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The applicability of many-body perturbation theory in calculating electron correlations in atoms has been 
investigated. It was found that, in order for results to agree well with experiment, certain classes of diagrams, 
representing terms of the perturbation series, must be included to many orders. The higher order diagrams 
were found to be more important in calculating correlations among the outer electrons than among inner 
electrons. Methods for summing various classes of these diagrams were found. The total correlation energy 
in beryllium was calculated by perturbation theory, by the use of an IBM 7090 computer, to be — 2.48=b0.11 
eV. The value obtained from experiment is —2.59 eV. The calculated correlation energies for the different 
electronic shells were found to be —1.19 eV among 2s electrons, —1.15 eV among Is electrons, and —0.135 
eV between the Is and 2s shells. 

I. INTRODUCTION 

THE Rayleigh-Schrodinger perturbation theory for 
many-body systems has been described by Gold-

stone1 and is often referred to as Goldstone's pertur­
bation theory. Goldstone has shown that in this theory 
certain terms containing "unlinked clusters" may be 
omitted and that the terms for the energy beyond first 
order are then proportional to the number of particles 
present. In this description of perturbation theory, 
annihilation and creation operators are used to account 
for Fermi-Dirac statistics, and the terms of the expan­
sion are represented by diagrams or graphs similar to 
the Feynman diagrams of field theory. 

Although this perturbation method has been used 
mainly in solving problems with an infinite number of 
identical fermions, it is, in principle, quite applicable 
to other problems and, in particular, to the atomic 
problem, where a finite number of identical fermions 
move in the potential field of a nucleus. 

This problem is, of course, different from that of an 
infinite number of fermions, and it is not surprising 
that terms of the perturbation series which are im­
portant in the infinite electron gas problem, for example, 
are of less importance in the atomic problem, and that 
other terms assume greater importance. One of the 
greatest differences in the atomic problem is that the 
basis states for the perturbation expansion are no 
longer plane-wave states but are solutions of the 
Hartree-Fock equations for the atom and are eigen-
states of orbital angular momentum. One consequence 
of this is that the infinite diagrams which were summed 
by Gell-Mann and Brueckner2 in the problem of the 
(infinite) dense electron gas are now finite and are, in 
many cases, extremely small. 

Another major difference is the importance in the 
atomic problem of terms in which the exclusion principle 
is violated in intermediate states. Goldstone1 has 
stressed that such terms exist. In the following dis­
cussion these terms are denoted as exclusion-principle-
violating (EPV) terms. 

1 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957). 
2 M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957). 

The purpose of this investigation is to determine the 
corrections to the Hartree-Fock wave functions and 
energies for atoms by means of Goldstone's theory. 
Errors in the Hartree-Fock (HF) wave functions arise 
from the smearing out or averaging of electronic wave 
functions in the HF equation. As a result the repulsion 
between electrons is not accounted for properly. The 
correlation corrections rectify this deficiency; and the 
correlation energy is negative because of electron 
repulsion. This repulsion is not so important for elec­
trons with parallel spins because they are already kept 
apart by the exclusion principle incorporated into the 
HF equation by the antisymmetrization of the total 
wave function. In the perturbation expansion there are 
exchange diagrams that tend to cancel direct diagrams 
when the spins of the two interacting electrons are 
parallel. 

The correction for the energy is called the correlation 
energy and is the difference between the exact eigen­
value E of the Schrodinger equation for N electrons, 

£ ( — J+E - y=Eh (1.1) 
L i=i \ 2m u / i<j r%jJ 

and the exact HF energy, £HF. For atoms of low atomic 
number Z the difference between E and the total 
experimental energy EeyiV is quite small and is due to 
relativistic effects, which may be estimated. This enables 
one to compare the calculated correlation energy with 
the experimental value, as is done for the beryllium 
atom in Sec. V. 

Section II is devoted to a review of many-body 
perturbation theory. In Sec. I l l the exclusion-principle-
violating diagrams are discussed in detail, and formulas 
summing these diagrams are derived. Section IV deals 
with the explicit application of the perturbation theory 
to atomic systems. The basis states for the expansion 
are considered in detail, and formulas for the sums over 
intermediate states are given. In Sec. V the total 
correlation energy for Be is calculated and found to be 
in good agreement with the experimental result. The 
total correlation energy is the sum of the correlations 
among the various electrons of the atom; correlations 
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for both the Is and 2.? shells of Be and for the ls-2s shell 
interactions are given. 

Correlation energies in boron were calculated by use 
of a screened Coulomb potential, rather than the correct 
HF potential, to obtain the set of basis states. These 
results are described in Sec. VI along with an approxi­
mate formula for the total correlation energy as a func­
tion of the atomic number. The last two sections con­
tain the conclusions (Sec. VII) and Appendix. 

II. REVIEW OF GOLDSTONE'S PERTURBATION 
THEORY 

A. Time-Dependent Perturbation Theory 

The problem now considered is that of a system 
of N identical fermions interacting through two-body 
potentials. The potential between particles i and j is 
written Vij. There may be also one-body potentials 
present. The total Hamiltonian for the system is 

H-
N N 

i=l i< j 
(2.1) 

The symbol Z\ is the sum of the kinetic energy for the 
ith particle and all one-body potentials acting on it. 
For example, in the atomic problem the one-body 
potential for the ith electron is its potential energy due 
to the presence of the nucleus. 

The true ground state of the system is \f/oy given by 

H^0= (Eo+AE)f0 (2.2) 

The effect of the N interacting particles may be ap­
proximated by a single-particle potential V, and the true 
system is approximated by an unperturbed system <3>o 
with a total Hamiltonian 

4 = 1 

and the eigenvalue equation3 

(2.3) 

(2.4) 

The potential V is required to be Hermitian so that the 
single-particle wave functions <£w, which are solutions of 

(r+F)0w=€n$w (2.5) 

constitute an orthonormal set. The state $o is a determi­
nant formed from the N solutions of Eq. (2.5) that are 
lowest in energy. It is assumed that this state is non-
degenerate. The states occupied in <£>o are called un-
excited states. An unoccupied unexcited state is called 
a hole, and an occupied excited state is called a particle. 

3There are essentially three energies in this problem: the 
unperturbed energy E0, the exact energy of the system E0~hAE, 
and the Hartree-Fock energy EB.F, which is E0 plus the first-order 
energy term when the potential V is chosen as the Hartree-Fock 
potential of Eq. (2.14). 

P T I G . 1. Diagrams as­
sociated with matrix ele­
ments : (a) (pq | v \ mn). 
Particles in the excited 
state <f>m and the un­
excited state <f>n interact 
through v and scatter 
into excited states <f>p 
and cj>q, leaving a hole in 
*». (b) -<q\V\p). A 
particle in an excited 
state <f>p is scattered by 
the potential V to the 
excited state <f>?. (c) 
(pq\v\pq).(d)(pq\v\qp). 
Diagrams (c) and (d) 
represent the interac­
tions of passive un­
excited particles. 

•—x 

(to 

P q 
K 

(c) (d) 

In the matrix element representation, one has 

#o=X) enV^rjn (2.6) 
n 

and 

# ' = #—#o= Y, (pq\v\mn)'qfy^'nn'rim 

-H(p\V\m)^^ (2.7) 
p,q,m,n 

The 7) t and rj operators satisfy the usual Fermi-Dirac 
anticommutation relations. The sums run over all 
states, unexcited and excited. In the summation, 
12p,q,rn,n, only distinct matrix elements are included. 
For example, (pq \ v \ mn) is not distinct from (qp \ v | nm); 
however, (pq\v\nm) is distinct. 

The true ground state is 

with 

where 

ua(t)=t (-*•) 

and 

tf«(0)$o 
\f/0=lim , 

°-°<*o|&«(0)|^> 

AJE=<*0|ff'|*o>, 

J t: 
H'{h)-

OH>H-->tn 

XH'(tn)dtv •dtn 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

By use of Wick's theorem,4 Ua(0)$o becomes a sum of 
terms that may be represented by Feynman diagrams 
or graphs. A particle in an excited state is represented 
by a line directed upwards, and a hole in an unexcited 
state is represented by a line directed downwards. The 
direction of increasing time is upwards. See Fig. 1. 

The rules for obtaining Z7a(0)#o are: 

(i) Draw all distinct diagrams with no free lines at 
the bottom. 

(ii) For each diagram multiply the v and V matrix 
elements and the appropriate eiEt and eat factors and 

4 G. C. Wick, Phys. Rev. 80, 268 (1950). 
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(a) (b) (c) 

FIG. 2. Diagrams 
that sum to zero if 
the Hartree-Fock po­
tential is used to 
obtain the single-
particle states. 

To first order, then, the energy is given by 

£ H F = Z ((n\T\n)+h(n\V\n)), (2.16) 

which is the Hartree-Fock result. 

include a factor (— l)h+l, where h is the number of 
internal-hole lines and I is the number of closed loops. 

(iii) Note that each V has a minus sign with it. 
(iv) Attach the pairs of 171 and 77 operators correspond­

ing to the free (external) lines of each open loop with 771 
to the left of rj. 

(v) Carry out the time integrations and note that 
the diagrams are time ordered. Golds tone stresses that 
the exclusion principle is to be ignored in labeling the 
diagrams. 

