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A semiclassical theory of spin-wave instability in antiferromagnetic resonance is developed. The calcula
tion is valid both for simple antiferromagnets and for canted systems when the canting is due either to single 
ion magnetocrystalline anisotropy or anisotropic exchange. The nonlinear terms leading to the instability 
are found to originate in the anisotropy and exchange energies. The critical radio frequency field for the 
onset of instability is calculated and in general is given by /zc = 4A#o(7A#&/coo)1/2, where AHQ and AHk are, 
respectively, the uniform mode and spin-wave linewidths; and wo is the zero-field antiferromagnetic reso
nance frequency. Experimental evidence for the existence of spin-wave instability in the canted antiferro-
magnet, KMnF3, is presented and discussed. An anomalous low-level saturation of the rf susceptibility is 
attributed to the onset of spin-wave instability. A new technique for the measurement of spin-wave line-
widths is described. This technique, which is based on the response of the resonant system to amplitude 
modulated microwave power, yields results in agreement with the instability theory. The spin-wave line-
width as determined by these experiments is approximately three orders of magnitude narrower than the 
linewidth of the uniform mode, indicating that the broadening mechanisms are grossly different in the two 
cases. 

THE premature saturation of the rf susceptibility 
in ferromagnetic resonance first observed by 

Damon1 and Bloembergen and Wang2 is well known. 
Bloembergen and Wang2 demonstrated experimentally 
that this saturation occurred at an rf level far below 
that needed to reduce Mz by a significant amount. 
Suhl3 attributed this anomalous saturation to instabil
ities in that portion of the spin-wave spectrum which is 
degenerate4 in energy with the uniform mode. These 
instabilities result from a coupling of the uniform mode 
to the degenerate (k^O) spectrum via nonlinear terms 
with the result that the uniform mode drives the 
degenerate spin waves in a choherent way. At a suf-

FIG. 1. Diagram showing the 
angles 0i, <£i, 02, 4>2 which define 
the new coordinate systems in 
terms of the x, y, z system. M\ 
is along z'; and M2 is along 
—z" at equilibrium. 

* This study is in part a contribution from the Laboratory for 
Research on the Structure of Matter, University of Pennsylvania, 
supported by the Advanced Research Projects Agency. 

t The initial phases of this work, particularly the experiments 
described, were done while the author was at the Physics Depart
ment of the University of California at Berkeley and were sup
ported by the AEC. 

1 R. W. Damon, Rev. Mod. Phys. 25, 239 (1953). 
2 N. Bloembergen and S. Wang, Phys. Rev. 93, 72 (1954). 
3 H. Suhl, Phys. Rev. 101, 1937 (1956); Proc. IRE 44, 1270 

(1956); J. Phys. Chem. Solids 1, 209 (1957). 
4 P. W. Anderson and H. Suhl, Phys. Rev. 100, 1783 (1955). 

ficiently high power level, the rate of growth of a 
degenerate spin-wave amplitude will exceed its relaxa
tion rate, (yAHk). Under these conditions, the ampli
tude will grow exponentially with time, i.e., an instabil
ity will exist. In a previous paper,5 it was shown that 
similar spin-wave instabilities are expected in simple 
antiferromagnetic systems. In this paper we present a 
more general theory of instability in antiferromagnetic 
systems valid for canted as well as simple antiferro
magnets. In the more general antiferromagnetic case, 
the instability arises from nonlinear terms proportional 
to the exchange and anisotropy energies. Dipolar effects 
are relatively unimportant because the net moment, 
even on resonance, is small. The critical field for the 
onset of instability can generally be written 

hc=4.AH0(yAHk/a)o)112, 

where AHQ and AHk are, respectively, the uniform mode 
and spin-wave linewidths, and coo is the antiferro
magnetic resonance frequency. The effect of a canting 
interaction, if present, is simply to change the anti
ferromagnetic resonance frequency in the above 
expression. 

Dzyaloshinskii6 used a thermodynamic approach to 
show that canted antiferromagnetism is an intrinsic 
property and may be understood as a direct consequence 
of crystal symmetry. The detailed physical interac
tions responsible for canting have been discussed by 
Moriya.7-8 Moriya points out the existence of two 
mechanisms. The first is a single-spin magnetocrystalline 
anisotropy which differs for differing crystallographic 
sites,7 and the second is anisotropic exchange.8 The 
canting in a given crystal is due to one or the other (or 
perhaps both) of these two interactions. It is easily 

5 A. J. Heeger and P. Pincus, Phys. Rev. Letters, 10, 53 (1963). 
6 1 . E. Dzialoshinskii, J. Phys. Chem. Solids 4, 241 (1958). 
7 Tom Moriya, Phys. Rev. 117, 635 (1960). 
8 Tom Moriya, Phys. Rev. 120, 91 (1960). 
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shown that whenever symmetry allows the existence of 
the anisotropic exchange of the form 

where i, j sue xy y\ x, z\ or y, z and 1 and 2 denote 
sublattice; symmetry also allows a single-ion anisotropy 
of the form 

KiSi'Sit-StiSJ). 

