)Hi/3kT. 

They are 

(5.5) ^ ± 1 = 0 . 5 9 | T l , ± f > - 0 . 7 0 | 0 , ± | ) + 0 . 4 0 | ± 1 , q=*>, 

^± 2=0.8810, ± f ) - 0 . 4 7 | ± l , ±§>, If we now introduce two sublattices "a" and "b" upon 
which the spins in the ordered state are, respectively, ^ ± 3 =—0.74 |=Fl , ±f)—0.26 |0 , ± | ) + 0 . 6 2 l ± l , =Fj), 
" u p " and "down," we have, from (5.3), (5.4), and (5.5) ^ ± 4 = _ 0 . 3 4 | T l , ± f > - 0 . 6 7 | 0 , ± I > - 0 . 6 7 | ± 1 , =Fj>, 

§«+§;,=-
gtfS(S+l) 

3kT 
2 F 0 

- C / 2 - / 1 + P1--D2) cos20](sa+s6) (5.6) 

from which the total magnetization is given by 

Ngep NgfpS(S+l)H0 

M = (Sa+h)--
3k(T-&) 

(5.7) 

where 

k©=,-2S(S+l)lJ2-Ji+(D1-D2) cos20]. (5.8) 

We may apply this result directly to the case of 
MCI2 putting Di=D2=0. Using the values previously 
obtained for the exchange parameters we find that 
© = 70°K and is independent of the angle 6. The experi­
ments of Bizette3 show that at high temperatures the 
molar susceptibility is isotropic and given by 1.33/ 
( T - 6 7 ) , from which it follows ge=2.25, and © = 67°K. 
The agreement is quite a good one. 

NiCU, thus, provides us with a good example of a 
"simple" metamagnet; simple in the sense that, as far 
as the interpretation of bulk magnetic properties is 
concerned, we may represent its cooperative inter­
actions by isotropic Heisenberg exchange terms alone. 
I t is a point of some interest that for such a ' 'simple" 
metamagnet the molecular field theory does not allow 
values of 0 / T V > l , in conflict with the observed ratio 
for NiCl2 of 1.4. That the present theory is able to 
reproduce this ratio quantitatively follows very simply 
from the fact that the Green function method gives the 
same value for 6 as the molecular-field theory but gives 
a significantly lower ZV. 

Once again we find that CoCl2 presents theoretically 
a rather more difficult problem. In this salt, the energy 
gap between the ground doublet and the next lowest 
level is (see Fig. 1) 1.8X', where X' is probably 
~ —200°K. (Later in the paper we shall estimate X' 
and find a value — 230°K.) In the region of room tem­
perature we shall, therefore, expect significant con­
tributions to the susceptibility from states other than 
the ground one. We shall include in the following calcu­
lation all the six Kramers doublets which arise from the 
state 4TI( 4JP) of the cubic field terms. 

Let us, for the moment, neglect the exchange inter­
action. Using the values for x and 5/X' obtained in Sec. 
3, we may calculate from the secular matrix (2.6) the 
wave functions and energies of the ground six doublets. 

^ ± 5 =0 .47 |0 , ± f > + 0 . 8 8 | ± l , ± i > , 

*±«=|±l,±t>, (5.9) 

with associated energies £ i = 3.88X', E2=2.11X', E 3 

= 1.06X', £ 4 = - 1.93X', £ 5 = -2 .30V, and JS6= -2.81X'. 
Introducing a magnetic field Ho we may calculate the 

new energy levels by perturbation theory using the 
perturbing operator of Eq. (2.8) (where &=0.9). For 
HQ parallel to Z(CQ) we find, for the matrix elements of 
VY,= (—1.35Lg+2S,)pH0, the values (in units of pH0) 

* 1 

^ 2 

^ 3 

^ 4 

^ 5 

^ 6 

1.62 
0 

-2.30 
0.23 
0 
0 

0 
2.25 
0 
0 
1.39 
0 

-2.30 
0 
1.55 
2.24 
0 
0 

0.23 
0 
2.24 

-0.10 
0 
0 

0 
1.39 
0 
0 
0.39 
0 

0 
0 
0 
0 
0 
1.65 

(5.10) 

where the matrix elements for \j/-i are the same as those 
for $i and where all the other matrix elements are zero. 
For Ho perpendicular to z, we find for the matrix ele­
ments of F 1 = [ - 0 . 6 8 ( L + + L - ) + ( 5 + + 5 - ) ] ^ o , the 
values (in units of /3HQ) 