B. Factorization of Diagrams 

Goldstone defines the unlinked part of a diagram 
as any part completely disconnected from the rest and 
with no external lines attached. A diagram with no 
unlinked parts is called linked. 

For a given diagram with an unlinked part there are 
other diagrams in which the interactions of the unlinked 
parts are in different positions in time relative to the 
interactions of the linked part. If all these diagrams 
are summed, the result is that the time integrations of 
the linked and unlinked parts may be carried out 
independently. This results in £7a(0)<£>o expressed as the 
product of a sum of linked terms and a sum of unlinked 
terms. The expression (<£>o| Ua(0)\$o) is the sum of all 
possible unlinked terms and cancels the same factor in 

*7«(0)$o. 
After carrying out the time integrations, one obtains 

III. 

lh>= 
L 

( H>) * 0 , 

\E0-Ho J 
(2.12) 

where £ ) L means that only linked diagrams are to be 
included. Also, 

A£=E/$0H'f H') k \ (2.13) 

where the indicated sum is over connected diagrams 
with no external lines. The potential V is now chosen 
to be the Hartree-Fock potential. Thus, 

(a\V\b)=^2 ((an\v\bn)-
n=l 

•{an\v\nb)). (2.14) 

The sum is over the N unexcited states. The sum of the 
diagrams of Fig. 2 is now zero except for unexcited 
states a—b. When a=b, unexcited, the diagrams of 
Fig. 2 represent the first-order energy term 

<$o|#'|<I>o> = E (n\V\n). (2.15) 

EXCLUSION-PRINCIPLE-VIOLATING 
DIAGRAMS 

A. EPV Diagrams Arising from the 
Linked-Cluster Formula 

In applying the perturbation theory to the beryllium 
atom it was found that certain terms that violate the 
exclusion principle in intermediate states are numeri­
cally significant. In fact, they are the most important 
terms in third- and higher order energy diagrams and 
must be considered if good numerical values for the 
correlation energies are desired. These exclusion-
principle-violating (EPV) diagrams are important in 
finite systems, but in extended systems where the basis 
states are plane waves these diagrams may be neglected 
as the volume and density approach infinity. 

The EPV diagrams arise from two sources. The first 
source to be discussed is the factorization of the 
Ua(0)$o diagrams into products of linked and unlinked 
diagrams. The second source of EPV diagrams is the 
use of the Hartree-Fock potential, and this is discussed 
in Sec. I I IB. 

Goldstone1 has shown that in order to factor a given 
diagram with an unlinked part into the product of the 
linked part times the unlinked part, it is necessary that 
the interactions of the unlinked part have all possible 
time orderings relative to the linked part. For example, 
consider the diagrams shown in Fig. 3. In order to make 
the factorization shown in Fig. 3(c), it is necessary to 
include the diagram shown in Fig. 3(b) as well as that 
of Fig. 3(a). The diagram of Fig. 3(a) vanishes unless 
the states p, q, r, and 5 are all included in the un­
perturbed state $0. If, however, p, q, r, and s are not all 
different, then the diagram of Fig. 3(b) vanishes 
because of the exclusion principle. If p = q and r=s, 
then the diagram of Fig. 3(b) may be added and 
subtracted and the factorization may still be made, but 
a negative diagram remains after the factorization has 
taken place. Goldstone states that such diagrams arise 
from the application of Wick's theorem and that after 
the factorization, exclusion-principle-violating diagrams 
that represent important physical effects remain. 

4 
k k ' l 

iO -O 

'q 

(a) 
0—0 

(b) (c) 

ko~o) 

FIG. 3. Factorization of diagrams into the product of a linked 
and an unlinked diagram. Diagrams (a) and (b) combine to give 
the product shown in (c). 
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At this point it is instructive to consider the con­
traction of the annihilation and creation operators 
associated with the diagram of Fig. 3(b) when p=r 
and q=s: 

(pq\v\ pq){kk' | v | pqfoptyqlVqVpVJrik'Iriqrip. (3.1) 

These operators may be contracted in four different 
ways and the resulting diagrams are shown in Fig. 4. 
Since each internal-hole line contributes a factor (—1) 
and each closed loop a factor (—1), the diagrams of 
Figs. 4(a) and 4(d) are positive and those of Figs. 4(b) 
and 4(c) are negative. I t should be remembered that 
in this theory contractions are denned as follows1: 

and 

C(rinr]J) = 1; 0„ excited 

CivJvJ = 1J <l>n unexcited. 

All other contractions are zero. 
Diagrams (b) and (c) of Fig. 4 are cancelled because 

of the Hartree-Fock definition of the potential V. 
That is, there are diagrams resulting from factorizations 
similar to that of Fig. 3 that cancel Figs. 4(b) and 4(c). 
These additional factorizations have unlinked parts with 
interactions of states <f>v and 4>q with the potential V 
and with the other unexcited states. The diagram of 
Fig. 4(a) is used in the factorization of the unlinked 
part and only the diagram of Fig. 4(d) remains. I t is a 
linked diagram with one hole-hole interaction. I t is 
readily seen that this diagram violates the exclusion 
principle because holes are created in the states <f>p and 
<j>q, then one more hole is created in each of these states, 
and then the first two holes are filled. The exclusion 
principle is violated when the second two holes are 
created. 

A similar examination of the next order in the 
perturbation expansion yields a diagram with two 
hole-hole interactions. The expression for the first-order 
linked diagram with unexcited states <j>p and <t>q is 

£ 
k , k ' 

1 

( £ o - # o ) 
(kkf I v I pq)ykfypr)knyq. (3.2) 

k k' 

(a) 

*k k', 

PO-

(c) 

p q 

o—-o k k ' j 
q 

-O 

(b) 

Ik k'i 

(d) 

FIG. 4. The four diagrams resulting from the 
contractions of Eq. (3.1). 

FIG. 5. (a) Scattering by the 
Hartree-Fock potential, (b) Dia­
gram causing partial cancellation 
of the diagram shown in (a). 

H 
k" 

k'. q 

(a) 

k" 

k' 

(b) 

q 

The expression for Fig. 4(d) is 

1 
(pq\v\pq) 

k,k> (EQ — HQ) 

1 
X- - W H ^ V W V (3-3) 

(E0-HQ) 

In both the above expressions, the denominator is 

Eo~Ho=ep-{-€q—€k—ek, 

where en is the energy for the state 0„. The next higher 
order expression due to hole-hole interactions is obtained 
by multiplying by the factor 

1 

EQ—H{ 

(pq\v\pq). 

Since, for these diagrams, (EQ—HO) always has the 
same value, the sum of all such diagrams is a geometric 
sum that converges provided 

{pq\v\pq){E,-H,)-l<\. 

The result is that the sum to all orders of EPV diagrams 
due to hole-hole interactions is given by 

1 
_ ^ rr —(i i 'H^Wn, (3.4) 
*.*' (Eo-H0-(pq\v\pq)) 

Since there may be also hole-hole EPV diagrams in­
volving exchange, the denominator of Eq. (3.4) should 
be replaced by 

(Eo-Ho-(pq\v\pq)+(pq\v\qp)). (3.5) 

In the applications of this theory discussed in later 
sections, the quantity 

((pq I v | pq)- {pq\v\ qp)) ( £ 0 - f f o)"1 

is always less than one and so the summation is valid. 
The quantity (EQ—HO) is always negative, since 3>o is 
the unperturbed ground state of the system. The 
direct matrix element (pq\v\pq) is positive and is, in 
general, much larger than the exchange term for the 
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k 1 

k ' l — P o 
k k' 

k' <Jq 

(a) (b) 

k 4 ^1 

(c) (d) 

&_ 

FIG. 6. Diagrams resulting from the interaction of an excited 
particle with the Hartree-Fock potential after the cancellation of 
all diagrams with passive unexcited particles. Diagrams (a) and 
(b) are hole-particle EPV diagrams. Diagrams (c) and (d) are 
the corresponding exchange terms. 

applications to be considered. The resulting denomi­
nators are then always negative and never zero in 
these cases. In all further discussions of diagrams the 
energy denominators are assumed shifted to account for 
EPV hole-hole interactions to all orders. The origin 
Of the EPV hole-hole diagrams may be demonstrated 
also by invoking the Hartree-Fock cancellation before 
the factorizations. All EPV diagrams may be factored 
into products of linked EPV diagrams and unlinked 
diagrams when higher orders are considered. When 
third-order terms, for example, are investigated, there 
will be factorizations similar to that shown in Fig. 3 (c) 
but with the linked part of Fig. 3(c) replaced by the 
linked diagram of Fig. 4(d). 

B. EPV Diagrams Arising from the 
Hartree-Fock Cancellation 

In using this perturbation theory it seems natural 
to ask whether all states should be determined with a 
fixed potential, since the effective potential may be 
changed by excitations. In fact, the effect of the 
changed potential is accounted for by the existence of a 
certain class of diagrams now described. 

