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The "shell model" of an alkali halide is extended to take into account short-range forces between both 
first- and second-nearest neighbor atoms in the crystal, the polarizability of both ions, and the possibility 
that the ionic charge may be less than one electronic charge. The arbitrary parameters of the model have 
been obtained by means of a least-squares fit to the measured dispersion relations for the lattice vibrations, 
the dielectric constants, and the elastic constants. For Nal and KBr, models have been found which give 
excellent agreement both with these measurements and with measurements of the specific heat. This good 
agreement is, however, obtained only when the simple shell-model concept of the ions is to some extent 
abandoned. The reasons for this, and the connection with work of other authors, are discussed. 

I. INTRODUCTION 

IN earlier papers of this series, we described1'2 experi­
mental studies of the lattice vibrations in sodium 

iodide and in potassium bromide, carried out using the 
technique of neutron spectrometry. I t was shown that 
the well-known rigid ion model,8 originally due to Born, 
was inadequate to explain the experimental measure­
ments. When, however, the polarizability of the nega­
tive ion was taken into account by using the "shell-
model" formalism, greatly improved agreement with ex­
periment was obtained though important discrepancies 
remained. 

In this paper, we present computations based on more 
complicated shell models, which include the effects of 
(a) short-range interactions between second as well as 
first nearest neighbors, (b) arbitrary ionic charge, and 
(c) the polarizability of positive, as well as of negative, 
ions. With the more complicated models extremely good 
agreement was obtained with the neutron measure­
ments, with the elastic and dielectric constants, and 
with the measured specific heat. 

Although the shell-model formalism has been used 
throughout, the parameters obtained for the best 
models cannot be given a reasonable physical interpreta­
tion on this basis. We discuss later whether this may be 
an inadequacy of the dipolar approximation, to which 
the shell model is equivalent. Detailed comparisons are 
made with the methods of Tolpygo et aL4 and of Hardy,5 

which also involve the dipolar approximation. 
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II. THEORY AND RESULTS 

1. Basic Theory of the Models 

The model, used in the preceding papers,1,2 includes 
central short range forces between nearest neighbors, 
Coulomb forces between all the ions, and allows the 
negative ion to become polarized during the lattice vi­
brations. The three arbitrary parameters are then de­
termined by the dielectric constants and one elastic 
constant. A brief discussion of the basic theory will be 
given before discussing the parameters required to 
specify more complicated models. 

For crystals in which the energies of the electronic 
transitions are much larger than the energies of the 
lattice vibrations, as is the case for the alkali halides, 
the well known adiabatic, harmonic and electrostatic 
approximations to the equations of motion are adequate. 
When the ions are displaced, the forces between them 
are calculated from the change in the potential energy 
of the crystal. This change arises in part from the dis­
tortion of the electronic wave functions, the energy of 
which is calculated from the electric moments produced 
on the ions. The shell model is a first approximation, in 
which only the dipole moments are included, and these 
are placed at the centers of the ions. Six degrees of free­
dom, three from the displacement, and three from the 
dipole moment, are now associated with each ion in the 
crystal and, in general, there will be coupling between 
all of them. The forces are calculated by dividing the 
interactions into (a) long-range Coulomb forces be­
tween point dipoles; these are calculated using the di-
mensionless coefficients introduced by Kellermann,6 and 
(b) short-range repulsive forces between neighboring 
ions. The equations of motion are then, in matrix 
notation, 

mco2U= (R+ZCZ)U+ (T+ZCY)W, (1) 

0 = ( T T + YCZ)U+ (S+YCY)W. (2) 

6 E . W. Kellermann, Phil. Trans. Roy. Soc. (London) A238, 
513 (1940). 
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R, T, S are the matrices specifying the short-range in­
teractions, while C is the matrix of Coulomb coefficients. 
(TT is the transpose of T.) m, Z, and Y are diagonal 
matrices representing the mass, ionic charge, and the 
charge on the shells. U and W are vectors; U is the 
amplitude of the displacements of the ions, while YW 
is the electronic dipole moment on the ions.7 

The number of independent parameters in the theory 
is most easily discussed by considering a wave propa­
gating in a symmetry direction. The interaction 
matrices are then of dimension (2X2), and can be 
written1 in the form 

C 
c 

/Tu+AH 

\R2i~hZlZ2C21 i?22"f"^2 C22 

T u + Z i F i C u Tu+Z^di 

^Tzr^-ZzYxC-n TzrVZiYiCi.?. 

