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The curious cuspidal behavior of the surface mobility formulas of Greene, Frankl, and Zemel for nearly flat 
bands has been emphasized by Flietner, who also noted the omission of a size-effect transport term. He gave 
revised formulas showing higher surface mobility values and no cusp. We show that Grenee, Frankl, and 
Zemel actually omitted a pair of size-effect terms, that these very nearly cancel, and that, therefore, the cor­
responding thick-sample surface mobility formulas are correct. We also show that the cusp is a characteristic 
of transport in the nonlocal case (mean free path comparable to Debye screening length) where band bend­
ing cannot be treated as a small perturbation. 

1. INTRODUCTION 

THE curious behavior of the surface mobility ixs 
in the theory of Greene, Frankl, and Zemel1 

(hereinafter referred to as GFZ), whereby us goes 
through a strong downward cusp as the surface potential 
excess Asu goes through zero, has been emphasized 
recently by Flietner.2 He concludes that the cusp is an 
artifact resulting from the omission of a size-effect 
term and that ps should really vary smoothly near 
Asu=0 with values much closer to the bulk mobility /*#. 

We shall show that this size-effect term is actually 
only one of a pair of terms, which cancel almost exactly. 
The omission of both terms by GFZ on intuitive 
grounds is, therefore, justified, as are the corresponding 
thick-slab mobility formulas. 

Far from being an artifact, the cusp is a characteristic 
feature of transport in the nonlocal case: mean free 
path X comparable to bulk screening distance LB- It is 
pointed out that the exact theory provides that 
d(jis/nB)/dAsU suffer a finite positive discontinuity 
%W(\/LB)Z at the cusp. Such singular behavior cannot 
be obtained by analytic perturbation theory. 

By independent arguments we show how the pertur­
bation treatment breaks down over the region of 
velocity space, which dominates the conductance 
changes near flat band. 

The value of /z# at the exact flat-band point is, to be 
sure, somewhat unphysical, inasmuch as the accuracy 
of measurement of ps goes to zero there with that of the 
surface excess of current. Indeed, this happens at finite 
values of Asu because of current noise, nonuniformities 
in Asu over the surface, etc. Nevertheless, the general 
cuspidal behavior is important because its effects may 
be felt even for | Asu | > 1. 

2. EXACT SURFACE MOBILITY FORMULAS 

The surface mobility fis for electron transport along 
the surface of a semiconductor slab of thickness 2d is 
defined1 in terms of the surface excess of electrons AN, 

H AN= j dz(n—tiB)9 (2.1) 

1 R. F. Greene, D. R. Frankl, and J. N. Zemel, Phys. Rev. 118, 
967 (1960). 

2 H. Flietner, Physica Status Solidi 1, 484 (1961). 

and of the surface excess of current (Ix—Ixo) 

Ix—Ixo^ANensEx 

d 

(2.2) 

Ixo^nnefJiBExld—X+X / dvexpl —v ][. (2.3) 
I Jo \ XM1/2/J 

Here UB and \XB are the bulk electron concentration 
and mobility, respectively, and Ixo is the flat-band 
current, in the half-region 0<z<d, produced by a 
uniform electric field Ex parallel to the surface. X is the 
mean free path r{kT/2Trm)in in a theory with constant 
bulk relaxation time r. 

Flietner2 pointed out that the omission of a small 
term in (IX—IXQ) would cause an error in ixs which 
would diverge at the flat-band point where A7V—»0. 
Noting that the size-effect term in IXQ [viz., the integral 
in (2.3)] was omitted in GFZ, he concluded that the 
GFZ values for fxs would be quite incorrect near 
Asu=0. 