In Sec. I I we give a detailed calculation of the 
instability criteria valid in all three cases; simple anti-
ferromagnet, canting due to single-ion anisotropy, and 
canting due to anisotropic exchange. The results are, 
therefore, valid for a wide variety of magnetic materials. 

Experimental evidence is presented to demonstrate 
the possible existence of spin-wave instabilities in the 
canted antiferromagnet, KMnF3. An anomalous satura
tion of the rf susceptibility is observed at an rf power 
level considerably below that required to decrease the 
magnitude of the sublattice magnetization vectors, 
\M*\, appreciably. Furthermore, the response of the 
system to amplitude modulated microwave power 
implies a spin-wave relaxation time of the order of 
that inferred from the "critical field" for the onset of 
saturation. 

II. SEMICLASSICAL THEORY OF SPIN-WAVE INSTA
BILITY IN ANTIFERROMAGNETIC SYSTEMS 

We shall use the coordinate systems %', y', z'; x", y", 
z" indicated in Fig. 1, and assume a two-sublattice 
model. Thus, Mi9'^M0 and Af2*"=—Af0. One can 
always represent the effective magnetic field experienced 
by sublattice 1 in the form 

+ditnix>+em1y>+finiiZ'~], 

Hetty' ( 1 ) = — ZgiM2x" + h1fn2y" + jlMlz" 

+kimix>+pimiy>+qmiz>'], 

Henz>a)=—\jini2x>>+sini2y>>+hm2z>> 

+Uimu>+Virniy>+wimU''], 

with similar expressions for the components of the 
effective field acting on sublattice 2. The vectors mi 
and 1112 are unit vectors parallel to the magnetization 
vectors on the two sublattices. The coefficients appro
priate to the crystals considered here are listed in 
Appendixes 2 and 3. The coefficients for a simple 
antiferromagnet may be obtained from Appendix 2 by 
setting Z 7 A 2 = 0 . 

Suppose that the & = 0 resonance mode (uniform 
precession) is excited in such a material, and that 
superposed on this mode a higher k spin wave is set up 
due, perhaps to a thermal excitation or to scattering 
from the k=0 mode. We wish to investigate the 
conditions under which such a spin wave will become 
unstable, and once set up, will grow rather than damp 

out. Proceeding in a manner similar to that of Suhl,4 

we write the equations of motion for such a system: 

1 d 
[ m i + S m i M ] 

7 dt 
= [m 1+6m 1 ( r ) ]X[H e f f (

1 )+6H e f f (
1 ) ( r ) ] , 

with a similar expression for sublattice 2. 5m (r) is 
assumed to be periodic and varies as cos(k-r). Note 
that the sum mH-5mi is always constant in accord with 
the local conservation of the magnetization vector. We 
shall neglect terms which are second order in small 
quantites. We also neglect the k dependence of the 
exchange field and dipole-dipole effects. Just as in the 
ferromagnetic case, these two will simply provide a 
density of states for some value (or values) of the wave 
number k which are degenerate with the uniform mode,9 

and in this sense will cancel. On writing the equations 
of motion in this manner and equating spatially varying 
terms on each side (the equations for the constant 
terms determine the resonance frequency of the &=0 
modes, and will not be considered further here) one 
finds, for zero applied field 

1 
-8rhiX'= (h—wi)8niiy'+hidfn2y»—htniy'5in2z" 
y 

+ {him2y"—wimiz>)bmxZ', 
1 
-brh\y'= (—h+wi—di)5miX' — ai5ni2z''+hmix'?>in2z'' 
7 

+ [—a1m2x"Jr (wi—di)tnlx>~]8iniz>, 
1 
-5rh2x"= (—h+wi)8m2y" — hidmiy'~tim2y"dmiZ' 
7 

+ Qiimiyf—wim2y")hm2z", 
1 
-5m2y" = (h—wi+di)8m2x"+ai8inix'+htn2X>'8miS' 
7 

+[—ai?n l x '+ (wi—d^)m2x"~\8m2z"-

For simplicity we have dropped all terms containing 
products of the form mi8mj. These first-order nonlinear 
terms cannot contribute to the premature saturation 
of the uniform mode for they will not frequency 
modulate spin waves degenerate with ^ = 0 at twice 
their natural frequency; and, therefore, will not cause 
the parametric pumping necessary for the instability. 
However, as shown by Suhl,4 such first-order terms can 
cause spin waves at half the driving frequency to go 
unstable. This first-order Suhl instability shows itself 
as a subsidiary absorption at an applied field several 
hundred oersteds below that required for the k = 0 
resonance. The first-order terms are, therefore, treated 
separately in Appendix 1; and the conditions for the 
onset of a subsidiary absorption are discussed there. 
The above equations are easily rewritten in the more 

9 R. Loudon and P. Pincus (to be published). 
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convenient symmetric forms 

1 m d 
—drhi+ = — iK8mi+—i-8mr~—ihbm^ 
7 2 

—ieH E6c
28ni2~-\-it'Mi+dni2z" 

-\-il — hm2+—eHEdc
2m2~+wmi+ 

1 d 
-5rh2+==iK8fn2++i-dni2~+ih8nii~h 

7 2 

+ieHE6c
28m1~+itw,2+8niiZ' 

+i[ —hmi+—eHE$c
2mi~+wm2

+-

where 

d \ 
— m r }8mizr, 

2 I 

• i f - I 
d v 

2 J 

W = W!—%dh 

d=di, 

t=h, 

h=hi+eHB0o2. 