'Tn+h+YSCu Sxz+YxYzCu 

1F2C21 r 2 2 + ^ 2 + Y£Cn 

J, (3) 

) , (4) 

) • (5) 

I t is convenient to express the equations in terms of 
quantities which are more physically meaningful than 
the core-shell force constant k and shell charges F . 
These quantities are the electrical polarizabilities of the 
ions, 

F i 2 

a i = - a2 = -
ki+(Tu)o ^2+(^22)0 

and the short range or mechanical polarizabilities, 

(6) 

(r11)0F1 (r22)0F2 

di=-——, rf2=——^—• (7) 
*i+(ru)o &2+ (^22)0 

The expression (Tii)o is the matrix element Tn when 
the wave vector, q, is zero. The invariance of the crystal 
under translations requires, 

(#11)0= (^22)0= — (#12)0= — (^21)0, 

( r u ) o = - ( 2 u ) o , (8) 

(^22)o== — (^12)0. 

Since both the charges, Y, on a shell and the displace­
ments, W, have been introduced to specify one physical 
quantity per ion, viz.,its electronic dipole moment, there 
are two parameters which are not independent. We have, 
therefore, chosen to set 

(^11)0= (^22)0= (i^n)o (9) 

Two parameters are needed to specify the nearest 
neighbor short-range forces and three for the second 
neighbor forces between the negative ions. In general, 
these parameters will be different for the different types 

of short-range interaction, R, T, and S, subject to the 
restrictions imposed by Eq. (9). Fifteen independent 
parameters are needed to specify these forces and so 
physically reasonable assumptions were sought which 
would reduce this number. 

The R and T matrices were chosen to be identical at 
q = 0 [Eqs. (8) and (9)]. We now further assume that 
they are the same for all wave numbers. The S matrix 
is also assumed to be of the form S = YSR, where ys is 
a constant. Although there is no complete justification 
for the above assumptions, they appear plausible from 
the shell-model point of view. The polarizability arises 
from the relative motion of the outer electrons and in a 
shell model these motions are represented by the motion 
of the shells. The short-range interaction is expected to 
act mainly through these outer electrons, and the above 
approximation, together with the assumption that 
7S = 1 , are equivalent to assuming that all the short-
range interaction acts through the shells. The validity 
of this approach will be further discussed in Sec. I l l 2. 

The short-range interactions may now be calculated 
in terms of the derivatives introduced in the earlier 
paper.1 Nearest neighbor forces are specified by 

/d2V12\ j2A /dWu\ 

\ dr2 / „ 2v' \ dr2 A 

e2(B+B") 
(10) 

where B is defined by 

7 W. Cochran, in Advances in Physics, edited by N. F. Mott 
(Taylor and Francis Ltd., London, 1961), Vol. 10, p. 401. 

1/<3F\ e2B 

Adr/u 2v' 

and B" — 0 if the forces are central forces. The second-
nearest neighbor forces were assumed to be specified by 
two parameters. These were defined by 

/d 2 F 2 2 \ (?Af / a 2 F 2 2 \ e2B' 

\ dr2 / „ 2v ' \ dr2 A 2v ' 

B and B' were then related by the equilibrium condition 

B+2B'=-&MZ2, 

where au is the Madelung constant. 
As simplified above, the model now has ten arbitrary 

parameters; five short-range force parameters, A, B", 
A'B', 7S, two crystal polarizabilities ai, a2, two short 
range polarizabilities dh d2, and the ionic charge, Z. In 
fact, we found that quite large changes in the parameter 
7S had little effect on the results, and we set Y « = 1 
throughout the final iterations. The model then cor­
responds physically to polarizable atoms with a short-
range interaction extending to second-nearest neighbors 
but involving only the outer electrons. Models which 
involve the various possible combinations of these 
parameters were fitted by a nonlinear least-squares 
analysis to the dispersion relations in symmetry direc­
tions,2 and to the experimental measurements of the 

file:///R2i~hZlZ2C21
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TABLE I. The parameters involved in each model. F represents a parameter which was allowed 
to vary during the least-squares fitting analysis. 

