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This calculation starts with the partial-wave dispersion relations for pion-pion scattering as deduced from 
the Mandelstam representation for the scattering amplitude. The contribution of the "left-hand cut" was 
calculated from X<£4 perturbation theory (to second order in X). The s-wave and p-w&ve amplitudes were 
obtained numerically and found to agree closely with those obtained by Chew, Mandelstam, and Noyes 
who proceeded from a different viewpoint. 

I. INTRODUCTION 

THE formulation of a quantitative theory of 
pion-pion scattering should be the easiest 

problem of strong-coupling physics. That this is likely 
seems to follow from the uniquely small mass of the 
7r meson and the relatively large mass splitting between 
the low-energy two-pion system and the next heavier 
system with which a pion pair can interact (four T 
mesons). One can then argue that it should be a good 
first approximation to consider the low-energy two-pion 
system to be decoupled from the rest of the universe. 
That is, the forces that govern the interactions of a 
pair of pions with each other at low energy should be 
expressible in terms of pion-pion scattering itself. 

Several attempts have been made to exploit this 
situation within the framework of an "extremist" s-
matrix viewpoint.1-2 The rules of this game are that 
one is permitted to call only upon crossing symmetry, 
unitarity, and analytic continuation of the s matrix in 
order to obtain relations among the partial-wave 
scattering amplitudes. In actual application, however, 
one finds it necessary to construct an expression for 
the scattering amplitude at unphysical values of the 
energy variable. Crossing symmetry is of limited use 
in enabling one to do this and approximations must 
be made at this point. It appears that the particular 
manner in which such approximations are introduced 
then determines the nature of the solution. In particular, 
it appears that in order to obtain a resonant ^-wave 
solution, which has been the goal of most previous 
investigators, one must insert a p-w&ve resonance into 
the formulation of the problem. Note added in proof, 
The last sentence of the second paragraph is unfair to 
Dr. Moffat. It seems probable that his ^-wave resonant 
solutions are a consequence of his choice of asymptotic 
behavior for his amplitudes. We are indebted to Dr. 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960); 
G. Chew, S. Mandelstam, and H. P. Noyes, ibid. 119, 478 (1960), 
referred to as CMN. Our coupling constant X is the negative of the 
one used by these authors. 

2 M. Cini and S. Fubini, Ann. Phys. (N. Y.) 10, 352 (1960); B. 
H. Bransden and J. W. Moffat, Nuovo Cimento 21, 505 (1961); 
A. Efremov, V. Serebryakov, and D. Shirkov, in Proceedings of 
the 1962 A nnual International Conference on High-Energy Physics 
at CERN, edited by J. Prentki (CERN, Geneva, 1962), p. 163; 
L. A. P. Balazs, Phys. Rev. 128, 1939 (1962). 

Gatland and Dr. Moffat for a lively discussion of this 
point. 

We prefer to take the position that the scattering 
amplitude should be completely specified by the 
"dynamics'' of the pion-pion interactions. The dynamics 
will be specified a priori in terms of a Lagrangian for the 
pion field. In addition to specifying a Lagrangian, we 
shall also insist that the partial-wave amplitudes 
satisfy the same analyticity and unitarity conditions 
that are imposed by the ^-matrix theorists. We shall 
not, however, attempt to insert crossing symmetry 
(which, at any rate, cannot be put in exactly) in order 
to express the scattering amplitude in terms of partial-
wave amplitudes when the arguments of the scattering 
amplitude are unphysical. Instead, the "unphysical'' 
amplitude will be calculated from perturbation theory 
and will enter as a generalized "potential" that deter­
mines the scattering. In the present paper we shall only 
include terms up to second order in the pion-pion 
coupling constant. 

At this point it is desirable to enter a disclaimer. We 
neither hope nor expect that the calculation described 
here will predict the observed ^-wave (p particle) 
resonance.3 It is our feeling that the order of pertur­
bation theory to which we calculate here should be 
appropriate to the description of low-energy pion-pion 
scattering. If a comparison with experiment then 
suggests that the coupling constant is sufficiently small 
to justify our use of a coupling-constant expansion 
for the "potential," we will then permit ourselves to 
hope that a higher order calculation might predict the 
observed pion-pion scattering for moderately high 
energies. Of course, one should also keep in mind the 
possibility that the p is not a "dynamical" resonance 
but must be inserted as a "fundamental" unstable 
particle. We shall not belabor this question here. 