Consider the diagram of Fig. 5(a). This diagram is 
cancelled by diagrams of the type shown in Fig. 5(b) 
and the corresponding exchange diagrams, provided 
the state <£n ranges over all the unexcited states. This, 
of course, does not happen because the states <j>p and 
<j)q are no longer occupied and so the cancellation is 
incomplete. This difficulty is removed by adding and 
subtracting the necessary diagrams to complete the 
cancellation. The remaining subtracted diagrams are 
shown in Fig. 6. Note that in diagrams (a), (b), and 
(d) of Fig. 6 the minus sign on the left is accounted for 
by the hole line on the right. In Fig. 6(c) the minus 
sign is accounted for by the rule that the rfi and r? 
operators for the free lines of each open loop go together 
with r\t to the left of 77. The diagram of Fig. 6(c) can 
exist only when states <j>v and <j>q have parallel spins. 
In this order of perturbation theory there are also four 
additional diagrams resulting from the interaction of 
the particle in the state <j>k with the potential V. These 
results may be obtained also by consideration of the 

contractions of the annihilation and creation operators. 
Diagrams of the type described have been found to be 
very important in calculating correlations in Be, 
particularly among the outer electrons. 

C. Higher-Order EPV Diagrams 

Another class of EPV diagrams arising from the 
factorization into products of linked and unlinked 
diagrams is illustrated in Fig. 7. After the factorization 
of the leftmost diagram, there are two remaining 
diagrams shown on the right. Ultimately, of course, 
these too will acquire similar factors when higher orders 
are considered, as did the simple diagram on the left. 
As Goldstone showed, all these unlinked diagrams are 
cancelled by the factor ($o\Ua(0)\$o) in the de­
nominator of ^0. The drawing of these two subtracted 
diagrams as shown does not mean that they may be 
considered as having unlinked parts as defined in 
Ref. 1. The method of subtracting diagrams in 
order to achieve factorizations often gives simpler 
results than the contraction of operators and it also 
enables one to keep in mind orders of magnitudes of 
higher order diagrams when the sizes of the component 
parts are known. If the contraction of operators is 
employed, then — Fl and — 72 of Fig. 7 are each 
replaced by three complicated linked diagrams of equal 
magnitudes but with different signs. 

The expression for the first of the subtracted diagrams 
of Fig. 7 is (omitting the 171 and rj operators) 

71 = 
kh'k"k'"D(k",W") 

•(pq\v\kk'} 
1 

X{k"k"'\v\pq} 

D(kyk
,)+D(k,f,km) 

(kk'\v\pq), (3.6) 

where 
D(k,k') 

D(k,k') = ep+eq-6k-ek'-(pq\v\pq)+(pq\v\qp). (3.7) 

The sum of all hole-hole EPV diagrams is implied in 
Fig. 7 and is reflected in the shifted denominators of 
Eq. (3.7). 

The expression for 72 of Fig. 7 is 

72= Z 
1 

X(kk'\v\pq} 

(Pq\v\kk>] 
1 

1 

D(k",k'") 

D(kJk
,)+D(kf,,kf,/) 

{k"k'"\v\pq). (3.8) 

Again, the annihilation and creation operators are 
implied. The matrix elements {kkf \ v \ pq) are, in general, 
significant only over a limited range of the excited 
states k and k'. For many problems it-is a good approxi­
mation to replace Eqs. (3.6) and (3.8) by 

F 1 « F 2 « J 7 E 
*"*'." D(k",k'") 

(k"k'"\v\pq)E2(pq), (3.9) 
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FIG. 7. Factorization of an 
unlinked diagram resulting in 
two EPV diagrams on the right. 
The two subtracted diagrams 
may not be considered as un­
linked in this case. 

vLk 
rk k' 

Ik" k"'| * 

.(H) \ 

Ik k l ql 

Y Y2 

where 
y=E^(p,q)/E2(p,q), 

1 

(3.10) 

and 

E2(p,q) = Z (Pq\v\kk')-—~(kk'\v\pq), (3.11) 

1 

^' [£>(&,& )]2 
(kkf\v\pq). (3.12) 

In the applications to Be such terms as Eq. (3.9) 
are negligible for correlations among the inner electrons 
but are significant (of order 10%) for the outer-electron 
correlations. For the outer electrons the energy de­
nominators are dominated by ep+€q—(pq\v\pq) and 
the approximations in Eq. (3.9) are valid. 

The quantity Ln(p,q) is now denned as any linked 
diagram of nth order with only two external-hole 
lines, referring to states <j>p and <t>q. There may be many 
internal-hole lines but these also are restricted to states 
<j>p and <j>q. The quantity En(p,q) is the sum of all energy 
diagrams of nth. order in which the hole lines are 
restricted to states (j>p and <j)q. Hole-hole EPV diagrams 
are considered summed, and this discussion does not 
include them. For example, Li(p,q) is given by Eq. 
(3.4) with the denominator of (3.4) replaced by (3.5); 
E2(p,q) (excluding exchange) is given by Eq. (3.11). 

By use of Eq. (3.9), the two subtracted diagrams on 
the right of Fig. 7 give — yLi(p,q)E2(p,q). The term 
Li(p,q) is replaced now by 

Li(P,q)D--yE2(p,q)l. (3.13) 

Further investigation shows that Li(p,q) is modified, 
to a good approximation, by the factor [1—YS (£,<?)], 
where 

S(p,q)=£ Em(p,q) 
m=2 

X{l-yS(p,q)\:i-yS(pyqm™+\ (3.14) 

Although Eq. (3.14) appears to be a difficult expression 
for S(p,q), the quantity S(p,q) is very nearly the 
correlation energy EGOXV(p,q) between two particles in 
the state <j>p and <j>q and is generally small. Equation 
(3.14) may be replaced by 

S(p,q)~ECOTr(p,q)[l-yECOTT(p,q)J. (3.14a) 

Often ECorr (p,q) may be estimated by physical 
arguments or on the basis of previous calculations. 

For the 2s states of Be, Ecorr(2s,2s)— —0.04:3 a.u. and 
y= -0.789 a.u.-1. 

The linked term Lm(p,q) is modified to 

Ln>(p,q)£l-yS(p,q)l" (3.15) 

These results are due to EPV diagrams resulting from 
factorizations in which the unlinked part is second order 
or higher. The corresponding modification for energy 
diagrams is 

EmAP^-^E^ip^ll-ySip^y-1, (3.16) 

where Em>i(p,q) is the ith energy diagram of order m 
with hole lines referring to <j>p and (j>q. Equations (3.14), 
(3.15), and (3.16) are justified in the Appendix. 

IV. USE OF PERTURBATION THEORY 
IN ATOMIC SYSTEMS 

A. The Hartree-Fock Potential 
and Single-Particle States 

In making use of Golds tone's perturbation theory1 

it is necessary first to obtain a complete set of single-
particle states determined by a potential V. Because 
of the cancellation of the diagrams of Fig. 2, a great 
simplification in the number and types of diagrams to 
be considered results when V is chosen to be the 
Hartree-Fock (HF) potential. In the matrix-element 
representation the self-consistent HF potential V is 
defined by Eq. (2.14). In Eq. (2.14) states \a) and \b) 
may be any two states of the basis set. The potential v 
is the Coulomb potential between any two of the 
interacting particles: 

Vij=e2/ri3: (4.1) 

The electron states <j>n are determined by the eigenvalue 
Eq. (2.5). In Eq. (2.5), one has 

T= — 
¥V2 Ze2 

2m r 
(4.2) 

The second term of Eq. (4.2) is the electron's potential 
energy with the nucleus of atomic number Z. The 
distance from the electron to the nucleus is r, and e and 
m are the electronic charge and mass, respectively. 
Atomic units5 are now chosen in which e= 1, m= 1, and 

6 D . R. Hartree, The Calculation of Atomic Structures (John 
Wiley & Sons, Inc., New York, 1957), p. 5. 
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FIG. 8. Behavior of P(k,l;r) for e = 0 in the potential field of 
a neutral beryllium atom. There are no bound 1 = 1 states, since 
P(0,1; r ) = 0 only at r = 0. There are two bound 1 = 0 states since 
P(0,0; r) equals zero at two values of r^O. 

%=\. Energies are expressed in atomic units (a.u.): 
1 a.u. = 27.210 eV. 

Equations (2.5) and (2.14) constitute the self-
consistent Hartree-Fock equations. The usual form for 
Eq. (2.5) in configuration space is 

-V2 

-<^(r) 0n( r )+( £ / - — ; )*»(r) 
2 r \ H i r - r ' / 

— E h(msnjmsj) / 
4>j*(t')4>n(f)dT' 

-* i ( r ) ) 

••€n<t>n(r), ( 4 .3 ) 

where msn is the spin projection of the electron in state 
ct>n.

6 The N Hartree-Fock solutions 4>n of lowest energy 
are determined by solving a set of TV'-coupled integro-
differential equations, Eq. (4.3). These N states 
determine the potential. Additional states <j>n are 
obtained from Eq. (4.3), and it is not necessary to 
consider a set of coupled equations for them because 
they are calculated in the potential field of the N states 
of lowest energy. Since the H F potential V as written 
in Eq. (2.14) is Hermitian, an infinite set of orthonormal 
states comes from Eq. (4.3).6 The N lowest in energy 
constitute the ground state and are called "unexcited 
states." All other states are called "excited." There is a 

6 J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, Inc., New York, 1960), Vol. II, Chap. 17, 
p. 6. 

tendency for excited states of the perturbation expansion 
to be confused with true excited states of the total 
system. I t should be remembered that the excited 
states in this theory are the solutions to the H F equation 
that are orthonormal to the N unexcited states. These 
excited states are not true physical states of any system, 
although they may be given a certain physical inter­
pretation. 