The angle 6C is the equilibrium canting angle as deter
mined by setting the torque on each sublattice equal 
to zero, e equals 1 for the single-ion anisotropy case, and 
equals (—1) when the canting is due to anisotropic 
exchange. 

The variables 8m+, 8mr, m+, and mr are not the 
normal mode variables for the problem even in the 
absence of the nonlinear terms. I t is, therefore, con
venient to first transform to the variables ak+, aiT, bk+, 
bk~ which diagonalize the equations of motion in the 
absence of the nonlinear terms before considering the 
effect of these nonlinear terms on the resonance 
properties. To make this transformation we seek the 
matrix 5 such that 

M'^SMS-1 

is diagonal, where M is the resonance matrix 

M= 

The normal mode variables are then defined by the 
matrix equation 

iK 

U/2 

iK 

id/2 

-id/2 

iK 

id/2 

-iK 

—ih 

ieHEec
2 

ih 

-ieHE6c
2 

-ieHEdc
2 

ih 

ieHEB2 

— ih 

\ak^ 

\dk~ 

bk~ 

= S 

'8m^ 

8m2
+ 

8m{~ 

8m-2~) 

The transformation matrix S is given by 

I—771 I+771 I+771 1—771 

I I + 7 7 1 1—771 1—771 I+771 

1—772 I+772 —1—772 —1+772 

I+772 1—772 —1+772 — 1—772 
and 

5 - 1 = 1 

where 

1 1 
1 1 + - 1— 1+-

1+-

1+-

1 

171 

1 

Vi 

1 

1— 1+-
m 

1 — - 1 -

V2 

1 

m 

1 

V2 

1 

-1+-

Vi 

rA+B\1/2 

1+- - 1 + -
Vi V2 

V2 

1 

V2 

1 

V2 

1 

V2 

Vi= 
/A-\-B\llz /A-B\l" 

\C+D) ' V2 \C-DJ ' 

A = K-h, B=eHE0c
2-id, 

C=K+h, D=eHEdc
2+id. 

The subscripts k denote that a&+, ajT, bk+, bk~ are related 
to the deviation variables 8nti+, 8mf. We shall denote 
the uniform mode variables #o+, ao~, bo+, bo~. The a's 
and b's are the normal coordinates for the problem and 
are equivalent to the spin-wave variables which diag
onalize the Hamiltonian. In terms of these variables, 
the equations of motion become (neglecting nonlinear 
terms) 

1 coi 
^k+=it(A+B)(C+D)J'*ak+=ir-ak+, 
7 7 

1 C02 
-hk+=il(A-B){C-D)J'2bk+=i-bk+. 
7 7 

For a simple antiferromagnet, the two frequencies are 
degenerate and equal to 

o)1=^2=y(2HEHAy/2, 

as shown by Kefler and Kittel.10 When the canting 
interaction is included, the degeneracy is removed and 
one finds 

c1=y(mA
2+2HEHAir

2
J 

co2=y(HA
2+2HEHAl)V

2 

in the case of single-ion anisotropy, and 

cc^y(2HEHAiyi2, 

o>2=y(D2+2HEHAiyt2 

10 F. Keffer and C. Kittel, Phys. Rev. 85, 329 (1952). 

file:///C-DJ
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for anisotropic exchange. The above frequencies are 
equal to the uniform mode frequencies for we have 
assumed degenerate spin waves. We now go back to 
the original equations of motion, including the nonlinear 
terms, and rewrite them in terms of the spin-wave 
variables. In performing this transformation, we note 
that to first order in l/rjo^(HAl/HE)l/2 

Wi+= m2
+= i£ao++a(T+bo++bo~2y 

mr= m<r= i [ # o + + a0~— bo*-— &0~], 

so that we may drop the subscript on nti+, wij+ in the 
nonlinear terms. The transformed equations have the 
form 

1 
-dk+=it(A+B)(C+D)J'*ai+ 
7 

i 
—\JJ{m+—m~)27]i~1-\rY(m+-\-m~)27ji]af" 

8 
i 

H—[U (m+—mr) 2rj f1 — Y (m++mr) 2iqi]ak
+

y 
8 

1 
-bk+=il(A - 5 ) (C-D)J'*bk+ 
7 

+-lV(m++m~)2rj2-
1+X(m+-m-)2r}2libk' 

8 
i 

— [ V (m++mr) 27}<rl—X (mr—mr) 2r}2~]bk
+

7 
8 

with 

U=ti—hi+wi, 

V=h—fa- 2HEBC
2+Wi- dh 

X=h—wi+fa, 

Y^h-Wi+h+fa+lHEe?. 