Model 

I 
I I 
I I I 
IV 
V 
VI 

Nearest 
A 

F 
F 
F 
F 
F 
F 

Short-range 

neighbors 

B" 

0 
F 
F 
F 
F 
F 

forces 

Second-nearest 
neighbor 

A' 

0 
F 
F 
F 
F 
F 

B' 

0 
F 
F 
F 
F 
F 

Ionic 
charge 

Z 

1 
1 
F 
F 
F 
F 

Electrical polarizability 
positive ion 

« i 

0 

o 
o F 
Ca 

F 

negative ion 
CL2 

F 
F 
F 
F 
F 
F 

Short-range 
positive ion 

di 

0 
0 
0 

CL\(l<2.l&<L 
F 
F 

polarizability 
negative ion 

d% 

F 
F 
F 
F 
F 
F 

* C denotes the crystal polarizability, which was taken from a compilation by Born and Huang (see Ref. 10). (For KBr, a\ =1.13; for Nal, ax =0.28.) 

TABLE II . The results of the least-squares analysis for potassium bromide at 90 °K. 

Model 

I 
II 
III 
IV 
V 
VI 

Nearest 
A 

13.15 ±0.36 
13.61 ±0.08 
12.30 ±0.17 
11.74 ±0.34 
13.21 ±0.41 
13.15 ±0.27 

Short-range forces (units e2/2v) 
neighbors Second-nearest neighbors 

B" A' B' 

-0.064 ±0.053 
-0.054 ±0.031 
-0.055 ±0.042 
-0.011 ±0.027 
-0.034 ±0.021 

-0.496 ±0.076 
-0.091 ±0.067 

0.078 ±0.117 
-0.411 ±0.152 
-0.399 ±0.101 

-0.079 ±0.048 
-0.042 ±0.031 
-0.183 ±0.075 

0.046 ±0.029 
0.054 ±0.027 

Ionic charge 
Units elec­

tronic 
charge 

Z 

0.896 ±0.014 
0.832 ±0.035 
0.969 ±0.028 
0.965 ±0.020 

Electrical polarizability 
(10-24 c m 3 ) 

Positive Negative 

1.05 ±0.35 

2.12 ±0.21 

5.21 ±0.77 
3.98 ±0.17 
3.81 ±0.11 
3.70 ±0.39 
3.92 ±0.09 
3.05 ±0.20 

Short-range polarizability 
(electronic charge) 

Positive Negative 
di dz 

0.301 ±0.093 
0.244 ±0.019 
0.187 ±0.014 
0.192 ±0.023 

-0.076 ±0.02 7 0.186 ±0.014 
-0.101 ±0.20 0.141 ±0.014 

Ratio of 
error of 
model to 
estimated 

experi­
mental 
error 

55 
2.15 
0.71 
1.22 
0.50 
0.28 

TABLE III . The results of the least-squares analysis for sodium iodide at 100°K. 

Models 

Short-range forces (units e2/2v) 
Nearest neighbors Second-nearest neighbors 

A B" A' B' 

Ionic 
charge 

(electronic 
charge) 

Z 

Electrical polariza­
bility (10-24 cm') 

Positive Negative 

Short-range polarizability 
(electronic charge) 

Positive Negative 
di dz 

Ratio of 
error of 

model to 
estimated 

experi­
mental 
error 

I 
I I 
I I I 
IV 
VI 

11.43 ±0.12 
11.12±0.18 
8.93 ±0.25 
7.77 ±0.19 
9.94 ±1.03 

-0.171 ±0.213 
-0.102 ±0.110 
-0.051 ±0.076 
-0.026 ±0.068 

0.440 ±0.287 
1.058 ±0.157 
1.33 ±0.112 
0.618 ±0.379 

0.037 ±0.150 
-0.164 ±0.077 
-0.371 ±0.061 
-0.041 ±0.064 

0.806 ±0.023 
0.662 ±0.02 
0.890 ±0.077 

2.74 ±0.33 
1.98 ±0.32 

6.59 ±0.39 
6.30 ±0.36 
5.87 ±0.20 
3.30 ±0.28 
4.34 ±0.14 -0.112 ±0.076 

0.322 ±0.037 
0.315 ±0.033 
0.201 ±0.024 
0.116 ±0.027 
0.136 ±0.021 

15.4 
11.0 
2.92 
1.40 
0.97 

elastic8*9 and dielectric constants10 of sodium iodide and 

potassium bromide. 

