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It is shown that the tensor virial theorem and certain generalizations of it are satisfied by optimum energy
variational wave functions in which the variational parameters are elements of a square matrix that scales

the column matrix of particle coordinates.

I. INTRODUCTION

T has been shown by Epstein and Hirschfelder! that
a sufficient condition for an optimum energy varia-
tional wave function ¥, to satisfy the hypervirial

theorem
(‘II();EW,H]\I/O) =0 (1)

is for the trial function ¥ to admit variations of the
form 0V/da=1/AW¥, where H is the Hamiltonian
operator, W is an Hermitian operator, « is a variational
parameter, [W,H |=WH—HW is the commutator of
W and H, and (¥,®)=/¥*®dr is the overlap integral
between the two functions ¥ and ®. The energy E, of
course, is defined by the relation

E(V,%)= (¥,HY). (2)

Fock? showed that if a parameter is introduced into
an approximate wave function in such a way that all
distances are scaled, and if the parameter is varied so
as to obtain the optimum energy, then the correspond-
ing optimum function satisfies the familiar virial theo-
rem to which Eq. (1) reduces? for W =124 (x,;p i+ P pi%5s)-
Here, and henceforth, x,;is the jth Cartesian coordinate
for the pth particle of an N-particle system, and we
use the summation convention that repeated Greek
subscripts are summed from 1 to N while repeated
Italic subscripts are summed from 1 to 3. Fock’s
original proof requires that the potential for the system
be a homogeneous function of the coordinates, but
Epstein and Hirschfelder have given a proof which
does not depend upon the nature of the Hamiltonian.
We shall give an alternative proof to that of Epstein
and Hirschielder and shall then give a generalization
of Fock’s result, showing that the tensor virial theorem*
and certain generalized tensor virial theorems are
satisfied by optimum energy variational wave functions
in which the variational parameters are elements of a
square matrix which scales ‘the column matrix of
particle coordinates. Epstein. and Hirschfelder have
given a formal variational function such that the opti-
mal function satisfies the hypervirial theorems for
several W’s simultaneously. Our matrix scaling gives
the explicit functional form of these formal functions
for W’s which correspond to tensor virial theorems.
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II. SCALING AND THE VIRIAL THEOREM

If ¥=¥(y,;) where y,;=Ax,;, then the coordinates
%,; are said to be scaled by the parameter A. Notice that

ov oY dy,; ¥
— 2, ®
A 9dy,; OA 9y,

and similarly

OV IV Iy, OV
e 2T @)
0xp;  0Y0; 0%p5  0Yy5

Upon using Eq. (4) to eliminate the quantity d¥/dy,;
from Eq. (3), we obtain the identity

o ov
A—=x,—. ®)
oA 6x,,,~

Consider the result of optimizing £ with respect to
the (real) parameter A. Upon applying the operator
Ad/0A to both sides of Eq. (2), differentiating under
the integral sign, and then using Eq. (5). we obtain

av¥ v
(e Y (w0,

axpj axﬁj
0FE ov o
=A~—(\I/,\I/)-I—E(x,,,-—,\l/)+E(\I/,x,,j—>. (6)
JA Xpj ax,,j

If we multiply Eq. (6) by #% and recognize that (%/4)d/
9x,; is just the momentum operator p,;, we have

(%00 ps%, HY) — (¥, Hix o ,;¥)
oL
= ’hA(;X (\I’:\I’) +E (xprpJ"Ily‘Ij) —E (‘I’»xijpj‘I’)- (7)

It follows from the fundamental commutation relations
that w,p,;=W—+ih3N/2, where W =3 (x,;p o5+ ppite)-
Upon substituting this expression for x,;p,; into Eq.
(7) and using Eq. (2) and the fact that W is Hermitian,
we obtain the identity

oL
O0A

It is clear from Eq. (8) that if A is varied so as to opti-
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mize E, then the corresponding optimum energy func-
tion ¥, satisfies the virial theorem.

III. MATRIX SCALING AND TENSOR
VIRIAL THEOREMS

If U=Y(y,;) where y,;=Aux., (same Aj for all p),
then we say that the column matrix of each particle’s
coordinates is scaled by the third-ordered square
matrix [Aj; ]. Notice that

oV 9V dy,; OV
— ©
(‘)Ain 6ypj 6Am ay,”

and similarly

oY 9V dy,;  O¥

(10)

= me

0% pm  0Yoj O%pm  OYpj

Upon multiplying both sides of Eq. (10) by the element
Ani! of the inverse matrix to [Am, ], we have

o oV
e (11)
aym’

If we substitute this expression for d%/dy,; into Eq.
(9) and multiply the result by A;;, we obtain the identity

oV v
Nj—=%pp—.
aAm axpj

(12)

An obvious generalization of the derivation given in
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Sec. IT leads to the identity

JoE
ZﬁAua_—(\Ily\I,)z (\I/,[W"J’H:]\I,)y (13)

in

where W,;=2%(%onppit PpiXon). For this W, Eq. (1) re-
duces to the tensor virial theorem which has been
discussed by Parker.* Hence, it is clear that if the nine
elements of the matrix [A;,] are varied independently
so as to optimize E, then the corresponding optimum
energy function ¥, satisfies the nine relations of the
tensor virial theorem.

IV. GENERALIZATIONS

It is easy to show that if ¥=W¥(y,) where v,
=A,jok%er, and if each of the 9N? elements of the
matrix [A,q;| are varied independently so as to opti-
mize E, then the corresponding optimum energy func-
tion ¥, satisfies the hypervirial theorems for the 92
operators Woon=3 (%pipert Poctp;)-

However, for a system of identical particles, these
operators are not observables, since they do not com-
mute with the general permutation operator P. There
are eighteen independent linear combinations of the
W .o that commute with P. Nine of these are just the
W .; of Eq. (13). The other nine are the operators W ,;
=13 s oW sonj. It is clear that the hypervirial theorems
corresponding to W ,; express a correlation between the
position of one particle and the momenta of another.
It is not difficult to prove that if one sets A,; equal to
Aagjr for p7#o and a%B, and sets A, x equal to Agqje
(no summation on p and ¢), and if each of the eighteen
independent elements of the matrix [A,,; | are varied
so as to optimize E, then the corresponding optimum
energy function ¥, satisfies the hypervirial theorems for
the eighteen operators W,; and W ;.