B. The Excited States 

Consider now the expectation values of the H F 
potential V as given by Eq. (2.14). If \a)= \b), there 
are two possibilities. First, \a) may be one of the TV 
unexcited states. In this case when the summation over 
unexcited states is made in Eq. (2.14), there will be a 
term for which \n)=\a). The exchange term then 
cancels the direct term and the resulting sum gives only 
N— 1 direct terms in addition to the exchange terms. 
If I a) is one of the excited states, however, there is 
no cancellation due to the equality of a direct and an 
exchange term, and there are N direct terms included 
in the expectation value of the potential. The physical 
interpretation is that the potential for an unexcited 
state is due to the N— 1 other electrons of the system. 
The potential for an excited state contains N direct 
terms and represents interactions with all N particles 
present in the ground state. One consequence is that 
in a neutral atom the excited states are determined by a 
total potential in which the net charge is zero. This, 
in turn, presents the possibility that for such a potential 
there may be no bound excited states for the pertur­
bation theory. 

The problem as to whether bound, excited, pertur­
bation theory states will occur for neutral atoms is 
similar to that of the formation of negative ions. For 
neutral atoms the excited states are determined in the 
potential field of a nucleus of charge +N and N elec­
trons. The N states that determine this potential are 
fixed and not affected by the excited state. In the 
formation of a negative ion, however, the original N 
states are changed by the presence of the additional 
electron and are rearranged so as to minimize the 
energy. Values of the electron affinities in eV are listed 
by Massey for neutral atoms.7 He states that hydrogen 
has a relatively high affinity of 0.74 eV. Beryllium, for 
example, has an affinity of 0.2 eV. However, calculations 
by Hylleraas show that the undisturbed potential of 
the neutral hydrogen atom is too weak for the existence 
of a bound state.8 I t is expected that many other neutral 
atoms, especially those with lower electron affinities, 
will behave similarly. If bound states do exist for a 
neutral atom, there should be very few. 

Whenever calculations are made on a particular 
atom, there still should be a search for bound excited 

7 H. S. W. Massey, Negative Ions (Cambridge University Press, 
New York, 1950), 2nd ed., p. 19. 

8 E. A. Hylleraas, Z. Physik 60, 624 (1930). 
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states. One way is to consider the Schrodinger equation 
as written in Eq. (4.4): 

d* 1(1+1) 
—P(k,l;r) = P(k,l;r) 
dr2 r2 

+ 2V(r)P(k,lir)-2eP(k,l;r). (4.4) 

The function P(k,l;r) is rR(k,l;r), where R(k,l;r) is 
the radial part of the wave function with angular 
momentum I and energy e=k2/2. The usual separation 
of the wave function into angular and radial parts is 
assumed. Attractive potentials V(r) pull the wave 
function toward the r axis. The attraction is enhanced 
by the energy term for e>0 . For e=0 , the behavior of 
P(k,l;r) indicates the number of bound states of 
angular momentum / for the potential V(r). The 
functions P(0,0; r) and P (0 ,1 ; r) for Be are shown in 
Fig. 8. Since P(0,0; r) fails to turn over a third time, 
the potential cannot support a 3s bound state and the 
only bound states for l— 0 are the Pu and P2s unexcited 
states. There are no bound 1=1 states, since P (0 ,1 ; r) 
does not turn over. 

I t may be argued that the exchange part of the 
potential is different for different energies and that the 
failure of the wave function to turn over at zero energy 
does not guarantee the absence of a bound state. This 
is true, but it seems most unlikely that the difference 
in exchange contributions for zero energy and near-zero 
energy is sufficient to cause a bound state. 

Another way to look for bound states is to make use 
of Levinson's theorem,9 which relates the number of 
bound states for a potential V(r) to the phase shifts 
di(k) at zero and infinite energies. According to Levin-
son's theorem, if the potential V(r) satisfies 

and 

dr r\ V(r)\ <<*> 

/»oo 

/ drr2\V(r)\<™, 
Jo 

(4.5) 

then tii, the number of bound states of angular mo­
mentum /, is given by 

7rni=8i(0) — di(ca). (4.6) 

Conditions (4.5) are clearly satisfied by the potentials 
of neutral atoms. For Be, 50(0) = 2x, and all other phase 
shifts at zero and infinite energies are zero. The value 
2ir for $o(0) is seen in Fig. 8, where P(0,0; r) undergoes 
a complete cycle. Jauch has shown10 that Eq. (4.6) is a 
simple consequence of the orthogonality and complete­
ness relation for the set of eigenfunctions of the total-
energy operator H=HQ+V. He states that this is a 
property that must be assumed to hold for any reason­
able quantum-mechanical system. 

9 R. G. Newton, J. Math. Phys. 1, 319 (1960). 
10 J. M. Jauch, Helv. Phys. Acta 30,143 (1957). 

FIG. 9. Third-order energy 
diagrams with transitions 
between excited states, (a) 
EPV hole-particle diagram. 
(b) Ladder diagram. Two 
particles in excited states 
interact and scatter into 
two new excited states. 

(b) 

In Golds tone's theory the limitation to nondegenerate 
ground states is a restriction to systems in which the 
energy denominators (EQ—HO) cannot vanish for 
excited states of the perturbation theory. This require­
ment is certainly met in atomic systems even though 
the ground state may be degenerate in the usual sense. 

C. Wave Functions for Continuum States 

In determining the form of the continuum (e>0) 
states it is necessary to consider the Hartree-Fock 
potential of Eq. (2.14). For those atoms that do not 
have spherical symmetry in their electron distributions, 
this H F potential is not a central potential, and the 
eigenstates of Eq. (4.3) are not eigenstates of orbital 
angular momentum /. I t is expected, however, that it 
is a good approximation to make a spherical average so 
that the excited states are eigenstates of /. This may be 
accomplished by multiplying Eq. (4.3) by the appro­
priate spherical harmonic and integrating over all angles. 
For Be, which has spherical symmetry, no approxi­
mation is necessary. I t was chosen for the numerical 
calculations in order that any discrepancies between 
calculated and experimental results might be linked 
directly to the perturbation series. 

An additional complication arises from the fact that 
the potential of Eq. (2.14) is the unrestricted Hartree-
Fock (UHF) potential in which states with identical 
quantum numbers except for spin may have different 
radial wave functions and energies. An example is the 
lithium atom with two Is electrons and one 2s electron. 
The Is electron with spin parallel to that of the 2s 
electron has an exchange potential term with the 2s 
electron. The other Is electron does not have this 
exchange term and so the two Is radial orbitals differ. 
The situation is similar for excited states, and so it 
may be necessary to determine excited states of spin 
up and spin down. Again, Be does not have this 
complication. 

The continuum states \k,l,tn,tn8) are determined by 
Eq. (4.3) with e=k2/2. Spherical symmetry is assumed 
so that 

{x\k^mims)=R{kl) r)Yim{e^)Xs(m8). (4.7) 

m I n E q . (4.7), r, 0, 4> a r e spherical coordinates, / and m 
are the orbital angular momentum and azimuthal 
quantum number, respectively, and ms is the spin 
projection. The spin eigenfunction is X8(m8), The state 
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\k,l,m,ms) is now written as \k), where the remaining 
quantum numbers are implied. 

Consider the atom enclosed in a large spherical 
volume of radius Ro that tends to infinity. At distances 
far from the atom the potential is effectively zero 
(for neutral atoms), and the radial solutions R(kl;r) 
to Eq. (4.3) are linear combinations of ji(kr) and ni{kr), 
the spherical Bessel and Neumann functions.11 As 

/ [*r+5i-£(/+l)ir] 
R(kl\ 0 - c o s . (4.8) 

kr 

Since So° drr2R2(kl; r ) = l , the normalization is 
(2/Ro)V% and 

R(kl',r) = l — ) cos- - . (4.9) 
^ \RoJ r 

Since the wave function must vanish on the boundary 
Ro, 

*12o+«i - i ( /+ l ) i r=mr , (4.10) 

where n is an integer. The number of eigenstates An 
for fixed I in the range Ak is determined by 

AkR0+A5i=Amr. (4.11) 

Since (A5)R<r1 —> 0 for finite Ak, it follows that 

An= (RoMAk (4.12) 
and 

Ro r 
E = — / <». (4.13) 

In calculating energy diagrams, every state that is 
excited is in turn de-excited. I t is possible then to 
replace £)* by (2/T)JO° dk, provided the normalization 
factor (2/Ro)112 is dropped from R(kl;r) in Eq. (4.9). 
Sums over intermediate states involve sums over /, m, 
and ms in addition to So°dk. When sums over m values 
are made for excitations, it is found that the resulting 
intermediate state has the same orbital momentum as 
the initial state. This is expected since the total angular-
momentum operator commutes with the perturbation 

Consider the diagram of Fig. 9(a) which is a hole-
particle EPV energy diagram. In calculating diagrams 
of this type in the atomic problem, the intermediate 
matrix element (pk"\v\pkf) can become infinite for 
k'=k" as Ro—>oo, but the integrations over k' and k" 
remove the infinity. In making numerical calculations 
it is a practical necessity to truncate the integrations 
at some finite Ro, and the resulting error el is given 
approximately by 

a00 sin/xr\ 
dr-j-JEtVfaq), (4.14) 

11L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com­
pany, Inc., New York, 1955), 2nd ed., pp. 77, 78, 

where E2(2)(p,q) is given by Eq. (3.12). The symbol JJL 
is the value of \k"—k'\ for which the matrix elements 
begin to show significant errors due to the finite Ro. 
The truncation radius Ro was chosen as 120 a.u. for 
the calculations of Sec. V. In the diagram of Fig. 9(b), 
infinities as in Fig. 9(a) arise when k"=k or kf"=k'. 
When both equalities occur, the infinity is stronger but 
is again removed by integrations. This error, e2, is 
given roughly by 

rRF sin/if 
e2« / dr (nr-fxRo)E2V(p,q), (4.15) 

J Ro r2 

where RF~2//A. 