* I ^ 3 ^ 4 * - 5 

* - l 

1^2 

l£-3 
lA-4 

^ 5 

^ - 6 

2.34 
: -2.26 

1.00 
-0.18 

0.46 
0 

-2.26 
0 

-0.47 
-0.41 

0 
-1.66 

1.00 
-0.47 
-1.14 

1.07 
1.43 
0 

-0.18 
-0.41 

1.07 
0.82 

-1.00 
0 

0.46 
0 
1.43 

-1.00 
0 
1.07 

0 
-1.66 

0 
0 
1.07 
0 

(5.11) 

where the matrix elements fif?Val/-idr are the same 
as J*\l/-i*Vi\f/idr and where all other elements are zero. 

In evaluating these elements we have not yet in­
cluded the small correction for the second-order admix­
ture of 4r2(4F) into the 4Ti(4F) term by the spin-orbit 
coupling. For our purpose it will suffice to include the 
correction only in the diagonal elements between the 
states of the ground Kramers doublet, since these ele­
ments produce the dominant contribution to suscepti­
bility in the region of temperature with which we shall 
be concerned. Including this small correction, the 
modified matrix elements are 

/ 
f±1*Vn$±idT= 1.695 and / ^±i*VL\Hidr=2.415. J* 
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The perturbed energy levels, to the second order in Ho, may now be calculated and are 

(a) for Ho parallel to Co 

1.89 

X' 

0.44 
E±2=2.11X'±2.25|8#o+ i82#o2 

y 
0.20 

£ ± 8 = 1.06X'±1.55/3ff0 pHf 
X' 

1.69 
£ ± 4 = - 1.93X'=F0.10/3fl-o W 

X' 
0.44 

£ ± 5 = -2.30A'±0.39/3#o--—<8W 
X' 

£±6=-2.81X'±1.65/?#o 

(b) for HQ perpendicular to c0 

3.28 
E±i= 3.88X'±2.415/3FoH /SW 

X' 

2.07 
£±2=2.11X' PHf 

X' 

0.43 
£ ± 3 = 1.06X'=Fl.l4/3#0H / 3 W 

X' 
2 27 

E±i= -1.93X'±0.82,8Ho+—0W 
X' 

1.10 
£± 6=-2.30X' / 3 W 

X' 

2.81 
£± 6=-2.81X' pHf. 

X' 

(5.12) 

If, in general, we write Ei=Wi+Wi'Ho+Wi"Hoi, then 
the magnetic susceptibility (see Van Vleck22) is given by 

x=-
Ei Nl(Wi'

i/kT)-2Wl"'] exp(-Wt/kT) 

E exp(-Wi/kT) 
(5.13) 

It follows from the Eq. (5.12) that, for our case, 

Xu = Npmu/kT)+(Bu/\'n (5.14) 

Xx=NPt{AJkT)+ (5xA0], (5.15) 

where the quantities A n, AL, Bu, Bi, are shown graphi­
cally as functions of \f/kT in Fig. 3. 

We may now introduce the exchange interactions, 
and we shall do so in the molecular-field approximation. 
A difficulty which arises immediately concerns the fact 
that the values deduced in Sec. 3 for the exchange 
parameters in C0CI2 apply only to that region of tem­
perature for which all ions, to a good approximation, 
are in the ground doublet, whereas we now wish to 
consider temperatures well outside this region. As the 
ions populate the higher levels, so we may expect the 
exchange interactions to change. In this work, we shall 
be forced to make the approximation that the exchange 
parameters are temperature-independent, having the 
values deduced in Sec. 3. As far as susceptibility is 
concerned, this approximation should be quite good, 
since the cooperative effects are most important in the 
lower temperature regions where the exchange pa­
rameters will be close to the values we assume. At high 
temperatures, the cooperative effect is small and the 

22 J. H. Van Vleck, The Theory of Electric and Magnetic Sus­
ceptibilities (Oxford University Press, London, 1932). 

susceptibility is largely insensitive to the exchange 
parameters. 

In the complete absence of cooperative effects, the 
susceptibility can be thought of as being produced by a 
single " effective" temperature-dependent Kramers 
doublet with energy 

E±=W±W'HQ+W"Ho\ (5.16) 
where 

W'=px/A, and W'^-^B/IW (5.17) 

and where here and henceforth A—An, B—Bu, when 
Ho is parallel to c0, and A=Aiy B=Bi, when H0 is 
perpendicular to Co. 

