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The scattering amplitude for processes in which either the initial (or final) state involves a single particle
plus a bound group is split into direct and exchange parts. It is shown that these can be determined from the
direct wave function for the initial (or final) state, which satisfies a single-particle differential equation
without exchange, and the asymptotic plane-wave part of the wave function of the final (or initial) state.

1. INTRODUCTION

N a preceding paper! it was shown that the NV to N+41
particle amplitudes (units z=2m=1)
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have the form
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where ¥, is invariant under translations in velocity
and configuration space. The Fourier transforms

Y (x) = (255 / explk®ik ()

satisfy the set of differential equations
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Here v, (x) is the invariant potential defined in Ref. 1,
and &, and & are the internal energies of states « and
B, respectively. The boundary condition on ¥es(x) for
continuum states 8 is
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lim Yapin(x) = @apin(x)+outgoing spherical waves,
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where ¢qgio(x) is the plane-wave part of Yusin(x). The
functions ¢.s(x) are given in I for some states « and B.
As was noted in I, the (anti)symmetry of the system
can only be imposed on the continuum functions
Yas(X) by using the exact form of ¢.s(x), since the usual
coordinate (anti)symmetrization procedure cannot be
applied owing to the fact that Y,s(X) may contain as
few as one of the N1 particle coordinates. For bound
states the (anti)symmetry is ensured by selecting only
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1 M. Bolsterli, Phys. Rev. 129, 2830 (1963), hereafter referred
toas I.

those bound-state solutions of (4) which satisfy a
supplementary condition given in I. Bound states will
not be considered further in this paper.

In Sec. 2, the integral equations for the invariant
amplitudes are given. Section 3 gives the derivation of
a new expression for the scattering amplitude or T
matrix. Section 4 contains a discussion of the results.

2. GREEN’S FUNCTIONS AND INTEGRAL
EQUATIONS

It is useful to transform (4) into a set of integral
equations, by using the Green’s functions Gy (x,X’; E)
defined by

N+1
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Here « and vy are N-particle internal states and 1,7 is
the generalization of the unit matrix in the subspace of
N-particle internal states:

Svla'yf*/:fw (7)

Note that Ggg is zero if « and v are different types of
states; that is, G,y is zero unless a and v contain the
same sets of bound groups. Only the relative momenta
can differ in « and v. Note also that no (anti)symmetry
conditions are imposed on G, since the requirements of
(anti)symmetry can only be imposed on y,s(x) through
its asymptotic form. G is the invariant analog of the
usual (E—H(=310)"'. With the Green’s function of
(6), Egs. (4) become

Vit 8, — (E:i:iO)]Ga.,i“"’“‘(x,x’ ; E)
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An equation similar to (8) holds with “in” replaced
by “out” throughout.

Now consider the special case that fi* is the internal
state bp™ consisting asymptotically ({— — «) of N-
particle bound state & plus a single incident particle
with relative momentum p. As shown in I (upper and
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lower signs for fermions and bosons, respectively)

@a,bpin(X) =04,5(2m) 32 ) (9a)
Pyingin,ppin(X) = (F) (2m) 2NN (=p) x
o N1
e
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where @ is the N-particle bound state @, and yi*qi® is the
internal state consisting asymptotically of N—1
particles in internal state v'* plus a single particle with
relative momentum q [if 4'® contains any asymptotic
single particles, then a slight modification of (9) is
required]. It follows from the linearity of (4) that it is
possible to split Yu,spi=(X) into two parts corresponding
to the two asymptotic plane waves (9a) and (9b):

Ve bp'® (X) = ‘//Da bpi® (X) Fyix, bp i“(x)a

where YPpyin and ¢, both satisfy (4) with boundary
conditions
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~+outgoing spherical waves, (11a)
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Here yPyyin(x) is the invariant analog of the usual
direct wave function. It is the invariant amplitude that
would describe the scattering by bound state & of a
distinguishable particle with the same mass and inter-
actions as the NV particles making up the state 4. The
function ¥¥%,,i(x) is just the difference between the
total wave function and this direct wave function.

In general, a continuum-state amplitude has as
many distinct plane-wave parts as there are types of
bound groups in its asymptotic part, and it can be split
into’ the same number of independent parts each
obeying (4) and a boundary condition like (11a) or
(11Db).