In Sec. II we derive integral equations for the s- and 
£-wave scattering amplitudes. Section III is a digression 
in which the model of nonrelativistic scattering by a 
Yukawa potential is used to illustrate the computational 
technique that we use in the relativistic problem. 
Section IV contains a description of the numerical 
results and a remark concerning the "pole approxi­
mation" for the "potential." In Sec. V we investigate 

3 A. R. Erwin, R. H. March, W. D. Walker, and E. West, Phys. 
Rev. Letters 6, 628 (1961). 
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the extent to which crossing symmetry is violated and 
compare our results with those of Chew, Mandelstam, 
and Noyes.1 In the process of doing this we are able to 
make a parenthetical remark concerning "bootstrap" 
calculations. Finally, Sec. VI includes a discussion of 
some of the implications of experiment. Computational 
details are relegated to Appendices. 

II. DERIVATION 

We specify our dynamics by invoking an interaction 
Lagrangian that is proportional to (<J>- <[>)2. The value of 
the scattering amplitude at the symmetry point 

is defined to be the renormalized coupling constant. 
Here s, t, and u have their usual meanings {h—c 
= mir=l): 

s = W+l), (2a) 

/ = - 2 2 2 ( l - c o s 0 ) , (2b) 

u=-2q2(l+cos6), (2c) 

where q is the barycentric momentum of one of the 
pions and 0 is the barycentric scattering angle. Then to 
lowest order in the coupling constant, the amplitudes 
A1 of isotopic spin / may be written4 

A» = 5\ A^O, A2=2\. (3) 

The second-order expressions may now be obtained 
from elastic unitarity, crossing, and the renormalization 
condition. This is done in Appendix A, and the results 
are found to be 

AG=5\{l+5\F(s)+3\ZF(t)+F(u)~]}, (4a) 

A1=5\2iF(t)-F(u)'], (4b) 

f 9 X 1 
,42 = 2X l+2\F(s)+—LF(t)+F(u)2 . (4^ 

For this calculation we shall not go beyond the second 
order. 

The next step is to project out the partial-wave 
amplitudes for specified angular momenta. In the case 
of the isospin-zero s wave, for example, we obtain 

15X2 r1 

A0°(s) = 5\+25\2F(s)+— / d cosd{F(t)+F(u)}. (5) 
2 7_i 

We now observe that the representation of F(s) given 
in the Appendix exhibits regularity in the complex s 
plane if the latter is cut along the segment 

4 ^ < o o (6) 

on the real axis. I t follows that Ao°(s), given by Eq. (5), 
is regular in the complex s plane except for the cut (6) 

4 See, for example, S. Gasiorowicz. Fortschr. Physik 8, 665 
(1960). 

and an additional cut along the negative real axis 
contained in the integral in Eq. (5). This is, of course, 
the expected analytic behavior of a T-TT partial-wave 
amplitude.1 

We now adopt the viewpoint that the dynamics is 
given by the terms having the left-hand branch cut 
(and the subtraction constant 5X) which plays the role 
of a potential. The exact discontinuity across the 
right-hand branch cut is known from unitarity in terms 
of the amplitude A o°(s) itself. Incidentally, the unitarity 
condition used in the Appendix implies the Ai1 must 
have the representation 

4, J(*) = ( — — ) exp(*V) sinS/, (7) 

and our approximation of keeping only terms of order 
X2 (two-meson intermediate states) implies that the 
811 are real. We, therefore, rewrite Eq. (5) with the 
second term on the right replaced by a statement of 
the unitarity conditions so that it reads 

(s-so) r ds' /s'-^1'2 

Ao»(s) = 5\+- / ) 

15 r1 

XMo°(*0 | 2 +— W dcosd{F(t)+F(u)}. (8) 
2 J_i 

The subtraction at the symmetry point where s0 = ^ 
is required by the definition of the renormalized 
coupling constant. 

This equation, and the corresponding equations for 
the isospin-two s wave and the isospin-one p wave are 
then solved by the familiar N/D techniques.1 This leads 
to an integral equation for the denominator function D. 
The equations are written down in Appendix B. We 
remind the reader that the equations in that Appendix 
could be modified by the addition to the D functions 
of poles (with positive residues) on the real, positive, q2 

axis.5 Our calculation is made unique by excluding such 
poles. 