Let us now introduce the two sublattices ' V and 
"b," together with the molecular fields H{a and Hn> 
acting, respectively, upon the "a" and "b" sublattices. 
We have [compare(5.16)], including the internal fields 

Ea=W±W'Ha+W"Ho\ 

Eh=W±W'Hh+W"H<?, 
where 

(5.18) 

Ha=H0+Hia, and Hb=H0+Hib. (5.19) 

FIG. 3. The pa­
rameters A n, Ai, Bu, 
Bi, from Eqs. 5.14 
and 5.15 as functions 
of \'/kT for the case 
of Co++ in CdCl2 
[curves (i)] and for 
the case of Co++ in 
C0CI2 [curves (ii)]. 
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FIG. 4. The in­
verse molar suscepti­
bility plotted as a 
function of tempera­
ture for the case of 
Co+ + in CdCl2 show­
ing the two linear re­
gions of the powder 
susceptibility curve 
(xP) where a Curie-
Weiss law is obeyed. 

kT/fx| 

From Eqs. (5.3) and (5.4) we find 

Hia= ZJ2Sb—JlSa+<T(D1Sa — D2h)~]> 

6 
Hib= U^a—Jih+cr(DiSb—D25a)'], 

gp 

(5.20) 

where <7=0 when Ho is perpendicular to c0, and cr=l 
when Ho is parallel to Co, and where g=2\/A. 

The magnetic moment of an "a" site ion and of a 
"b" site ion are, respectively, 

Ma= -dEa/dH0= ^Wf-2W"Ho, 

tnb=-dEb/dH0=^W'-2W"H0. 
(5.21) 

The average values of magnetic moment upon each 
sublattice site are, therefore, 

and 

ma=-

m&= 

T,™aexp(-Ea/kT) 

Z exp(-Ea/kT) 

2 mbexp(—Eb/kT) 

ZeM-Eb/kT) 
(5.22) 

the summations being taken over the two states of the 
1 "fictitious" ground doublet. Expanding the exponen­
tials, and retaining only terms to first order in Ho, Ha, 
and Hb, we find 

ma+mb= Z(Wy/kTl(Ha+Hb)-4:W"Ho. (5.23) 

Using (5.17), (5.19), and (5.20), we now find for the 
molar susceptibility 

4:N(32kTZ(A /kT)+ (5/X')] 

4tkT+6ZJ2-Ji+(r(D1-D2)-] 
(5.24) 

function of temperature provided that we first estimate 
the magnitude of X'. 

Work by other authors upon cobalt salts (see, for 
example, Low16 and Bose, Chakravarty and Chatterjee23 

seems to favor a value for X which is either very close 
to, or slightly reduced from the value —180 cm-1. In 
this paper, however, we shall make an independent 
estimate as follows. For very small concentrations of 
Co++ in CdCk, we have earlier deduced a value for the 
ratio of trigonal distortion to spin-orbit coupling (see 
Fig. 1). This fixes the relative energies of the six ground 
Kramers doublets and we may, therefore, estimate the 
constants A and B of Eqs. (5.14) and (5.15) for this 
case, exactly as we did for CoCl2. These parameters 
(for Co++ in CdCU) are shown in Fig. 3. For small con­
centrations of cobalt in the CdCl2 lattice we may evalu­
ate the parallel and perpendicular susceptibilities di­
rectly from (5.14) and (5.15) since the cooperative 
effects will be negligible. These equations may be written 

Using the values of A and B obtained from Fig. 3, we 
may now plot the high-temperature susceptibility as a 

-N(P/X\'=l/(Ay-B), (5.25) 

where y=-\'/kT. We may, therefore, plot Np2/X\\'\ 
against \/y and this is done in Fig. 4. 

Experimental work on susceptibility using salts con­
taining varying concentrations of cobalt in CdCl2 has 
been performed by Fehrenbach.24 He reports that the 
powder susceptibility (after correction for diamagnetic 
contributions from the host lattice) follows a Curie-
Weiss law of the form C/(T—®), but that for each 
concentration investigated, the constants of this equa­
tion suddenly change their values in the region T 
==410°K. The values of the constants are, of course, 
different for each concentration, but the temperature 
of the anomaly is almost independent of concentration. 