Since the ak and bk are the normal mode variables, they 
can be excited independently of one another. Therefore, 
we may set bk

+^bk~=0 in the ak
+ equation; and 

ak+=ak~—0 in the bk
+ equation. Substituting for 

(m+-\-m~), and (mr—m~) one finds to first order in 1/rj. 

i 
dk

+=ia)1ak-
h o>i (a0

++ao~)2 (a*++a*~), 
32 

k+=ia>2bk++— o>2(h++b<r)2{bk++bk-). 
32 

We now drop all nonlinear terms other than those which 
vary as e™1, for the other terms average to zero over a 
period and hence will have no net effect. Terms of the 
form |#o+|2#/<;+ and | ^ o + | % + are also thrown away for 
these are secular and simply serve to shift the resonant 
frequencies slightly. Taking 

a*+= ( a * 0 ) ^ ' , bk+= (bfie****, 

one finds 

d*°=—(ao0)2«i(a*0)*, 
32 

32 

Eliminating (ak
0)* and (6*°)*, respectively, by using the 

complex conjugate equations, one obtains 

dk°=(-h)2\ao°\Wak<>, 

bk°=(-h)2\bo°\Wbk^ 

Just as in the ferromagnetic case, the solutions indicate 
that the spin-wave amplitudes are exponentially grow
ing. However, we have neglected the spin-wave losses 
up to this point. We may formally put in these losses 
without reference to their microscopic origin by adding 
terms — (Acok/y)ak° and — (Aa)k/y)bk°, respectively, to 
the above equations for ak° and bk°, where 

Aook=yAHk, 

with AHk being the spin-wave "linewidth." Thus, the 
solution for the spin-wave amplitudes are exponentially 
growing only if 

^ k o ° | 2 c o i > 7 A ^ 1 , 

^ | W | 2 C O 2 > T A # * 2 . 

The criteria for instability are 

|ao°| = (32)1/2CA^/co1/7]1/2, 

\b$\ = (32)W[_AHk/u2/yJl\ 

Physically, the interpretation here is exactly anal
ogous to that of the instability in ferromagnetic 
materials.3 When the uniform mode reaches a critical 
amplitude, the effect of the nonlinear terms is to cause 
an exponential growth of the degenerate higher —• k 
spin waves. This exponential growth acts as a loss to 
the uniform mode and essentially holds its amplitude 
fixed at the critical value. Therefore, an increase in rf 
field does not yield a corresponding increase in trans
verse moment, since the higher k spin waves have no 
net transverse moment. This produces an apparent 
saturation of the uniform mode rf susceptibility in a 
magnetic resonance experiment. 

III. CRITICAL RF FIELDS FOR INSTABILITY 

In order to evaluate the critical fields for instability 
one must determine the uniform mode amplitudes as a 
function of rf field. Using the transformation matrix 
given in Sec. II, 

- ^ l ( W i + - W 2 + - W f + W 2 " " ) ] , 

bo+=%£(nii++ni2+—mr—mr) 
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or, in terms of the components along the coordinate axes antiferromagnet, 

a0
+= (tnix'+tn2x")—i'0i(iniy'-"M2y"), 

bo+=i(miyr+m2y")—V2(miX'—m2x")' 

Noting that the two coordinate systems are defined by 
61=62=6C; (pi=0 <p2=7r at equilibrium, we have that 

hcrit= 4Aff 0[A2V (2HEHAiyi*J/z 

and 

OQ+O*2(A0)[1-Q9 

&o+^2(A0)[l--f], 

|flo°| = |io0|=2v2(Atf), 

where (A6) is the angle through which each sublattice 
is tipped from its equilibrium axis by the resonant rf 
field, hi. Note that we have used the fact that to first 
order in I/77, wi+=w2

+ so that the angles A0X and A62 

are equal. To find A0 as a function of rf field, one must 
solve the uniform mode equations of motion with the 
rf field included and calculate the rf susceptibility. 
Keffer and Kittel10 have done this for a uniaxial anti
ferromagnet. Using their results, one finds 

A6~hi/2AHQ, 

where hi is the rf field and AU0 is the linewidth of the 
uniform precession. The same result carries over to 
the canted antiferromagnetic case.11 Thus, we have 

|a0°| = |6o0|=^(Ai/Affo), 

and the critical rf field for instability is given by 

/z lcrU=4A#0[7A2V"i]1/2, 
A2crU=4A270[YAZV"2]1/2, 

with coi and co2 being the resonance frequencies as 
calculated above. For the simplest case, the uniaxial 

60mW 
1 1 

30 25 20 15 10 
Power incident on cavity, db 

FIG. 2. Rf susceptibility versus incident power for KMnF3 at 
1.8°K. 0 dB corresponds to 60 mW of microwave power incident 
on the cavity. At this level the sample absorption is approximately 
l m W . 