3. A FORM FOR THE SCATTERING AMPLITUDE

Corresponding to the splitting ¥, =¢P s, FYE*y,, the
T matrix for elastic scattering, which, according to 1, is

(0| T|50)=%5,5p(q)
= (2m)~%2 / € XS, 0py (X)Pypp = (X)dx,  (12)

can be split into direct and exchange parts:

(bq| T |bp)=(ba| T'|bp)pF(ba| T|bp)ux,  (13)
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with
(bq| T'|bp)p,Ex

=(27")—3/2/ e_iq'xs'r'vb'v(x)\pD’Ex'rbp‘“(x)dx- (14)

The exchange amplitude can be written in another
form by using the integral equation (8), which will be
abbreviated

!PD’Exbpin: ¢D,Exbpin+Ginv¢D,Exbpiu_ (15)
Iteration gives
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where v'=v and G*=G°"t have been used. According
to this result, the exchange part of the elastic scattering
amplitude can be obtained without solving the differen-
tial equation for the exchange function ¢®*. Only the
plane-wave part ¢®* of y¥* is required, together with
the potential » and the direct function ¢°.

An analog of Eq. (17) holds also for inelastic ampli-
tudes. Consider the general 7T-matrix element for a
process in which the final state is dp, the initial state
is 7; such a process will be called a single-particle
process:

(bp| T |d)= (2m)=22S, / % € 04y (X)ysin(X)

=Soy / axX @5, ppout (X) ey (X0 (X)
=/ SDD*bPoutwiin’ (18)

where the last form is in the abbreviated notation.
Again

Y= (14+Grp+GroGing4- - - - ) pyin, (19)

and hence,

0| Ti)=Sya f AXPP", oot (X)030 (X) 2o (%),  (20)
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so that, again, only the plane-wave part of the functions
Yaiin(X) is required.

4. DISCUSSION

The result of all this is that the only differential
equation whose solution is required in order to deter-
mine the 7-matrix elements for single-particle processes
is that for the direct elastic invariant function. Only
the plane-wave parts of the other invariant functions
are required. These latter are known functions in-
volving form factors for fewer than NV4-1 particles, and
can be obtained by the methods given in I.

This simplification is analogous to the result, known
from consideration of the full N¥41 particle wave
function Wyyin o(X1- - *Xn41), that only the direct wave
function, i.e., that solution of HV=E¥ with asymp-
totic form

. b 0% SRR +XN+1

is needed, since the exchange parts of the wave function
can be generated by applying permutation operators
to the direct wave function. Equation (20) is essentially
the invariant part of the result of the permutations,
with a considerable amount of regrouping of terms, of
course.

In terms of a more standard formulation, it is clear
that (20) is the invariant analog of

pr.i=/ \I/bp(—')*V‘I),‘, (21)

where the equality of (20) and (21) follows from first
replacing V by H—E, as specified by Ekstein,? and then
noting that both ¥,,™* and (H— E)®; are (anti)sym-

2 H. Ekstein, Phys. Rev. 101, 830 (1956).
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metric, so that ¥,,* can be replaced by its un-
symmetrized part ¥P*,,¢). An advantage of the present
derivation is that the kinematics of the center of mass
has been extracted in advance.

Note that (18) and (20) resemble the “post” and
“prior” interaction forms of the scattering amplitude
in the noninvariant form; they differ from the latter
in the treatment of exchange. When the scattering
amplitude for a single-particle process is expressed in
terms of invariant functions, it is seen that the same
potential appears in both (18) and (20), although not
all matrix elements v, are the same in both. However,
there is absolutely no “post-prior” ambiguity in Born
approximation for single-particle processes:

(60| T por= (27)925, / dx e 50 () gain(x),  (22)

which follows from either (18) or (20). The “post-
prior” ambiguity can only occur in the noninvariant
form of the Born approximation for these processes.

It is perhaps worth noting that (20) is quite useful,
since it involves the “best” of both the single-particle
state bp and the initial state, namely, only the direct
part of ¥4, and only the plane-wave part of y;i». Hence,
exchange can be treated exactly by first calculating the
function y¥P., the equation for which involves no
exchange, and then using only the asymptotic part of
¥, but with exchange treated correctly.

ACKNOWLEDGMENTS

The author thanks Professor Niels Bohr (now
deceased) and Professor Aage Bohr and the members
of the Institute for the hospitality of the Institute for
Theoretical Physics. Grants from the University of
Minnesota and the Institute for Theoretical Physics are
gratefully acknowledged.