The powder susceptibility XP is obtained from the 
susceptibilities parallel and perpendicular to Co by the 

FIG. 5. A plot of 
the inverse molar sus­
ceptibility for C0CI2 
(both parallel and 
perpendicular to the 
hexagonal axis) as a 
function of tempera­
ture, comparing the 
theoretical curves (ii) 
with the experimen­
tal results (i) as 
measured by Bizette 
etal. (Ref. 3). 

, o o T C K ) a o o 

23 A. Bose, A. S. Chakravarty, and R. Chatterjee, Proc, Roy. 
§oc, (London) A26X, 43 (1961), 
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equation 
X,= i(X„+2XJL), (5.26) 

and this curve is also drawn in Fig. 4. We see that the 
theory does, indeed, indicate a change in the slope, 
albeit, not quite so sharp as that seen by Fehrenbach.24 

For 0.3<1/^<1.6 the powder curve does follow to a 
good approximation a Curie-Weiss law (with negative 
©). Also, for l/y>2.2 the curve also obeys a Curie-
Weiss law, but now with positive @. If we extend these 
two linear regions we may equate the value of T at 
the point of intersection with the temperature (== 410°K) 
which Fehrenbach finds for the sudden change of slope. 

24 C. Fehrenbach, J. Phys. Radium 8, 11 (1937). 

I. INTRODUCTION 

THE shape of electron paramagnetic resonance 
(EPR) lines due to F centers in alkali halide 

crystals arises from hyperfine interactions between the 
F-center electron and the surrounding nuclei.1 Although 
F centers typically exhibit a single broad Gaussian 
EPR line, in a few crystals, viz., LiF,2'3 NaF,2-3 NaH,4 

RbCl,5 and CsCl,6 a resolved spectrum has been ob­
served. Rather special relations must obtain among the 
hyperfine interactions for a resolved spectrum to appear. 
The simplest case arises when the isotropic interaction 
with the first shell predominates. Then, if the spin of 
the first-shell nuclei is f, one expects a nineteen-line 

f This research was supported by a grant from the National 
Science Foundation. 
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The required point is 

l/y=-kT/\'=1.80, 

which gives X'= —158 cm"1 or, taking & = 0.9, a value 
of A= —176 cm-1. 

Using this value for the spin orbit coupling constant 
in C0CI2 (assuming, therefore, that this quantity has 
approximately the same value for C0CI2 as for Co++ 

in CdCU) we may now evaluate 1/x as a function of 
temperature for the concentrated salt. The results are 
shown in Fig. 5 together with the experimental curves 
of Bizette et al.z We see that the agreement between 
theory and experiment is quite good for both Xn and Xx. 

spectrum with a distribution of intensities of 1, 6, 21, 
56, 120, 216, 336, 456, 546, and 580, corresponding to 
total shell nuclear magnetic quantum numbers of ± 9 , 
• • •, 0, respectively.1 This simple nineteen-line spectrum 
has been reported in LiF,2,3 NaF,2-4'7 and NaH.4-8 In 
LiF, however, it is now known that the resolved 
structure is considerably more complicated. Many more 
than nineteen lines are observed and the pattern 
depends strongly upon the orientation of the crystal 
in the external magnetic field.7'9,10 In some crystal 
orientations,9 and in powdered samples,4 the resolved 
structure is obliterated. Electron-nuclear double reso­
nance (ENDOR)11 studies have shown that in LiF the 
resolved structure is due to both isotropic and aniso­
tropic hyperfine interactions with the first two nuclear 
shells7,10,12; interactions with all other shells being small 
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The electron-nuclear double resonance (ENDOR) method is applied to the study of the structure of the 
F center in NaF. Hyperfine interactions between the F-center electron and a number of the surrounding 
nuclear shells are presented and compared with the results of earlier experiments and with theory. It is 
found that the resolved hyperfine structure is not due to the predominance of the first-shell interaction, as 
has been thought, but it arises from the fortuitous equality of the first- and second-shell isotropic hyperfine 
interactions. Electron paramagnetic resonance (EPR) absorption measurements of the resolved structure 
confirms an expected 31-line resolved pattern. The exceptional resolution found in the ENDOR spectrum 
permits the identification of interactions with nuclei well beyond the eighth shell. Although the samples also 
contained large numbers of M centers, no evidence for a paramagnetic M center was found in either the 
EPR or ENDOR spectra. 


