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A three-particle wave function arising out of a Schrodinger equation with two-body potentials is con­
sidered. For simplicity in analysis, the potentials are taken to be of the nonlocal separable type. It is found 
that at bound-state energies of a three-particle system, the "phase" of the three-particle amplitude is not 
equal to that of a pair of its members whose relative energy allows them to be in a physical scattering state. 
This result disagrees with the prediction of a "multiplicative" three-particle structure suggested by Blanken-
becler, according to which these two phases are necessarily equal. 

RECENTLY, Blankenbecler1 developed a scheme 
for construction of scattering and production 

amplitudes so as to satisfy crossing symmetry and 
unitarity. Such a scheme was applied by Blankenbecler 
and Tarski2 to study the isoscalar form factor of the 
nucleon. The basic amplitude F which enters the 
process y —> 3ir has the representation given by Eqs. 
(2.4) and (2.5) of BT, viz., 

F(*i2,$28,*8i,*) =FJDrl(t) exp (Ai2+A 2 3+A 3 i ) , 

Aij=T -1 / ds'd(s')(s'~ •sxj—ie) 

8(s) being the TT-TT phase shift in T=J=1. The other 
quantities are as defined in BT. 

An important feature of this structure is that it 
shows explicitly how the phase of F is identical with 
that of any two-pion pair (ij) which has a relative 
energy Sij>4p2—a manifestation of the unitarity 
requirement. BT have noted that such "multiplicative 
forms" are almost realized in the Lee model.8 Since 
such structures are extremely attractive, conceptually 
as well as in practice, it may be of some interest to see 
if they arise also in potential scattering. As has been 
noted by BT, such structures are quite familiar in 
nuclear physics, but it would be more interesting if 
they could arise out of solutions of formal Schrodinger 
equations with two-particle potentials, instead of being 
"put in by hand" as trial functions for calculational 
purposes. Therefore, an explicit solution, if available, 
of a three-particle system within the Schrodinger 
framework using two-particle potentials, may be worth 
comparing with the conjecture of BT. 

The author had recently proposed a simplified 
two-pion interaction in momentum space,4 with the 
help of which a three-pion amplitude could be obtained 
explicitly through the solution of a formal Schrodinger 
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equation. The purpose of this note is to examine 
whether or not the mathematical structure of such a 
three-particle amplitude, obtained from a "potential" 
model, conforms to the product representation envis­
aged in BT. 

To simplify the discussion, several assumptions 
which in no way impair the basic mathematical struc­
ture, will be made. Thus, we consider three identical 
"pions" (momenta Pi, P2, P3) which are nonrelativistic, 
spinless, isoscalar, and interacting in s-state pairs only. 
Let the interaction Hamiltonian between the ij pair be4 

( P i P y | F | F ^ ) = - ( X / / * ) ^ o > ^ / ) f i « ( P * - F * ) , (1) 

where 
2pij= Pi— Py, Pk — — P»— Py etc. (2) 

The free two-pion scattering amplitude with "potential" 
(1) is given by5 

A(sij)=N(sij)/D(sij), (3) 

where Sa/ii=p2ij/fi is the energy of the ij pair in their 
own c m . frame and 

iVfe-) = 2T2X^[(^)1 '2], 

D(sa) = l -x~ 1 f 
Jo 

ds's'-iN(s')(s'-stj)-

(4) 

(5) 

v(pij) is a function of sa whose singularities are suffici­
ently far out in the left-hand s^ plane so as not to 
enter into our discussion. 

The three-pion "wave function" for a total energy 
E satisfies the equation 

A(E)* = X E fdp'ijviPiMp'a) 
ijk J 

x*(-iP*+p'«, - iPt-p ' . 
where 

A (E) = J (Pi2+P2
2+P3

2) -Ep. 