V. THE CORRELATION ENERGY OF BERYLLIUM 

A. Observed Correlation Energies 

The procedures described are equally applicable in 
obtaining many-body corrections to atomic wave 
functions and energies. The many-body property most 
readily determined experimentally is the correlation 
energy, defined as the difference between the eigenvalue 
E of the Schrodinger Eq. (1.1) and the exact Hartree-
Fock energy E H F : 

ECOTT=E—E-jaiF' (5.1) 

The eigenvalue E is the difference between the experi­
mental energy of the atom and the relativistic contri­
butions to the energy, and so 

ECOTT=Eexi)— ETei— £ H F . (5.2) 

By use of spectroscopic data,12 E e x p = — 14.6682 a.u. 
Froman13 has estimated the relativistic corrections to 
the Be energy as —0.002 a.u. Calculations by Watson 
give E H F = -14.57299 a.u. for Be.14 The value for £ H F 
should be multiplied by the reduced electron mass for 
Be divided by the electron mass to give E R F 
= — 14.57211 a.u. With the use of these numbers, Eq. 
(5.2) gives ECOTT=— 0.0941 a.u. A more accurate result 
may be obtained by use of the spectroscopic data to 
obtain the first two ionization potentials for Be and 
then by use of Pekeris' calculations15 for the non-
relativistic energy of Be+ + . The result is Ecorr= —0.0953 
a.u.16 The results of calculations reported in this 
investigation give EC0Tr= —0.091 a.u. 

12 Atomic Energy Levels, edited by C. E. Moore, National Bureau 
of Standards Circular No. 467 (U. S. Government Printing Office, 
Washington, D. C , 1949), Vol. I. 

13 A. Froman, Phys. Rev. 112, 870 (1958). 
14 R. E. Watson, Phys. Rev. 119, 170 (1960). 
15 C. L. Pekeris, Phys. Rev. 112, 1649 (1958). 
16 This procedure is that used by Watson in Ref. 14, where 

he reports £Corr=— 0.0944 a.u. The small discrepancy between 
Watson's result and that of this investigation is believed to be 
due to Watson's conversion factor between atomic units and eV. 
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B. Second-Order Energy Calculations 

The HF ground-state wave functions Pu(r) and 
Pzsi?) of Kibartas and Yutsis17 were used in the 
numerical calculations. As explained in Sec. IVB, 
there are no bound excited states (of the perturbation 
theory) for Be. The continuum states were obtained by 
solving Eq. (4.3) on the IBM 7090 computer, using 
Noumerov's method18 for the integration. Matrix 
elements were calculated, and then the appropriate 
double integrals were performed to obtain second-order 
energy terms. The results of these calculations are 
listed in Table I. The unmodified second-order energy 
term is 

mi;p,q> •ox 
X f dk'-

Jo 

(pq\v\kk',l)(kkf]l\v\pq) 

€p~J~€q "2,K 2& 

(5.3) 

The orbital angular momentum / is identical for each 
of the states k and k'. A consideration of the expansion 
l/|r*—r/| in spherical harmonics19 shows that both k 
and k' must have the same / because all unexcited states 
of Be are s(l=0) states. In addition, the azimuthal 
quantum numbers m and mf of states k and kf must add 
to zero. In Eq. (5.3) the sum over / is omitted but the 
sums over m and ms are still implied. The second-order 
term with the modified denominator because of hole-
hole EPV diagrams [see Eq. (3.5)] is 

/ 2 \ 2 r00 r00 

E*(!',P,q) = l-) / dk dk' 

(pq\v\kk';l)(kk';l\v\pq) 
X-

ep+e<-h»-hk*-<pq\v\pq)+(pq\v\qp) 
(5.4) 

For the exchange terms, the first matrix element in 
both Eqs. (5.3) and (5.4) is changed to (pq\v\k'k;l)y 

and the usual minus sign for exchange multiplies the 
terms. In the numerical calculations for \pq)= \lsls), 
the values of k and kf for significant contributions 
ranged from 0.0 to 10.0 a.u. The significant contri­
butions for \pq)= \2s2s) ranged from £ = 0.0 to £=1.0 
a.u. It is seen from Table I that the second-order 
contributions give less than 70% of EQOTT. Even if the 
true second-order terms E2° are used, they still fail 
to give Ecorr, which is approximately —0.095 a.u., and 
so it is necessary to consider higher order terms in the 
perturbation expansion. 

17 V. V. Kibartas and A. P. Yutsis, Zh. Eksperim. i Teor. Fiz. 
25, 264 (1953). 

18 M. G. Salvadori and M. L. Baron, Numerical Methods in 
Engineering (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 
1961), 2nd ed., Chap. 3, p. 137. 

19 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra (Cambridge University Press, New York, 1957), p. 174. 

C. Correlations among 2s Electrons 

An investigation of the correlation energies in atoms 
by means of configuration interaction has been made 
by Linderberg and Shull.20 They conclude that in 
many-electron atoms the inner pair of electrons is very 
similar to the Is pair in the He-like series. For Z=4, 
they report ECOrr= — 0.0439 a.u. for the configuration 
Is2. Among the outer pair of electrons in Be they found 
— 0.043 a.u. from 1=1 correlations. Reference to Table 
I indicates that the second-order results are worse for 
2s than for Is correlations. Higher order terms for 2s 
correlations are now examined, and it is found that 
the series converges rather slowly. Convergence is more 
rapid for the Is terms. 

Consider the EPV diagrams of Sec. I l l B. There 
are four possible energy diagrams arising from linked 
diagrams of the types shown in Figs. 6(a) and (b). 
They arise from interactions of each excited state with 
each of the unexcited states of the diagram, and they 
are called hole-particle EPV diagrams. There are two 
exchange energy diagrams, one corresponding to the 
linked exchange diagram of Fig. 6(d) and the other to 
the diagram of Fig. 6(d) in which k replaces k! in the 
second interaction. All four hole-particle EPV diagrams 
are numerically equal, since both 2s+ and 2s~~ states 
have identical wave functions except for spin. Both 
exchange diagrams are also numerically equal. 

The third-order hole-particle EPV diagram is de­
noted by 

E3h»(l,2s,2s) 

/ 2 \ 3 /-00 /-00 /-00 

= - ( - ) / dk dk' dk"(2s2s\v\kk") 
w / Jo Jo Jo 

1 1 
X (2sk" I v 12sk') (kk' I v 12s2s), (5.5) 

D(k,k") D{kyk') 

where 

D(k,k') = e2s+e2s-W-W2-(2s2s\v\2s2s). (5.6) 

The exchange diagram is denoted 

EZe*(l;2s,2s) 

f 9 \ 3 /.oo /.oo /,oo /2\6 r™ r™ n™ 
= ( - ) / dk dkf dk"(2s2s\v\kk") 

\7T/ J 0 Jo Jo 

1 1 
X (k"2s I v 12sk') {kk' | v 12s2s). (5.7) 

D(k,k") D(k,kf) 

In Eqs. (5.5) and (5.7), the orbital momentum / is 
implied for intermediate states. The quantity a(l; 2sy2s) 
is defined: 

a(l; 2s,2s) = Ezhl)(l; 2s,2s)/E2(l; 2s,2s), (5.8) 
20 J. Linderberg and H. Shull, J. Mol. Spectry. 5, 1 (1960). 

file:///lsls
file:///2s2s


694 H U G H P . K E L L Y 

TABLE I. Second-order energies for Be calculated with 
normal and shifted denominators.8 

pq 

U+U~ 
u+u-
u+u-
2s+2s~ 
2s+2s-
2s+2s-

U2sh 

U2sh 

U2sh 

U2s° 
l*2s° 
U2s° 

Total 

/ 

0 
1 
2 

0 
1 
2 

0 
1 
2 
0 
1 
2 

WQ;P,q) 

-0.02255 

-0.00241 
-0.02228 
-0.00383 

-0.004991 

W\P,q) 
-0.01152 
-0.02077 
-0.00345 

-0.00192 
-0.01605 
-0.00326 

-0.002033 
-0.004719 
-0.000612 

0.0009899 
0.001108 
0.00030d 

-0.03574 

-0.02123 

-0.004966 

-0.06194 

a All energies listed are in atomic units. According to Ref. 17, 
«< = -4.7353, €2S = -0.3092, (\s\s\v\ lsls) =2.2731, {2s2s\v\2s2s) =0.3420, 
(U2s\v\ \s2s) =0.4805, and <1̂ 251z;[2̂ 1̂ > =0.0250. 

b Results listed include a factor of 4 due to four possible electron pairs. 
0 These are exchange terms and include a factor of 2 due to the two 

possible exchange pairs. 
d This number was estimated and not calculated. 

where E2 is defined by Eq. (5.4). The quantity a (I; 2s,2s) 
is sometimes written simply a when the arguments of 
a(l; 2s,2s) are understood. Now, one defines 

b(l; 2s,2s) = E^(l; 2s,2s)/E2(l; 2s,2s), (5.9) 

and it is written as b when the arguments are understood. 
A calculation of a and b gave the values 

and 
a (1 ; 2s,2s) = 0.28504 

6(1; 2s,2s)= -0 .06158. 