11 A. J. Heeger, thesis, University of California, Berkeley, 
1961 (unpublished). 

indicating the possibility of unusually low critical fields 
in antiferromagnetic resonance.12 

Since most resonance experiments are performed in a 
nonzero dc magnetic field, the effect of such a field on 
the instability must be considered. Clearly the dc 
field itself cannot give rise to nonlinear terms, conse
quently its effect is limited to changing the magnitudes 
of nonlinear terms by changing the equilibrium canting 
angles. Therefore, for antiferromagnets with large 
exchange fields, the instability criteria developed above 
will be relatively insensitive to applied fields. 

IV. EXPERIMENTAL EVIDENCE OF SPIN-WAVE 
INSTABILITY IN KMnF3 

Static torsion measurements13 on a single crystal of 
KMnF3 have shown that this material is a canted anti
ferromagnet below 81.5°K. Detailed x-ray measure
ments14 have determined the space group symmetry as 
D2huPbnm- This symmetry has been shown13 to allow 
canting interactions of the type considered in Sees. II 
and III. Comparison of the experimental value of the 
weak moment with Pearson's theory15 of single-ion 
anisotropy in KMnF3 suggests that the canting is the 
result of such anisotropy rather than anisotropic 
exchange. 

In the course of studying the antiferromagnetic 
resonance in KMnF3 in the low-temperature region from 
1.8 to 4.2 °K, an anomalous power dependence of the 
rf susceptibility was observed. This power dependence 
is shown for one of the resonance lines in Fig. 2. For 
very low powers the susceptibility is independent of 
power as one would expect for a linear system. Then 
the susceptibility is observed to increase, and finally a 
saturation effect is observed. The magnitude of the rf 
field at the sample was determined by measuring the 
power absorbed at 90°K, just above the antiferro
magnetic transition temperature. Since the static 
susceptibility is known16 and the linewidth directly 
measured, the rf field at the sample was obtained from 
the relation 

The effect of increased Q at low temperature was taken 
into account. At 1.8°K, the onset of saturation corre
sponds to an rf field such that hi/AZ7~5X10~~3, where 

12 Equation (7) of Ref. 5 is in error. I t should read 

, 0, V2/ AHk y* 
| a o l = T \ ( 2 ^ ^ ) ^ ; ' 

The resulting critical field is then the same as that obtained here. 
13 A. J. Heeger, Olaf Beckman, and A. M. Portis, Phys. Rev. 

123, 1652 (1961). 
14 Olaf Beckman and Kerro Knox, Phys. Rev. 121, 376 (1961). 
15 J. J. Pearson, Phys. Rev. 121, 695 (1961). 
16 R. L. Martin, R. S. Nyholm, and N. C. Stephenson, Chem. 

Ind. (London) 1956, 83 (1956); Shinji Ogawa, J. Phys. Soc. 
Japan, 14, 1115 (1959); Kinishiro Hirawa, Kazuyoshi Hirakawa, 
and Takasu Hashimoto, ibid. 15, 2063 (1960). 
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AH is the linewidth of the uniform mode. At higher 
temperatures in the liquid-helium region similar effects 
were observed. However, the three regions mentioned 
above were not so well denned, and the saturation did 
not set in until somewhat higher powers. 

By using the field for resonance as an indicator of the 
spin temperature17 of the electronic system, it is found 
that at maximum input power the spin temperature is 
raised above that of the helium bath by approximately 
1°K. Since the Neel temperature for KMnFz is 88.3°K,13 

the magnitudes of the sublattice magnetization vectors 
are essentially unchanged by the rf power. Thus, the 
observed saturation occurs at a power level considerably 
below that required to change Mz by a significant 
amount. 

If we now wish to interpret this saturation effect in 
terms of spin-wave instability, we may substitute 
experimental values for the above quantities and 
extract a value for the relaxation time of the higher k 
spin waves. The experiments were done at 10 k Mc/sec 
in an applied field. However, the applied field will not 
affect the instability criterion as discussed above. 
Using the results of Sec. II one obtains 

Tk= 16(A£T/Ai)2(l/wi)^10-5 sec, 

which is equivalent to a spin-wave linewidth of 

AHk=5Xl0-*Oe. 

This narrow spin-wave linewidth is to be contrasted 
with the relatively broad uniform mode width of 40 Oe. 
The fact that the observed linewidth of the uniform 
mode is roughly three orders of magnitude greater than 
the spin-wave linewidth suggests that the uniform 
mode is somehow statically broadened. This suggestion 
is consistent with the fact that the observed uniform 
mode width is independent of temperature. 