As in A, the structure of ^ is deduced as 

*=EA- 1 (£>(?« ) f ( i , i ) , 
ijk 

ij) *k), (6) 

(7) 

(8) 

6 A. N. Mitra, Phys. Rev. 123, 1892 (1961). 
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where the total symmetry of SF in the momenta has 
been incorporated in (8) and F(Pi) is given by the 
integral equation 

r 1 r N(s')ds' 1 
1 - - / \F(P 

L TTJO ( s ' ) H * ' + f P i 2 - ^ ) J 

-a/ dq . ( 9 ) 

Pi2+f+?vq-Fn 

The structure of Eq. (8) has the following interpre­
tation. v(p2z)/A(E) is the wave function of the pair 
(2,3) with energy (E-Pi 2 /2 /*) , and the function F(Pi ) 
multiplying it is the relative wave function between 
" 1 " and the (2,3) pair. The three terms in Eq. (8) 
correspond to the three ways in which such groupings 
can be made. Further, the function multiplying F(Pi) 
on the left of Eq. (9) is just the denominator function 
of (5) corresponding to 

si*=Ep-lP1*, (10) 

so that it represents the scattering of particles 2 and 3, 
with particle 1 playing the role of a "spectator," except 
for momentum conservation. The simultaneous three-
body effects are represented by the right-hand side 
of Eq. (9) whose denominator is essentially a sum of all 
the particle energies corresponding to the momenta Pi, 
q, and (—Pi—q). Neglecting the Pi dependence of 
the right-hand side of Eq. (9) amounts to the so-called 
independent-pair approximation, in which case 

F(Px)~C/D{Ep-\Pt), (ID 
C being a normalization constant. Indeed, in this 
approximation, it is seen from (3), (8), and (11) that 

*~C(t-En)-^ L NWisibD-KEv-t+Sij), (12) 
ijk 

where 

sv=pi,*, t^Sij+iP^UFS+^+P*2), (13) 

and C is another constant. 
To study the analytic properties of ^ in the total 

energy variable t, it is simplest to start from the 
bound-state problem by setting 

En=-a2 ( a>0) , 

and to consider the region 

Su^O, sn^0, s2z^0, 

(14) 

(15) 

which corresponds to "physical scattering" only 
between the (2,3) pair. Using the inequalities (15), it 
is easy to deduce that 

i V + i Y + i Y ^ O , 4 i V + i V + P 3
2 ^ 0 , 

so that, in terms of / and s2z, we have 

0 ^ f 5 2 3 . (16) 

Now a denominator like D(—a2—t+Sij) in Eq. (12) 
acquires a phase factor when Sij—t -a2^ 0, so that from 
(15) and (16) it is immediately seen that only the s2z 
term in Eq. (12) has a cut in / corresponding to the 
region 

O ^ m i n (f*23, *23-a2), (17) 

and that this region exists only if a2 ^ 2 3 - However, 
the other two terms in Eq. (12) have no cuts in t, since 
the inequalities Sn~t—a2>0, or sn — t~a2>0 are 
incompatible with (15) and (16). 

As for the possibility of a "cut" arising from the 
three-particle term in Eq. (9), it could come about only 
through the zeros of the quantity 

P2+q2+¥-q+a2, (18) 

where P is any one of the momenta Piy and q, the 
integration variable, is a positive quantity. However, 
a sufficient condition for such a zero to develop is 

(P2+q2+a2)2 = P2q2, 

which does not lead to any real value for P2. Thus, for 
real values of t and s^, the three-particle denominators 
in F(P) do not give any additional singularities. The 
only other three-particle denominator in S ,̂ viz., 
(t—Eix)~l has a simple pole at t — E^—a1 and, of 
course, corresponds to the bound state. 

The essential result of this investigation is that the 
function ^ does not have the phase of the scattering 
amplitude for the (2,3) pair. This fact owes its origin 
to the appearance of the denominators D~1(Efi—t+sij) 
as a sum, rather than as a product, in Eq. (8) or (12). 
This "additive structure," in turn, is traceable directly 
to the appearance of the total interaction in Eq. (6) 
as F23+F31+F12. 