III. THE YUKAWA POTENTIAL 

In the preceding section we ascribed the dynamics to 
the last term on the right of Eq. (8), the term which 
we consider to be the " generalized potential'' for the 
scattering problem. I t is interesting to see how this 
interpretation is justified by examining a simple 
nonrelativistic scattering problem. 

The Born approximation amplitude for scattering 
by a Yukawa potential of range 1/JJL and strength 
cr/co2 is 

/ * ( / ) = - W ^ - / * * ) - 1 . (9) 

We choose KQ2/JJL2 to have the value 1.68 so that when 

5 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev, 101, 
453 (1956), referred to a§ QDD, 
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the dimensionless parameter a is equal to unity the 
potential gives rise to a zero-energy s-wave bound 
state.6 The scattering amplitude f(t) is normalized to 
have the partial-wave expansion 

oo /sinSA 
fit) = Z(21+1) exp(«,)( Wcosf l ) 

z=o \ q J 

= fl(2l+l)ai(q)Pi(cosd), (10) 

FIG. 1. The s-wave 
and ^-wave scattering 
lengths as functions of 
the coupling constant X. 

i 1 1 r 

I i i i i 
-0.2 0 0.2 0.4 0.6 

where q is the wave number in the Schrodinger equation, 
and / is defined by Eq. (2b). 

The integral equation for the s-wave amplitude, 
obtained by requiring unitarity for positive q2 and by 
using the s-wave projection of /BOO for the contribution 
from the left-hand cut, is 

f /(7/c0
2\rln(l+4x)-

\ M2 / L 4x . 

+- / — 
T J o X' — X 

-(*')1/2I <*<>(*') I* , ( i i ) 

where we have defined 

--q2/ix2. 

I t is easy to obtain an approximate solution of this 
equation if the term [ ln ( l+4x) ] /4x is replaced by a 
single pole on the negative x axis. We choose the 
position of the pole and the residue to give the correct 
value and slope at threshold where x=0. The approxi­
mate equation then becomes 

/KOV 
jjLa0(x) = al—J 

2 1 

(l+2x)^+~ 
> dx'(xf) 1/2 

I <*>(*') I *• (12) 
7TJo (X' — X) 

The solution is found to have the threshold value 

M#o(0) = 
/ K 0 \ 2 [ ~ O- /Ko ' 

\ / x / L 2 v 2 \ M . 

= 1.68o-[l-0.594cr]-1. 

TABLE I. Scattering lengths for a Yukawa potential. 

(13) 

<J 

- 4 
- 2 
- 1 
- 0 . 1 

0.1 
0.5 
0.95 

Exact 

-1 .88 
-1 .39 
-0.955 
-0.155 

0.184 
1.53 

12.3 

Scattering length 
Eq. (13) 

-1 .98 
-1 .53 
-1 .05 
-0.159 

0.179 
1.20 
3.67 

Born approx. 

-6 .72 
-5 .03 
-1 .68 
-0 .17 

0.17 
0.84 
1.60 

6 R. D. Levee and R. L. Paxton, Lawrence Radiation Labora­
tory (Livermore) Report UCRL-7155-T (unpublished). We are 
indebted to Professor Dalitz for bringing this work to our 
attention. 

Some exact scattering lengths for the Yukawa 
potential have been calculated by Levee and Paxton.6 

Table I compares these with the predictions of Eq. (13) 
and with the Born approximation. I t is seen that despite 
the crudeness of the single-pole approximation for the 
contribution from the left-hand cut the agreement is 
quite good until the potential begins to be sufficiently 
attractive to support a bound state. 

We close this section by remarking that the N/D 
solution of Eq. (12) is ghost-ridden if the potential is 
repulsive (s<0). That is, D will vanish for some nega­
tive value of x and thereby give the amplitude an 
unphysical pole. For potentials that are not too strong 
(but | s | may be substantially greater than unity) the 
ghost will be far away from the physical region and 
the N/D solution will still be a good approximation to 
the correct one at sufficiently low energy. I t is not 
clear to us whether or not ghosts would continue to 
make their appearance if the correct Born contribution 
from the left-hand cut, x~l l n ( l+4#) , were to be used. 
However, if they were to appear we would ascribe 
their presence to the fact that the Born approximation 
gives an inadequate representation of the distant left-
hand singularities. Nevertheless, we could still retain 
confidence in the low-energy N/D solutions if the ghost 
pole is at a sufficient distance from threshold. 