Giordmaine18 has noted that it is possible to measure 
the longitudinal relaxation time, Ti, in paramagnetic 
resonance by amplitude modulating the microwave 
power incident on the resonant cavity, and measuring 
the phase shift between the incident power and the 
resonance signal due to the sample. In a linear system, 
i.e., a system where the susceptibility is independent of 
incident power, the signal detected at the modulation 
frequency is proportional to x"AC5"i2) a n d *s clearly 
in phase with the modulation. However, in a nonlinear 
system the signal is proportional to x"A(Hi2)+Hi2Ax" 
and will not be in phase if the susceptibility, Ax", 
cannot follow the modulation. Thus, the amplitude 
modulation technique is applicable to any resonant 
system in a region of nonlinear behavior; and measures 
the relaxation time of the saturation. In the case where 
the saturation is the result of spin-wave instability, r&, 
the spin-wave relaxation time, determines the response 

17 A. J. Heeger, A. M. Portis, D. Teaney, and G. Witt, Phys. 
Rev. Letters 7, 307 (1961). 

18 J. A. Giordmaine, Bull. Am. Phys. Soc. 5, 418 (1960). 

to amplitude modulated power. This may be seen in 
the following way. When the uniform mode is excited 
to the critical value, the magnetization vectors "stick." 
On increasing the rf field further, the excitation goes 
directly into the degenerate spin waves. Thus, a 
further increase in rf field does not increase the trans
verse moment so that an effective saturation of the 
rf susceptibility occurs. From this point of view, the 
Ax" caused by the amplitude modulation results since 
there is no corresponding modulation of the transverse 
moment due to the instability. Only when the modula
tion frequency gets so high that the degenerate spin 
waves do not have time to react during the modulation 
cycle does the transverse moment begin to follow the 
modulation. Since the instability may be viewed as a 
driving of the degenerate spin waves by the uniform 
mode, the time needed for the spin waves to react is of 
the order of the relaxation time for these modes; i.e., 
Tk~ l/AHk. At low frequencies the spin-wave level will 
follow the modulation and Ax" will be in phase. At 
high frequencies such that a>M^>l/rk the spin-wave 
level will remain constant during the modulation cycle 
and Ax" will be zero; again the signal is in phase with 
the modulation. At frequencies com~l/V*, Ax'^O and 
will not be in phase with the modulation. Thus, we 
expect a maximum phase shift when a)m~l/rk. 

Let us consider this in somewhat more detail. The 
equations of motion for the spin-wave variables are 
rewritten (we consider only the ak branch for brevity). 

1 
dk

+=iukak
+—ivkoao+—ipk (a0+)2ak- ak+, 

Tk 

where co« is the spin-wave frequency, pk=-£%a)i, and rk 

is the spin-wave relaxation time. The term ivkoao+ 

expresses the coupling between the uniform mode and 
the degenerate spectrum due to scattering from lattice 
imperfections; vko is the scattering matrix element. 
This scattering term must be included if one is in
terested in the detailed effect of the instability on the 
uniform mode. We assume that the rf field is amplitude 
modulated and has the form hi+Ahieiu>mt. The resulting 
spin-wave amplitudes are, therefore, also modulated 
and take the form ak++ Aak

+ei(amK Then, the time-
varying terms give 

f uam-\— W*+ 

= — ivkoAao+—ipk[2ao+ak-Aao++ (a0
+)2Aa&"~]. 

Eliminating Aak~~ by using the complex-conjugate 
equation, we obtain 

[ykQ+lpka^aiT^Tk 
AaA;+~—i A#Q+. 

l+io)mrk 
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The uniform mode amplitude is given by (see Sec. I l l ) 

1 

* ro 

Again, equating time-varying terms 

]Aa0
+= — i E vokAak

++^/2yAhh ( iu m - \— y 

and substituting the above value for A#&+, we obtain 

( l + ^ m r 0 ) A a 0
+ 

=v2-
_AAi 

AH0 

' To X ) V0k~ 
[_Vko-\-2pkdo+ak ~]rk 

l+io)mrk 
-Aa0+. 

We assume that for the degenerate spin waves Tk is 
approximately independent of k. This assumption 
should be particularly good for antiferromagnetic 
systems where dipole-dipole effects are small so that 
degeneracy occurs only over a relatively narrow range 
of k values. Defining 

we obtain 
A = Xjfc v$k (vko+ 2pkdo+ak ) , 

Aa0
+=V2-

A^i 1 

AHQ (l + ia)mTo) + AT0Tk/ (1 + iUmTk) 

and there is a phase shift between Ahi and the uniform 
mode response, Aa0

+. When TO<^T/C, as appears to be 
the case for KMnF 3 , the phase shift angle is given by 

tan$=AroTk~ 
(timJk 

m Tk 

indicating a maximum phase shift when 

WmTp (1 + ArQTk)112 
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FIG. 3. The tan</> versus modulation frequency, where <j> is the 
phase shift of the signal relative to the amplitude modulated 
microwave power. The peak occurs at approximately 150 kc/sec 
indicating a spin-wave relaxation time of the order of 1.7X 10~6 sec. 
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FIG. 4. The tan<£ versus microwave power at a fixed modulation 
frequency of 200 kc/sec. A rapid increase in the phase shift occurs 
at the instability threshold. 

as expected from the physical arguments given above. 
The quantity A expresses the total coupling between 
the uniform mode and the degenerate spectrum and is 
expected to increase sharply above the instability 
threshold. 