A comparison of this result with BT's conjecture 
(based on field-theoretical models1,3) shows that a 
"potential picture" is inherently incapable of repro­
ducing the "product structure" envisaged by BT. This 
fact does not seem to depend critically on the special 
kind of "potential" chosen here. Of course, if the 
interaction is weak, the "sum" and "product" forms 
would, no doubt, agree, as a result of the approximation 

Di 5 ( l - / i y ) - 1 « l + / . > 

However, for strong pair interactions the structures are 
entirely different. The "sum structure" in Eq. (12) 
can be roughly interpreted by saying that an inde­
pendent-pair approximation can be visualized in a 
potential picture only by one pair interacting at a time. 
A field-theoretical model, on the other hand, can 
apparently handle all pairs of interactions at the same 
time (at least two, as shown by the Lee model3), even 
though there may be no direct three-body forces 
present.6 

6 It may be emphasized that it is the angular correlation 
between the various momenta, through the requirement of 
over-all momentum conservation, that prevents a "cut" from 
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We would like to make two final comments. A 
unitarity condition so stringent as to require the phase 
of a three-particle wave function under the condition 
(15) to be equal to that of the (2,3) pair, is obviously 
not satisfied by our potential model. Rather, we have 
the much weaker result that the phase of ^r is governed 
entirely by the phase of the (2,3) pair, but that the 
former is not equal to the latter. On the other hand, 
unitarity in the ordinary quantum-mechanical sense of 
conservation of probability had never seemed to pose a 
problem for a many-particle wave function satisfying a 
Schrodinger equation in which only Hermitian oper-

developing along the real axis of the / plane, due to the three-
particle denominator on the right of Eq. (9). On the other hand, 
if the "recoil effect" due to momentum conservation could be 
neglected by making one of the particles infinitely massive (which 
incidentally would be more closely related to the Lee-model), 
then it is easy to see that the "three-particle denominator" on the 
right of Eq. (9) would give a cut in the same region of the / plane 
as the "two-particle denominator" appearing on the left-hand 
side of that equation. Indeed, in this limit, the two independent 
momenta could be taken simply as Pi and P2 (no correlation) and 
the "energy variable" / as 

so that the common condition for both the denominators to 
exhibit "cuts," viz., P*2—2£/*^0, P i 2 ^ 0 , would now be expres­
sible as 

t^P?-*\ P ^ O , 
replacing (17) and (18) of the text. In this case, therefore, the 
three-particle amplitude would acquire two phase factors, as is 
also the case with the Lee-model (Ref. 3). Thus, it appears that 
the inability of our potential model to produce an extra phase 
factor stems essentially from a consideration of the recoil effects 
due to momentum conservation. 

ators entered. (This condition is, of course, satisfied in 
our problem.) 

The second comment concerns the requirement of a 
symmetric or antisymmetric wave function. I t appears 
that the "potential model" can handle this aspect of 
the problem in a very simple way. This is shown indeed 
by Eq. (8) where the three terms of SE' have identical 
structures. While the case considered here is rather 
idealized (spinless, isoscalar particles), the case of 
actual pions (spinless, isovector) does not present any 
fresh problem in this regard. This has been shown in 
A for an isoscalar three-pion system whose spatial wave 
function must necessarily exhibit total antisymmetry. 
Indeed, in the potential model, antisymmetrization is 
just as easy, or as difficult, as symmetrization. On the 
other hand, the product representation (2.4) of BT, 
which satisfies the unitarity condition in the sense 
described above, has a naturally symmetric structure 
in the pion momenta. To obtain a correspondingly 
antisymmetric structure (necessary for an isoscalar 
three-pion state) some sort of a linear combination of 
such functions would presumably be required, which 
might necessitate a fresh examination of the "phase 
problem." 
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