IV. PROPERTIES OF THE SOLUTIONS 

The equations of Appendix B were solved numerically 
with the aid of the Argonne IBM 704 computer. The 
coupling parameter X was allowed to range from — 2 to 
+ 2 . The N/D solutions were then fed back into the 
original equations [Eq. (8) and its counterparts for the 
other partial waves] in order to confirm that they were 
indeed solutions of the nonlinear equations. 

I t was found that the s-wave solutions for both 
isotopic spins always had ghost singularities on the 
negative energy axis. If the coupling constant X was not 
too large, then the ghosts were always far away from 
the physical threshold. As X was increased the ghosts 
moved in toward threshold. We confirmed, as might 
be expected, that the energy range over which N/D 
solutions satisfied the partial-wave dispersion relations 
(within the limits of precision of the calculation) 
extending about as far above the threshold as the ghost 
was below it. In keeping with the remarks at the end 
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FIG. 2. Development 
of the ^>-wave resonance 
as the coupling strength 
is increased. 

of the preceding section we shall regard the N/D 
solutions as valid representations of the dynamics over 
the energy range for which the self-consistency check 
holds. Figure 1 shows the s- and ^-wave scattering 
lengths as functions of the coupling constant for 
solutions "valid" out to energies well past the inelastic 
threshold. 

The ^>-wave solutions were ghost-free (and small) for 
small values of X. As the coupling strength was increased 
well beyond the value where the s-wave solutions were 
meaningful, the ^>-wave phase shift began to approach 
7r/2 at a relatively low energy and eventually did attain 
this value (Fig. 2). Further increase of the coupling 
strength moved the resonance to lower and lower 
energy in a manner completely analogous to what one 
observes in potential scattering.7 Just before the 
resonance turned itself into a bound state, a ghost 
pole appeared and the self-consistency check failed 
badly at all energies. 

With the numerical solutions at hand, it then seemed 
reasonable to investigate the possibility of constructing 
approximate solutions by analytical methods. The 
standard means for doing this is to approximate the 
contribution from the left-hand cut by one or two 
poles. The N/D formulation then reduces to an elemen­
tary quadrature. We tested this technique by replacing 
the contributions from the left-hand cut with a single 
pole. Just as in the example with the Yukawa potential, 
the position and residue of the pole were chosen to give 
the correct slope and value at threshold. The result was 
not unexpected, namely, that the one-pole approxi­
mation predicted the scattering length to within a few 
percent, the effective range roughly, and was grossly 
misleading at energies for which the effective-range 
expansion was no longer applicable. 

V. DISCUSSION 

The solutions described in the preceding section 
satisfy, by construction, unitarity and analy ticity in the 
complex energy plane and correspond to a system of 
dynamics that was specified in advance ($4 interaction). 
If the partial-wave amplitudes that we have obtained 
are physically sensible, they should also satisfy crossing 
symmetry to the extent that the notion can be made 
meaningful. 

7 P. G. Burke, Lawrence Radiation Laboratory Report UCRL-
10140, 1962 (unpublished). 

The significance of the last remark may be better 
understood by considering the scattering of a pair of 
neutral scalar bosons. If the scattering amplitude 
satisfies a Mandelstam double-dispersion relation8 one is 
then led to express the discontinuity across the left-hand 
cut for the Ith. partial wave as1 

2 r-*-* / q'2+\\ 
2Im^(<22) = - Z / dq*Pi(l+2 ) 

q2 i' Jo \ q2 J 

( 

<72+l\ 
X2V( 1 + 2 — — J ImAv(q'2), (14) 

for #2< — 1 . The series is known to converge if the 
magnitude of q2 is not too large.1 Now it is easy to see 
that if q2 is sufficiently close to —1 so that it can be 
argued that all the Ai'(q'2) behave as (qr)21' (when q'2 

is small), then the right-hand side of Eq. (14) is well 
approximated by the lowest one or two partial waves 
(//==0, 2). When — q2 is large, however, the fact that 
the argument of Pi* ranges from — 1 to — co will have 
the consequence that many partial waves with relatively 
small phase shifts may make important contributions 
to the sum over V if they are multiplied by Legendre 
polynomials of high order. Thus, even if a certain low 
partial wave (say, the s wave) dominates the physical 
scattering amplitude, it need no longer be expected to 
dominate the right-hand side of Eq. (14) except for 
— q2 close to unity. This is just saying that the con­
vergence of the series gets worse and worse as q2 ap­
proaches the limiting radius of convergence.9 We 
remark in passing that this argument suggests that 
"bootstrap" calculations for resonances at moderately 
high energies should be viewed with suspicion. 
j | ; We have already observed that for the range of 
values of X for which the present calculation gives 
sensible s- and ^-wave solutions, the s waves are 