It is not hard to show that a second size-effect term 
exists in Ix, and that the difference between the two 
terms is quite small, vanishing more strongly than 
AN at Asu=0. The omission of both terms by GFZ 
on intuitive grounds is, therefore, justified. (The 
cancellation is inexact when X> d, however.) This can 
be seen from the exact solution [Eq. (3.4) of GFZ] of 
the Boltzmann equation for arbitrary d. Treating only 
the accumulation case, for brevity, we obtain 

Ix=nBeiiBEx\d—\+AN/nB—Zex-p(Adu) — l']l 

i +X / dv exipJi—v—2K(vzd,vzs)'2 
•Adu 

-Adu 

+x 
—isau 

dv e- '[exp2^(^ s ,0)-1] [, (2.4) 
-Asu > 

Here u=In (n/ni), AU—U—UB, AdU=Ud—us, and K and 
v are as defined in Eq. (2.2) of GFZ. Since 2K(vzd,vzs) —» 
—d/\(jv)112 as Asu—>0, the term emphasized by 
Flietner as being in IXQ is clearly also present in Ix, in 
somewhat more general form. 
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From (2.2), (2.3), and (2.4) exact expressions for ps, 
valid for any value of d, may be obtained. The exact 
expression for ps then differs from the GFZ thick-slab 
expression [(2.10) of GFZ] by the following additional 
pair of terms: 

/Ms\ XnB\ r00 

$( — )= / dv exp[-v-2K(vzd,vzS)~] 
\fJLB/ AN{J-Adu 

- f dvexJ-v M . (2.5) 
Jo \ X M W J 

To show that this pair of terms nearly cancels, it is 
only necessary to examine the region | A&u\<<Cl in which 

fd—z\ / d 
Au= Asu coshf J / cosh—, (2. 

\ LB J ' LB 

6a) 

AN=nBLBAsU tSLnh.(d/LB), (2.6b) 
where 

LB=LD/(COS]IUB)1/2= (KkT/STme^icoshuB)112. (2.6c) 

In this region, also, Eqs. (2.2a) and (2.2f) of GFZ 
give 

2K(vzd,vzS) 

1 LBAdu r 

Hi;)"1]!-X[jr(v+Adu)J/2 I 2{v+Adu)L M.B' 

v>-Adu. (2.7) 

Then, when d/LB>3, (2.5) gives, for the flat-band 
point 

W ~ Wio VeXL V \{irv)lf2\ 

X 
« - , when d/X>3. (2.8) 

Since b(ixs/nB) is greatest near the flat-band point, 
(2.8) shows that the thickness-dependent corrections 
to the mobility formula (2.10) of GFZ are, indeed, 
negligible. 

3. FAILURE OF PERTURBATION THEORY FOR 
NONLOCAL TRANSPORT 

The cusp is a property of the exact solution of the 
Boltzmann equation boundary value problem. One can 

show, in fact, from Eq. (2.10) of Ref. 1 that the dis­
continuity in slope of IJLS/VB has the finite positive value 

dys/vE 

dAsU 

Asu=0+ 

A,gw=0 

= lim 
A-su-o LBAsu

2 

r—Adu 

•Asu L 
2\LBJ 

dvexp[-v-2K(vzS,0)'] 

(3-D 

Thus, the cusp is closely associated with the long mean 
free path or nonlocal aspect of the transport. 

In a perturbation treatment of the flat-band region 
one would assume that / i could be expanded as a power 
series in Asu. But this would mean that us could also 
be so expanded, because us is a linear functional of / i . 
Since a cusp does exist, we must conclude that no 
analytic perturbation treatment of the flat-band region 
when \~LB will work. 

Independent of the above arguments, one can also 
see in detail how a perturbation treatment fails by 
examining the change in / i produced, in the extreme 
case X^>Ls, by a small attractive potential. Consider 
electrons approaching a scattering surface with small 
normal velocity vz. In the flat-band case, these electrons 
do not yet 'know' of the surface, and so for them f± has 
the bulk value / i# . But when there is a weak accumu­
lation layer, electrons with this normal velocity will 
have had their last scattering on the physical surface and 
will, therefore, have a n / i close to zero. [[These properties 
of / i are easily seen in the exact solutions (2.7) of Ref. 
1.] Thus, / i is strongly altered in a certain region of 
velocity space by a small change in Asu. 

Finally, it is important to realize that the velocity 
space region of strongly altering / i dominates the 
conductance change near flat-band: ft changes 
strongly for all electrons having normal velocity 
\vz\ <(2kTAsu/m)lf2, when X2>LB, and there are 
^^nBLB{Asu/ir)112 such electrons. This number is 
greater even than the total carrier excess AN 
^2nsLsAsu. This means, of course, that surface 
scattering reduces the current contribution not only 
for the excess carriers, but also for much of the flat-
band population in the surface region. 
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