Figure 3 shows data, taken with a low Q (Q~ 103) 
cavity, of tan$ versus frequency indicating a maximum 
phase shift at a frequency of approximately 150 kc/sec. 
These data were taken with an X-band microwave 
spectrometer of conventional design. The amplitude-
modulated rf was obtained19 by inserting into the line a 
hybrid junction with one port going to a matched load, 
the second to a crystal detector, the third to the 
klystron, and the fourth to the cavity containing the 
sample. By applying an external sine wave voltage to 
the crystal and thereby changing its impedance period
ically, a modulated rf output was obtained. The solid 
curve in Fig. 3 is a fit of the above expression for tan<£ 
to the data. The best fit gives A ron =1.49, ^ = 1 . 7 
X 1 0 - 6 sec. The fit is quite good except at the highest 
frequencies where the accuracy is poorest and phase 
shift due to the Q of the cavity may be of importance. 
This value for rk is in reasonable agreement with that 
determined from the saturation curve considering the 
fact that the "critical field,, is not well defined by the 
susceptibility curve (Fig. 2). 

The above theory predicts a large increase in the 
phase shift observed at a given frequency when the 
spin system is taken above the threshold for instability. 
In Fig. 4 we show data of tan<£ versus power taken at 

19 A. M. Portis (prviate communication). 
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/ = 200 kc/sec. At low rf levels no phase shift is detected. 
However, above a critical power the phase shift becomes 
appreciable. This critical power level is well defined and 
appears to be a good indicator of the instability 
threshold. 

Thus, we may conclude that the observed decrease in 
rf susceptibility in KMnF 3 is due to spin-wave instabil
ity. However, two comments should be made. Firstly, 
the instability mechanism would not appear capable of 
explaining the initial increase in rf susceptibility as 
shown in Fig. 2. Secondly, on the basis of the physical 
arguments made above suggesting that the uniform 
mode amplitude is held fixed at the critical value, one 
expects the rf susceptibility to fall off like 1/hi; whereas 
the experiments indicate a less rapid falloff. This 
discrepancy very likely arises from the lack of the inclu
sion of uniform mode scattering in a detailed calculation 
of the susceptibility above the threshold.20 

CONCLUSION 

We have shown that nonlinear terms in the equations 
of motion for antiferromagnetic resonance lead to 
instability of spin waves degenerate with the uniform 
mode when the rf driving field exceeds a critical value. 
The source of the nonlinear terms which cause this 
instability is found to be in the anisotropy and exchange 
energies. The instability criteria indicate that extremely 
low-level saturation is to be expected in antiferro-
magnets with high anisotropy. 

Experimental evidence for the existence of spin-
wave instability in the canted antiferromagnet, KMJ1F3, 
is presented and discussed. The anomalous low-level 
saturation of the rf susceptibility is attributed to 
spin-wave instability. An independent measurement of 
the spin-wave relaxation time confirms this interpreta
tion. The data are in general agreement with the 
instability theory developed in this paper. The spin-
wave line width, AHk, is found to be approximately 
three orders of magnitude narrower than the uniform 
mode linewidth; indicating that the broadening mechan
isms are grossly different in the two cases. 

ACKNOWLEDGMENTS 

Many valuable discussions with Professor A. M. Portis 
and Professor P. Pincus are gratefully acknowledged. 

APPENDIX 1. 

First-Order Suhl Instability in Antiferromagnets 
and Canted Antiferromagnets 

We consider here the effect of first-order nonlinear 
terms on the resonance properties. The appropriate 
equations of motion including first-order nonlinear 
terms are 

20 H. Suhl, J. Appl. Phys. 30, 1961 (1959). 

1 
-bmiX' = (h—wi)8fniy>+hi8ni2v"—Uiiniy>5fniz' 
7 

— (uitnix'+ritn2x")8tniv'—riiniv'din2x", 
1 
-bmiy' = (—h+wi—d^)bmiX' — aibm2x" 
7 

+ {rini2x"Jr2uimiX')bmiX' 

+riinlx>d?n2x"—ci(5tniz>+5ni2z"), 
1 
—8tn2x"= (—h+wi)8ni2y>>—hidfniy>—Ui'm2X'>5niiX' 
y 

— (u1?n2z"+ritnix>)8m2y>+rm2y"Smx>, 
1 
-bni2y" = (h—wi+di)8ni2x"+ai8inix' 
y 

+ (ritiiix>+2uitn2x")8fft2z" 

+nni2x"8fnix>+ci(8niu>+8<m2z"). 