-0.05 

-0.10 

-0J5 

-0.20 

-0.25' 

~ i — i — I — i — i — r 

J 
.̂ Crossinq / / 

^Pfcrt.- Theory 

FIG. 3. The dis­
continuity across the 
left-hand cut for the 
isospin-zero s wave 
from perturbation 
theory (solid line), 
and from crossing-
symmetry (dashed 
line) using only the 
s-wave contribu­
tions. The value of X 
is —0.1. The agree­
ment becomes poorer 
as X is increased. 

- 6 -2 

8 S. Mandelstam, Phys. Rev. 112, 1344 (1958). 
9 A. Efremov, V. Mescheryakov, D. Shirkov, and M. Tzu, 

Nucl. Phys. 22, 202 (1961). 
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observed to be substantially larger than the p wave. 
The discussion in the preceding paragraph suggests that 
we should recalculate the discontinuities across the 
left-hand cuts from our computed s-wave solutions. If 
these solutions are reasonably consistent with crossing 
symmetry, then the newly calculated discontinuities 
should agree with those calculated from perturbation 
theory in the vicinity of — q2=l. Figure 3 shows that 
this is indeed so. 

At this point it becomes interesting to compare our 
work with that of Chew, Mandelstam, and Noyes 
(CMN).1 These authors, starting from the viewpoint 
of the ^-matrix purists, obtained a system of coupled 
equations for the partial-wave amplitudes by requiring 
only unitarity, analyticity, and crossing symmetry. 
They did not give an explicit specification of the 
dynamics. The solutions that CMN obtained were, 
like ours, characterized by large s waves and a small p 
wave. These solutions were considered to be physically 
uninteresting because it was thought at that time that 
the p wave should resonate at a relatively low energy. 

Figures 4 and 5 compare our s-wave results with those 
of CMN.10 As the preceding discussion might lead one 
to expect, the low-energy results are practically un-
distinguishable over a considerable range of values 
of the coupling constant. We take this as evidence that 
the CMN formulation of the scattering problem implies 
a choice of a particular interaction Lagrangian. I t has 
been pointed out elsewhere11 that the choice is made 
(in a purely ^-matrix formalism) by specifying the 
nature of the subtractions in dispersion relations for 
the scattering amplitude. 

VI. CONCLUSIONS 

We feel justified, on the basis of the foregoing 
discussion, in concluding that our calculation gives a 

FIG. 4. Compari­
son of the isospin-
zero s-wave ampli­
tudes according to 
CMN (dashed lines) 
and the present work 
(solid lines). When 
X is negative (repul­
sive) the two are in­
distinguishable. 

FIG. 5. Compari­
son of the isospin-
two s-wave ampli­
tudes according to 
CMN (dashed line) 
and the present work 
(solid line). For X 
^0.1 the two are 
indistinguishable. 

physically reasonable prediction of low-energy TT-TT 
scattering based upon a <f>4 interaction Lagrangian. 

There are now two further questions that must be 
investigated. First, does the scattering predicted from 
a <£4 interaction Lagrangian bear any relationship to 
pion scattering in the real world? And, second, is the 
coupling constant X sufficiently small that a perturbation 
expansion of the "potential" is reasonable? These 
questions are clearly related, and we must look to 
experiment for guidance. 

A comparison with experiment is very difficult to 
make at the present time. The one unambiguous 
feature of TT-W scattering that has been uncovered thus 
far is the p resonance at a total center-of-momentum 
energy of about 5.5 pion masses, and we have already 
stated that we do not expect to predict this in a low-
energy calculation. Various people have attempted to 
deduce the low-energy scattering parameters of the ir-ir 
system from experiments in which pion pairs are 
produced. Unfortunately, the theoretical bases upon 
which these deductions must rest are hardly firm 
enough to inspire much confidence in the conclusions. 
Nevertheless, the various analyses of inelastic pion 
scattering from protons are roughly consistent with 
each other and will serve to give us a first estimate of 
the coupling constant X. 