The ratio of all third-order hole-particle and exchange 
EPV diagrams to the second-order energy diagram is 
then 4 # + 2b— 1.0170 for 1=1. An examination of the 
numerical calculations of £ 3 h P ( l ; 2s,2s) showed that 
the effect of the intermediate interaction may be 
accurately approximated by a constant. That is, the 
relative magnitude of different k" excitations after the 
interaction are very nearly the same as the relative k' 
magnitudes. This leads to the following approximate 
equation for a(l; 2s,2s): 

aaPp(/; 2s,2s) 

= ( [ dkf(2sk"\v\2sk') (kkf\v\2s2s)) / 
\ Trio D(k,kf) 11 

(kk"\v\2s2s). (5.10) 

Again, the value I is implied for all intermediate states. 
The values for k and k" should be chosen as represen­
tative values found in the calculation of E2. An indi­
cation of the validity of Eq. (5.10) may be obtained 
from Table I I . 

Since aapp differs very little from a over a wide range 
of excitations, Eq. (5.10) is a good approximation for a. 
The relatively large value for 4a+2Z> indicates the 

necessity of investigating higher order terms and of 
looking for other third-order diagrams that will effect 
at least partial cancellations. For every third-order 
diagram there are four corresponding fourth-order 
hole-particle Z£4hP diagrams and two £4ex diagrams. By 
invoking the relative constancy of these intermediate 
interactions, the sum of fourth-order terms of the two 
types considered is £ 2 (4a+26) 2 to a good approximation. 
Higher order sums simply involve higher powers of 
(4a+2&). The cancellations needed for convergence 
come from the so-called ladder diagrams, which are 
important in calculating the /matrix of nuclear physics. 
Additional terms that help convergence come from the 
EPV diagrams of Sec. IIIC, but the effects of ladder 
diagrams are greater. 

A third-order ladder diagram is shown in Fig. 9(b). 
The sign of the diagram is positive, arid there are two 
energy denominators that are always negative. The 
contribution to the correlation energy is positive and 
tends to cancel E2. In all ladder diagrams considered 
it is assumed that all excited states have the same I 
unless it is explicitly stated otherwise. Scattering 
processes as in Fig. 9(b), where k and kf have one value 
of / and k" and kf" have a different value of I, are 
considered later. Calculations of third-order ladder dia­
grams are lengthy since four integrations are involved. 
However, a simplification is achieved by assuming that 
the relative magnitudes of the different k and kf 

excitations remain unchanged under such an inter­
action. The effect of the ladder interaction is then to 
multiply the lower order diagram by a constant factor. 
This assumption is similar to that which led to Eq. 
(5.10), and it is justified by the numerical calculations. 
The third-order ladder term is written as Eu(l] 2s,2s) 
and 

/(/; 2s,2s) = Eu(l', 2s,2s)/E2(l; 2s,2s). (5.11) 

To a good approximation, 

t{l;2s,2s) 

' 2 \ 2 r°° r00 1 

• M dk dk,(k"k'")l\v\kk,',l)-
o Jo D(k,k') 

X(kk'',l\v\2s2s) (knk"';l\v\2s2s), (5.12) 

TABLE II. The effects of hole-particle EPV inter­
actions on excited states. 

k h" 
(atomic units) 

0.2 0.4 
0.4 0.2 
0.4 0.4 
0.4 0.8 
0.6 0.2 
0.6 0.4 

#app(l 2s,2s)la{\\2s2s) 

1.060 
0.995 
1.017 
1.165* 
0.957 
0.960 

a The most important contributions come from k, k" between 0.2 and 0.6, 
with k —k" =0.4 most nearly in the center of the range of important 
excitations. 

file:///s/s/v/
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where the excited states all have orbital momentum, I, 
and the states k", k"f are chosen as typical excited 
states contributing to the diagram. Sums over m and 
m!, the azimuthal quantum numbers of k and k', are 
implied in Eq. (5.12). By use of the assumption of Eq. 
(5.12), the ladder diagrams may be summed, including 
second order, to give £ 2 (1 —0 _ 1 , where t is negative. 
When the reduction of energy terms caused by the 
third class of EPV diagrams, given by Eq. (3.16), is 
included, the ladder diagrams sum geometrically to 

(5.13) 

(5.14) 

is an effective reduction of the Coulomb interaction due 
to summing ladder diagrams. If a nonladder interaction 
is multiplied by tr, the effect is a summation of all ladder 
terms of fixed I between it and the next higher non-

TABLE V. Contributions to the correlation energy 
among 2,? electrons in Be. 

The factor 
^(I -T^CI-^I-TS)] - 1 . 

^ [ I - ^ I - Y S ) ] - 1 

Terma 

£cor r (0 ) 
-Ecorr(l) 
•#corr(2) 

£ 8 C e ( 0 , l ) 
£ 8 0 e ( l , 0 ) 
E80e(l,2) 
-E3Ce(2Jl) 
£4<3e(0,l,0) 
£4Ce(0,l,2) 
£40e(l ,0 , l ) 
JB4Ce(l,2,l) 
-E4ce(2,l,0) 
^ 4 C e ( 2 , l , 2 ) 

2 EnCe 
n=5 

Total 

Energy (a.u.) 

-0.003704 
-0.04256 
-0.005321 

0.00203 
0.00203 
0.00282 
0.00282 

-0.000096 
-0.000107 
-0.001109 
-0.000959 
-0.000107 
-0.000120 

0.00051 

-0.04387 

1 The arguments 2s, 2s are implied. 

TABLE III . Calculations of ladder effects using 
different intermediate excitations. 

k" k" 
(atomic units) /(1;2*,2J)* tr(l;2s,2s)* 

0.4 
0.4 
0.4 

0.4 
0.6 
0.8 

-0.3620 
-0.3785 
-0.4120° 

0.7404 
0.7317 
0.7147 

aSeeEq. (5.12). 
bSeeEq. (5.14). 
0 The most important contributions to diagrams are from k =0.20 to 

k =0.60. 

ladder or /-changing ladder interaction. The total 
correlation energy among 2s electrons for intermediate 
states of fixed I is written 

ECOTV(1] 2s,2s) 

= £ r f r ( l - 7 5 ) C l + ( 4 a + 2 6 ) / f ( l - 7 5 ) 

+ ( 4 a + 2 J ) V ( l - 7 5 ) 2 + - " - ] = - E r f r ( l - 7 5 ) 
X [ l - ( 4 a + 2 ^ , ( l - 7 5 ) ] - 1 , (5.15) 

where the arguments I and 2s, 2s are implied in the 
quantities on the right. 

I t is convenient to introduce still another symbol 

Ce(l;2s,2s) 

= tr(l-yS)Zl- (4a+2b)tr(l-yS)J-K (5.16) 

The quantity Ce(/; 2s, 2s) is now called the coefficient 
of enhancement and represents the factor by which a 
basic diagram is enhanced owing to repeated inter-

l 

0 
1 
2 

TABLE IV. Correlation energies among 2s electrons 
in Be for different L& 

a 

0.18330 
0.28504 
0.16480 

b 

- 0 . 0 2 7 7 8 
- 0 . 0 6 1 5 8 
- 0 . 0 1 4 2 3 

t 

- 0 . 1 6 5 0 
- 0 . 3 6 2 0 
- 0 . 2 1 1 3 

tr Ce(l;2s,2s) Ecorr(l;2s,2s) 

0.8622 1.925 -0 .003704 
0.7404 2.652 - 0 . 0 4 2 5 6 
0.8301 1.632 - 0 . 0 0 5 3 2 1 

a All energies are in atomic units. 

actions in which the value of / remains unchanged. 
Reference to Eq. (5.15) and then to Eq. (3.14) for S 
shows that there is a problem of self-consistency. I t is 
necessary to know S in order to calculate EcorT(l; 2s,2s), 
but S is determined from the sum of energy diagrams 
for all / values. By use of Eq. (3.10), y was calculated 
as -0 .7887 a.u"1 In this calculation S (2s, 2s) = -0 .0395 
a.u.; this value may be checked for consistency after 
calculation of all energy terms. Results of the numerical 
calculations of t(l; 2s,2s) and tr(l; 2s,2s) are presented 
in Table I I I for different k" = k"'. The excitations 
k"=k'"=0A0 are expected to give the most accurate 
result of those listed because they are most nearly in 
the middle of the range of important excitations. By 
use of this result for tr and the other numerical results 
already reported for 5, 7, (4a+2b), and E2, it was found 
from Eq. (5.15) that £COrr(l; 2s,2s)= -0.04256 a.u. 
From Eq. (5.16), Ce( l ; 2s,2s) = 2.6515. If an average 
of the three / values of Table I I I is made, then 
£ c o r r ( l ; 2^,2^)= -0.0402 a.u. and Ce( l ; 2^,2^) = 2.5042. 
The first calculation of Ecorr(l; 2s,2s) is believed to be 
more accurate, but the second calculation gives some 
indication of the error. Results for the correlation 
energies among the 2s electrons are listed in Table IV 
for three values of /. Most of the correlation energy 
comes from 1=1 contributions. The sum for 1=0, 1, and 
2 is -0 .0516 a.u. 