For a simple antiferromagnet, and for a canted system 
where the canting is due to anisotropic exchange, the 
coefficients a, rh and u\ are all zero; and no first-order 
instability is expected. When single-ion anisotropy 
causes the canting 

ui=ci=ri=HAr 

Substituting this value into the above equations and 
transforming to the normal mode variables with the 
help of the transformation matrix in the text, one finds 

1 1 
dk

+=ia>lkak
+-\—yHA2—(bo++b0-) (ak~— ak

+), 
4 rji 

i 1 
h+=io)2kbk

++-yHA2--%
++h-) (h~- h+), 

4 772 

taking bo+=bo°ei"ot, ak
+=ak°e™lkt, bk

+=bk°eio>2kt. We now 
want to drop all terms other than those which vary as 
eiuikt m thg nrS{- equation; and all except those which 
vary as eica2ht in the second equation. There are no such 
terms unless 

O0Q=2o0ik Or O)0=2c02A;-

These conditions are possible since ook is a monotone 
increasing function of k for such a system. Thus, for 
some value of k, the above conditions can be fulfilled. 
However, it is clear that this will occur far off resonance 
for the uniform mode. The instability criterion, then, is 

1 yHA2 HE / A # A 
|6o°|>7AH*, |W>|>4 J. 

4 771 HA2\HA2/ 

This criterion will be quite difficult if not impossible to 
achieve, expecially since one must drive the k = 0 mode 
far off resonance. Thus, we conclude that the first-order 
instability is not expected to be important even in the 
single-ion-anisotropy case. 



616 A. J . I 

APPENDIX 2 

Coefficients for the Single-Ion-Anisotropy Case 

The Hamiltonian appropriate to this system has the 
form9 (for no external field), 

£r=XMi<M s [(Mi*)2+CM2*)2] 
2M2 

K2 

M2 

By changing the sublattice magnetization vectors by 
arbitrary small amounts, one finds the effective fields 
on the two sublattices 

Heff
 (l) = —HEm2+HA1ntizz—HA2(fn1

xz+mizx), 

Heff(2) = — HETtii+HA1m2
zz+HA2(ni2xz+m2zx). 

To obtain the coefficients one must now transform to 
the new coordinate systems x\ y', z1 \ x", y", z". The 
results are 

ai=i7tf[cos0i cos02 cos (02—0i)+sin02 sin0i], 

b\—B.E cos0i sin (0i—02), 

Ci=#js[cos0i sin02 cos(02—0i) —cos02 sinflj, 

d\— —HA2 sin20i cos0i—HAX sin20i, 

e\—B.A2 sin0i sin0i, 

JI=HA2 cos0i c o s 2 0 i + ^ 1 sin0i cos0i, 

gi=HE cos02 sin (02—0i) 

JII=HE COS(0 2 —0I) , 

JI=HE sin02 sin(02—0i), 

ki=HA2 sin0i sin0i, 

# i = 0 , 

#i= —HA2 cos0i sin0i, 

T\ = HEZCOS62 sin0i cos (02—0i) — sin02 cos0 j , 

SI=HE sin02 sin (0i—02), 

/i=firjs;[sin02 sin0i cos (02—0i)+cos02 cos0i], 

UI=HA2 cos0i cos20i+JH
rj.1 sin0i cos0i, 

vi= —HA2 cos0i sin0i, 

WI=HA2 cos0i sin20i—B.AX COS20I. 

The coefficients a2, b2, • • • w2 are similar except one must 
interchange subscripts 1 and 2 on all angles and 
furthermore the sign of HA2 must be changed. HE=^M, 
HA^KI/M, and HA2=K2/M. The equilibrium values 

E E G E R 

of 0i, 0i, 02, 02 are found by setting the torque on each 
sublattice equal to zero. The resulting conditions are 

— ji+qi=0, 

- * + / i = 0 . 

APPENDIX 3 

Coefficients for the Anisotropic Exchange Case 

The appropriate Hamiltonian is 

H=\M1-M2 (Mi 2+M 22
2) 

2M2 

D 
H — (MixM^ - MiyM2x). 

M 

This leads to the following coefficients: 

ai=2Jjs[cos0i, cos02 cos(02—0i)+sin02 sin0i] 

—Z>[cos0i sin02 cos0i—sin0i cos02 cos02j 

bi=HE cos0i sin(0i—02)—D sin0i sin02, 

CI=HEZCOS6I sin02 cos(02—0i) — cos02 s in0 j , 

+D[cosd2 cos0i cos0i+sin02 sin0i cos02], 

di=— HAiSitfdi, 

«i=0, 

/i=j9'^1sin0icos0i, 

gi=HE cos02 sin(02—0i)+Z> sin0i sin02, 

hi=HE cos ($i—02), 

J\=HE sin02 sin(02—0i)—D cos02 sin02, 

ki=pi=qi=0} 

ri=HE\sosd2 sin0i cos(02—0i)—sin02 cos0 j 

—Z)[sin0i sin02 sin0i+cos0i cos02 cos02], 

SI=HE sin0i.sin(0i—02)+Z? COS03 sin02, 

ti=HE[smB2 sin0i cos(02—0i)+cos02 cos0x] 

+ # [ s i n 0 i cos02 cos0i—cos0i sin02 cos02], 

U\— HAX sin0i cos0i, 

» i=0, 

WI^—EAX COS20i. 

The equilibrium conditions are, once again 

-ji+qi=0, 

- * i + / i = 0 . 