Goebel and Schnitzer12 have examined pion produc­
tion from nucleons from the viewpoint of a model based 
upon static theory, single-pion exchange, and final-
state-isobar rescattering corrections. Schnitzer13 finds 
scattering lengths (in units of X r): 

a 0 ~0.5 , a i«0.07, a2=0.16. 

Here we have chosen the Schnitzer solution that gives 
the same signs for the scattering lengths a0 and #2, as 
would be required in our calculation unless there is a 
7r-7r bound state. Batusov et al.,u using a method of 

10 The ^>-wave solutions also agree rather well. It should be 
added that the agreement is not a trivial consequence of the small 
coupling constant. Even for |X| =0.1, the X2 contributions to N 
and D (Appendix B) are substantial. 

11 A. Efremov, H. Tzu, D. Shirkov, Sci. Sinica (Peking) 10, 812 
(1961). 

12 C. J. Goebel and H. Schnitzer, Phys. Rev. 123, 1021 (1961). 
13 Howard J. Schnitzer, Phys. Rev. 125, 1059 (1961). 
14 Yu. A. Batusov, S. A. Bunyatov, V. M. Sidorov, and V. A. 

Yarba, in Proceedings of the 1960 Annual International Conference 
on High-Energy Physics at Rochester, edited by E. C. G. Sudarshan, 
J. H. Tinlot, and A. C. Melissinos (Interscience Publishers, Inc., 
New York, 1960), p. 79. 
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analysis invented by Anselm and Gribov,15 find 

a 2 - G o = - 0 . 3 5 ± 0 . 3 0 . 

Kirz et al.u have performed a Chew-Low extrapolation 
on T+p and ir~p inelastic scattering to find 

l*2|<0.15, 

| a2+2ao | —1.3. 

The latter value is roughly consistent with the results 
obtained by Arefev et at.11 in a similar experiment. 
I t is easy to see that the s-wave results are all in ap­
proximate agreement with each other. Reference to 
Fig. 1 shows that the s-wave data can be fitted by 
making the choice 

X=+0.09 . 

The corresponding scattering lengths are, then,18 

a 0 ~0.5 , 02-0.17, 0i«O.OO3. 

Let us pretend, for the moment, that our comparison 
with "experiment'' may be taken seriously. We are 
now able to see how including terms of higher order 
(in X) in the potential must affect the scattering 
amplitude if the <£4 interaction corresponds to real 
physics and perturbation theory makes sense. The 
required effect is that the s-wave amplitudes near 
threshold must remain practically unchanged although 
the behaviors at medium and high energy might be 
radially altered. The ^-wave "potential" must become 
considerably more attractive so that at least the next 
order of perturbation theory must be included before 
the ^-wave behavior begins to stabilize even at 
threshold. Whether or not these expectations are, in 
fact, achieved will be the subject of a later investigation. 

I t should be observed that the fact that the 
"measured" s-wave scattering lengths are roughly in 
the ratio 5:2 is very suggestive that the 04 interaction 
with a small coupling constant is operative in real life. 
The large p-w&ve scattering length (and the p reso­
nance), on the other hand, could prove to be un­
obtainable with the inclusion of higher order terms in 
the potential. One would then have to consider two 
other possibilities: either the Lagrangian must be made 
to contain more complicated interactions than the 
simple, renormalizable <£4, or the p resonance dominates 
the low-energy ^-wave behavior but is not itself an 
outcome of the input dynamics. The p would then have 
to be put into the theory as a CDD5 zero. 

15 A. A. Anselm and V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 37, 
501 (1959) [translation: Soviet Phys.— JETP 10, 354 (I960)]. 

16 J. Kirz, J. Schartz, and R. D. Tripp, Phys. Rev. 126, 763 
(1962); R. D. Tripp (private communication). We are indebted to 
Dr. Tripp for permission to quote his results prior to publication. 

17 A. V. Arefev, Yu. D. Bayukov, Yu. M. Zayitsev, M. S. 
Kozodaev, G. A. Leksin, V. T. Osipenkov, D. A. Suchkov, V. V. 
Telenkov, and B. V. Fedorov, in Proceedings of the 1962 Annual 
International Conference on High-Energy Physics at CERN, 
edited by J. Prentki (CERN, Geneva, 1962). 