There are still more diagrams involving only 2s 
unexcited states. These are ladder diagrams in which 
the interaction changes the value of / for the excited 
states. The third-order energy diagram of this type is 
written Ez{l,V -,2s,2s), where l^V'. The enhanced 
diagram 

£ 3 c e ( / / ; 2s,2s) = Ez(l,l'; 2s,2s) Ce(/; 2s,2s) 

XCe(l';2s,2s) (5.17) 

corresponds to the summation of all possible diagrams 
in which there is only one change of orbital angular 
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TABLE VI. Correlation energies among Is 
electrons in Be for different / .a 

I 

0 
1 
2 

a 

0.07672 
0.07614 

6 

-0.01823 
-0.01302 

t 

-0.08784 
-0.10205 

tr 

0.9193 
0.9075 

Ce(J; IS,U) Ecorrd) 1S,U) 

1.222 -0.01408 
1.213 -0.02518 
1.20b -0.00414 

» Energies are in atomic units. 
b This value was estimated. 

momentum, from / to V, in the excited states. The 
corresponding enhanced fourth-order energy diagram is 
EtceWJ"; 2s,2s), where l^l'^V. As might be expected 
from the previous numerical results, the most important 
diagrams of this type are those in which 1=1" — 1. The 
approximation of Eq. (5.12) was used in calculating 
diagrams in which / changes. The results are listed in 
Table V along with previous calculations of ECOTT from 
Table IV. The sum of all these terms is the total 
correlation energy among the 2s electrons of Be and is 
—0.0439 a.u. It is believed that all diagrams that can 
be of importance have been included in this calculation. 
It is interesting to note that the total calculated 
correlation energy among 2s electrons is very nearly 
that obtained from a consideration of /= 1 terms alone. 
Correlations involving £=0 and 1=2 states are very 
nearly cancelled by the ladder diagrams that involve 
changes from 1= 1 states. 

D. Correlations among Is Electrons 

Correlations among the Is electrons are considered 
now for 1=0, 1, and 2 intermediate states. Equations 
(5.10) through (5.17) are used in the calculations with 
the arguments 2s, 2s replaced by Is, Is. Results are 
listed in Table VI. The quantity y in Eq. (3.10) equals 
—0.0286 a.u.-1 and is much smaller than that for the 2s 
calculations because of the larger energy denominators 
for the Is diagrams. In these calculations 5=—0.040 
a.u. The coefficient of enhancement Ce(2; Is,Is) was 
estimated. As in the case of 2s correlations, there are 
terms in which the excited electrons change orbital 
momentum after the interactions. All calculated 
contributions to the Is correlations are listed in Table 
VII. The terms Ezoe{l,lr\ Is,Is) are less important for Is 
than for 2s correlations. 

TABLE VII. Contributions to the correlation energy 
among Is electrons in Be. 

Terma Energy (a.u.) 

£Corr(0) -0.01408 
£corr(l) - 0 . 0 2 5 1 8 
£corr(2) - 0 . 0 0 4 1 4 
£ 3 C e( l ,0) 0.000412 
JE8oe(0,l) 0.000412 
Etce(l,2) 0.000226 
jE3Ce(2,l) 0.000226 

Tota l - 0 . 0 4 2 1 2 

» The arguments Is, Is are implied. 

E. Correlations between Is and 2s Electrons 

The results of the second-order energy correlations 
among Is and 2s electrons are listed in Table I, where 
the total Is— 2s correlation energy is —0.00497 a.u. 
The coefficients of enhancement Ce(/; Is, 2s) have not 
been calculated, but are expected to be small because 
the energy denominators are much larger than for the 
2s calculations. A rough estimate for the coefficients of 
enhancement for the Is— 2s diagrams is 1.10 to 1.20. 
Third-order diagrams that tend to reduce the Is— 2s 
correlation energy are the ring diagrams, which were 
found to be of great importance in calculating the 
correlation energy of a dense electron gas.2 A typical 
third-order ring diagram is shown in Fig. 10(a). This 
diagram was calculated and found to be 0.0000136 a.u. 
There are eight such diagrams, each of which should 
be multiplied by the appropriate coefficient of enhance­
ment. The result is approximately 0.000288 a.u. There 
are additional diagrams in which the relative positions 
of the Is and 2s states differ from those shown in Fig. 
10(a). The approximate sum of all third-order ring 
diagrams, including enhancement, is 0.0007 a.u. The 
ring diagrams are reduced by the hole-particle diagrams 
of Fig. 10(b). These diagrams are quite small, like the 
ring diagrams. However, there are not so many hole-
particle diagrams because spins must be parallel in 
scattering from one unexcited state to another. A very 
rough estimate indicates that these diagrams reduce 
the ring diagrams by one-third. It seems then that the 
combined effects of enhancement, ring diagrams, and 
hole-particle diagrams roughly cancel for Is— 2s corre­
lations and that the second-order result may be used. 
It should be remembered, however, that certain higher 
order diagrams are included, since the second-
order calculations were made with shifted energy 
denominators. 

By use of the results of the Is- and 2s-correlation 
energies, physical arguments may be used to estimate 
the Is—2s correlation energy. Reference to the Be 
wave functions of Kibartas and Yutsis shows that the 
radial distribution for Is electrons, Pu

2, is peaked 
sharply at r=0.26 a.u.17 The normalization of Pls and 
Pis is 

/.OO ,.00 

/ PuHr= / P2s
2dr=L (5.18) 

Jo Jo 

The ratio P2
2/Pu2 represents the relative probability 

of finding a 2s electron. Neglecting exchange, the 
Is— 2s correlation energy should be given roughly by 
the product of P2s

2/Pu2 and the total correlation energy 
for the Is electrons. At r=0.26 a.u., P2s

2/Pu
2=0.0259, 

and the resulting Is— 2s correlation energy is —0.00109 
a.u. Since there are four Is— 2s pairs, the energy becomes 
— 0.00436 a.u. It is also necessary to consider the ratio 
Pu2/P2s2, where P2s

2 peaks. This is more difficult 
because P2s

2 is not so sharply peaked as Pls
2, which is a 

rapidly decaying exponential in the region where P2s
2 
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is large. At best, it may be estimated that the corre­
lations due to Pis2 contributions, where P2s

2 is large, are 
a little smaller than those due to P2s

2 contributions, 
where Pu2 peaks. Since the exchange contributions may 
be expected to be somewhat less than half the total 
Is—2,? correlation energy, the exchange energy should 
approximately cancel the contributions from considera­
tions of large P2A The result of these rough physical 
considerations is then —0.00436 a.u., which is in 
reasonable agreement with the result —0.00497 a.u. 
calculated from perturbation theory. 

F . Discussion of Results 

The sum of all correlation energies in Be, obtained 
from Tables V and VII and Sec. V E, is -0.09096 a.u. 
I t is difficult to assess the accuracy of the calculations, 
but limits of ±0.004 a.u. seem reasonable. In these 
calculations intermediate states were restricted to 
orbital angular momenta 1=0, 1, and 2. Additional 
contributions to the correlation energy may come from 
higher angular-momentum states, and these will 
probably affect the Is more than the 2s-correlation 
results. The result for the total correlation energy 
compares favorably with the experimental value 
— 0.0953 a.u., which was obtained from spectroscopic 
data12 and Pekeris' energy for Be**.15 Watson's calcu­
lation of the Be correlation energy by configuration 
interactions resulted in —0.0844 a.u. when he used 
thirty-seven configurations.14 However, he was able to 
obtain 74% of the correlation energy by use of only four 
configurations. Watson also found that about 5 % of the 
correlation energy was caused by interactions between 
the is and 2s shells. This result also agrees favorably 
with the calculations of Sec. V E that gave —0.004966 
a.u. for the Is— 2s correlation energy. I t is interesting 
to note that correlations among Is and 2s electrons, 
though small, must be considered if accurate values for 
the correlation energy are desired. The fact that four 
such pairs must be considered increases their effect. 