18 Interestingly enough, the calculations of Moffat (Ref. 2) as 
well as those of CMN would give about the same values for this 
choice of A, 
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APPENDIX A 

I t is well known to dispersion theorists that the 
results of conventional Feynman-Dyson perturbation 
theory may be obtained from repeated application of 
unitarity and crossing symmetry.19 However, since some 
of our non-dispersion-oriented friends seem to be 
unfamiliar with the technique, we thought it worthwhile 
to give it additional publicity by writing down the 
details of our second-order calculation. 

The starting point of this exercise rests upon the 
assumption that each term of perturbation theory 
satisfies the analyticity properties exhibited by the 
Mandelstam double-dispersion representation.8 We 
then deal with the renormalization question by specify­
ing the values of the three isospin amplitudes at the 
symmetry point as given by Eq. (3). This is the lowest 
order approximation. 

The amplitudes A1 are chosen to obey the elastic 
unitarity condition. (We do not discuss inelastic 
processes which enter into the fourth-order expressions 
for the elastic amplitudes.) This condition is 

ImA1^2, cos0) 

= — /dtoiAttf, cos0iMJ*(?2, cos0')0(?2), (Al) 

where 
cos0'= cos0 cos0i+sin0 sin0x cos<£i, (A2) 

and co is the energy of a ir meson in the barycentric 
system. The step function 6(x) is unity for positive 
argument and vanishes otherwise. 

We now insert the expressions from Eq. (3) on the 
right-hand side of Eq. (Al) to obtain the second-order 
expressions for the imaginary parts of the amplitudes 
on the positive energy axis. From our knowledge of the 
analytic properties we are enabled to write the contri­
bution of the second-order amplitudes as dispersion 
relations in the variable s [Eq. (2a)] to obtain ampli­
tudes that satisfy two-particle unitarity (to order X2) 
but not crossing symmetry. Changing over to the 
Mandelstam variables we have 

A°(s,t,u) = 5X+25\2F (s), (A3) 

4 1 (*,*,«) = 0, (A4) 

A2(s,t,u) = 2\+4:\2F(s)J (A5) 

where F(s) is defined by 

s—sQ r dsr A? ' -4 \ 1 / 2 

F(s) = / ) , (A6) 

19 Stanley Mandelstam, Phys. Rev. 115, 1752 (1959). The 
possibility that this could be done was suggested by J. S. Toll, 
dissertation, Princeton University, 1952 (unpublished). 
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and the subtraction at the symmetry point SQ has been where 
introduced because the value of the amplitude at this /$\ / 1 5 \ 
point has already been specified (the renormalization « j = ( J, j3/=2( J, v=<?2, ^u= — h (B3) 
condition). \ 2 r ^9J 

The final step in deriving the set of equations (4) and 
is to make the amplitudes crossing-symmetric (but / v \1/2 / [ ^ / ( ^ + l ) ] 1 / 2 + l \ 
no longer unitary). Crossing symmetry and the Pauli h(v) = Ke[ — ~ ) m l i, , 1\-|i/2_JT7)' 
principle require that A0 and A2 be symmetric and A1 v L / \ JJ 
antisymmetric in the variables t and u. Further, r™ A7 , ~ , , , , ,, . . . T 4 „ J « U , 

J ' The N and Z) are related to the scattering amplitude by 
A°(tys,u) = ±tA0(sM)+3A1(s^u)+5A2(s,t,u)']. (A7) 

/ v \1 /2 

Equations (4) are readily obtained from this. ( ) Cot50
J=ReD0

I(v)/N0
I(v)y v>0. (B5) 

\v+lJ 
APPENDIX B 

We record here the N and D equations and their For the case of the £-wave amplitude we have 
relation to the amplitudes. 

For t h e , waves, R e Z > l W = l - 5 / - V [ ° - ¥ — 

R e Z V M = l + -

XZ>i(-"')(—^J [>(-" ' ) -*«] 
/ X \ 2 /"» <2e'Z>(-

+ / 3 i ( - ) ( c - « ' o ) / 
\w/ Ji (v'+v)(v' i ^o/ r- 2 /—1 "1 

/ / - h i « X 1 — * ( - * ' ) , (B6) 

X[A(-/)-*W](—J L V J 

X 1 , (Bl) T Jx . 'V+") V „' / 
L 2 / J 

v-va f dv'D(-v') / / - 1 \ 1 / 2
 vfi 2 / ~ 1 / ^ ,^1 

V+W+»)\ * > and 

X I L (B2) ) cot51=Re , x>0 . (B8) 

L lv' J V+ l / LiV0)J 