The calculations reported here may also be compared 
with those of Linderberg and Shull.20 For Z = 4 in the 
He-like series, they find by use of configuration inter­
action that the total correlation energy is —0.0439 a.u. 
and that 1=1 terms contribute —0.0217 a.u. and 1=2 
terms contribute —0.0025 a.u. The corresponding 
results of Table VII agree reasonably well with these 
figures. Linderberg and Shull also report that in Be, the 
2s correlations are almost entirely due to / = 1 contri­
butions that give —0.043 a.u. This value agrees with 
the results of Table V when the /-changing ladder-
diagram results are included. 

VI. APPROXIMATE METHODS FOR 
CORRELATION ENERGIES 

At the beginning of this investigation the correlation 
energy of boron was calculated by use of second-order 

FIG. 10. (a) A typical (a) 
ring diagram, (b) A hole-
particle diagram. |g v*\ 7*^ 

(b) 

perturbation theory.21 In order to simplify the numerical 
work, the Hartree-Fock potential was approximated 
by the screened Coulomb potential in which the excited 

I states were calculated. The bound states were solutions 
of the Hartree-Fock equations. The results for the 

, correlations among the Is electrons were in good 
' agreement with the energies reported by Linderberg 
) and Shull.20 However, the correlations among the 2s 
1 electrons were much too large. The poor results for the 
1 2s correlations may be attributed to the fact that the 
I important excited states for 2s matrix elements are 
1 those of low energy (k^0.3 a.u.), whereas the important 
r excitations for Is matrix elements are in the range 
5 £-^4.0 a.u. On physical grounds, it is expected that 
' wave functions for high energies will not be affected 

by the details of the potential so much as will low-
1 energy wave functions. Since the approximate solutions 
I- are not orthogonal to the ground state H F wave 
> functions, it is not surprising that the matrix elements 

are too large. These results indicate the importance of 
' using the correct Hartree-Fock excited states in the 
1 perturbation theory. 

An estimate of the total correlation energy as a 
> function of the atomic number Z was obtained from 
\ the Gell-Mann and Brueckner2 formula for the corre-
1 lation energy of a dense electron gas: 

ec= -0 .096+0.0622 \nrs Ry per particle. (6.1) 

The dimensionless spacing parameter r8 depends upon 
\ the particle density. Assuming that the density of 

electrons, p, within the atom is given by a Fermi-Thomas 
distribution,22 the resulting total correlation energy is 

; £corr= / ec(p)pdr= -Z[0.0062+0.0207 InZ] a.u. (6.2) 

This formula gives a rough estimate of ECOrr and is too 
large by a factor of approximately 2 for small Z. The 
Fermi-Thomas electron distribution fulfills the require­
ments of a dense electron gas only for the inner part*of 
the atom for low Z. 

21 H. Kelly, in Proceedings of the Second International Conference 
on the Physics of Electronic and Atomic Collisions, Abstracts of 
Papers (W. A. Benjamin, Inc., New York, 1961), p. 136. 

22 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra (Cambridge University Press, New York, 1957), p. 335. 
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VII. CONCLUSIONS 

By use of Hartree-Fock wave functions, accurate 
perturbation-theory calculations were made of the 
correlation energies among the electrons of Be. The 
total calculated correlation energy was found to be 
— 0.0910 a.u. as compared with —0.0953 a.u., which is 
believed to be the correct result. The correlations in the 
Is and 2s shells were found to be each approximately 
one-half of the total, and the intershell correlations 
contributed approximately 6% of the total correlation 
energy. In calculating the 2s correlations it was found 
that the exclusion-principle-violating (EPV) diagrams 
are extremely important and that these must be summed 
to high orders. I t is expected that EPV diagrams will 
be important in calculating outer electron correlations 
in all atoms. If accurate results are desired, it is neces­
sary to include the intershell correlations. These may 
become more important as the atomic number increases 
beyond four because the 2s and 2p wave functions are 
expected to overlap more than Is and 2s wave functions. 
When the number of 2p electrons equals three or more, 
it is possible to have third-order ring diagrams in which 
all three unexcited-state wave functions are the same, 
and the higher-order ring diagrams may be more im­
portant for such atoms than for those of fewer electrons. 
The third-order ring diagrams in Be were found to be 
very small. The calculations on boron indicate the 
importance of using Hartree-Fock wave functions for 
the excited states. 

I t has been shown in this investigation that many-
body perturbation theory is very useful in correcting 
atomic energies. Although the complexity of the 
calculation increases with the number of electrons, this 
method should still be quite useful in calculating 
correlations in many-electron atoms. When there are 
open shells, the calculation may be less accurate because 
of the lack of spherical symmetry in the true atomic 
potentials. There may also be the difficulty due to the 
necessity of distinguishing between single-particle 
states with different spins. This theory is also applicable 
in obtaining correlation corrections for atomic wave 

functions and therefore for all atomic properties. 
Future investigations will examine the correlation 
corrections for transition probabilities and nuclear 
quadrupole coupling constants. 
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APPENDIX 

In Sec. I l l C formulas were given to account for the 
effects of the third class of EPV diagrams. These 
diagrams arise from factorizations in which the unlinked 
part is of second order or higher. I t was shown that L\ 
is modified by the factor (l—yE^). In a similar way 
it may be shown that, to a good approximation, the 
linked diagram Lm is modified by (1—yS)m, where S 
is given by Eq. (3.14). Since these formulas are con­
cerned with correlations between two electrons, each 
diagram has the same unexcited states, although there 
is no limit to the number of hole lines. Other cases may 
be handled similarly. 

Consider the diagrams of Fig. 11. The results must 
be the same for any unlinked third-order diagram. 
After factorization, three EPV diagrams remain and 
sum to —yLi(p,q)Ezt(p,q) in the approximation of Eq. 
(3.9). The fraction under each diagram gives the 
fraction of —yLiEu and is determined from the in­
creased energy denominators. A consideration of higher 
order unlinked diagrams with L\ shows that the reduc­
tion is still the same and so Li(p,q) is modified by 

oo 

[1—7 X) Em(p,q)^\. If factorizations like that of Fig. 11 

are made with a linked part L^p^q) and an unlinked 

4..... 

•N_y-
(1/4) 

FIG. 11. Factorization of Li(p,q) 
and E%t{p,q). The three subtracted 
diagrams on the right are EPV dia­
grams that sum to —yLi(p,q)Eu(p,q) 
in the approximation of Eq. (3.9). 
Fractions of this sum are shown below 
each diagram. The arrows and labels 
are implied for excited states when 
not written explicitly. 
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part of second order or higher, the result is that L2(p,q) 
00 

is modified by [1 —27 £ ^ m ( ^ ) ] . The general result 
m=2 

is that the linked diagram Ln(p,q) is multiplied by the 
oo 

factor [1 — nyJ^ Em(p,q)~], a n d this may be verified by 
m=2 

an examination of higher order linked diagrams. The 
00 

form [1—7 £ Em(p,q)^n is now suggested as the 
ra=2 

modification of Ln(p,q), and this form may be checked 
as approximately correct by enumeration of the EPV 
diagrams resulting from factorizations of diagrams like 
Fig. 12. 

Before the factorizations of Fig. 12 are actually made, 
the factorizations of Fig. 13 should be investigated. 
These lead to further modifications of the factor 
[1 — 7 ]£ Em(p,q)~]n for Ln(p,q). After the factorizations 

w=2 

of Fig. 13, there are three factored diagrams GO, G\Fy 

and GIF and a sum of EPV diagrams that add to 
Li3(yE2)

2. The diagram L\ is now modified to 

The form 

^ [ 1 - 7 ^ 2 ( 1 - 3 7 ^ 2 ) ] . 

Z 1 [ l - 7 ^ 2 ( l - 7 ^ ) 3 ] 

(Al) 

(A2) 

(a) 

FIG. 12. Factorization of this diagram 
leads to the modification of L<z.(p,q) given 
by Eq. (A3). 

e 
H.-..M 

010 A '0:0 - ^ 
O:IK O:D, 

GO Gl 
G2 

xl I /® 
\ . „ 

G3 G4 

G l •-

G 2 ' 

•Ly-(C))*(0(Q)f(nJ-
GIF 

t e}(e){Oe)fe; 

-G3 

-G4 

G2F 
MUBIJ7J 

FIG. 13. EPV diagrams resulting from factorization of the 
diagram shown at the top left. After all factorizations there are 
three factored diagrams GO, GIF, and G2F and a sum of EPV 
diagrams that add to modify L\ to L i [ l—YE 2 (1 — 37-E2)]. The 
hole line on the left of each disconnected part refers to the state 
<f)p and the hole line on the right refers to the state cf>g. 

is then suggested and may be checked. Further factori­
zations of diagrams like Fig. 12 indicate that a good 
approximation to the modifications is given by 

where 
Ln(p,q)(l-yS)", (A3) 

s(p,q)= E EmiPrili-ySfaq)!"*1. (A4) 

Factorizations of L\ and three unlinked parts indicate 
that S on the right of Eq. (A4) should be modified 
approximately by (1—yS)2. This last modification leads 
to Eq. (3.14). The modifications for the energy dia­
grams are readily obtained from (A3), since Em is re­
lated to Lm-i. The validity of considering all hole-hole 
EPV diagrams summed in making this analysis may 
be checked by a consideration of the appropriate 
factorizations. 