The numerical work was performed using the Edsac 

I I computer at the Cambridge University Mathematical 

Laboratory. 

2. The Results of the Fitting 

The parameters of the models, which were obtained 

by the least-squares analysis described in the previous 

section, are summarized in Tables I, I I , and I I I . Table 

I lists some of the models which were used, and specifies 

the parameters which were allowed to refine in each 

8 R. N. Claytor and B. J. Marshall, Phys. Rev. 120, 332 (1960). 
» J. K. Gait, Phys. Rev. 73, 1460 (1948). 
10 M. Born and K. Huang, Dynamical Theory of Crystal Lattices 

(Oxford University Press, New York, 1954), Table 17, p. 85. 

model. Tables I I and I I I present the results of the 

computations for potassium bromide and sodium iodide, 

respectively. The error of a model is the weighted sum 

of squares of the deviations from the experimental 

measurements, and this is compared with the estimated 

experimental error. The more striking features of some 

of the models are described in this section. 

a. Model I 

Model I, the simplest, was used previously1,2; only 

the negative ion is polarizable, and only central nearest 

neighbor short-range forces are included. The iterations 

gave results very similar to those obtained when the 

three parameters were fitted to the dielectric and elastic 

constants, as described in the companion paper.2 The 

error is 16 times the estimated experimental error for 
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FIG. 1. The dispersion relations for potassium bromide in the 
[00f], [ffO], and [f t?] directions at 90°K. The dashed curves 
have been calculated using Model I I and the solid curves using 
Model VI. 

sodium iodide and 54 times for potassium bromide. 
The error for potassium bromide largely comes from a 
25% error in the elastic constants Cu and cu- The dis­
persion curves for these models are substantially similar 
to those shown in Figs. 1 and 2 of Ref. 2, and consider­
able discrepancies are observed, particularly for the 
longitudinal optic branches. 

b. Model II 

The inclusion of second neighbor forces, and non-
central first neighbor forces considerably improves the 
model; the error for potassium bromide is now reduced 
to only 2 | times the estimated experimental error, 
though for sodium iodide, it is still 10 times the experi­
mental error. Good agreement is obtained with the 
elastic constants, but the dispersion curves still show 
considerable discrepancies, Figs. 1 and 2. 

c. Model III 

The ionic charge was included as a variable parameter 
in this model and a considerable decrease in the error 
resulted; a factor of three decrease for potassium 
bromide and of four for sodium iodide. The elastic 
constants are in good agreement with experiment and 
the agreement with the dispersion curves is considerably 
improved. The parameters of the models have now 
changed considerably; the nearest neighbor forces are 
reduced by 10% for potassium bromide, and by 20% 
for sodium iodide, while the ionic charges are suspi­
ciously low, 0.9 and 0.8 electronic charges, respectively. 

d. Model IV 

The polarizability of the positive ion was introduced 
in three different ways. Hanlon and Lawson11 have sug­

gested that the charge on a shell is the same for 
both atoms. In the present notation this leads to 
ai/a2—di/d2. The electrical polarizability of the posi­
tive ion, ah was treated as a parameter while d± was de­
termined from the above relation. This resulted in the 
ionic charge being still further decreased, to 0.83 for 
potassium bromide and to 0.66 for sodium iodide. The 
electrical polarizability a± turned out to be almost ex­
actly the crystal polarizability quoted by Born and 
Huang9 for potassium bromide, but considerably larger 
than the value quoted for sodium iodide. The fitting error 
for sodium iodide was slightly lower than for Model III, 
but for potassium bromide, it was rather larger, even 
though Model III has one less arbitrary parameter. 

e. Model V 

An alternative way of introducing the positive ion 
polarizability is to fix the electrical polarizability of the 
positive ion to its quoted value,10 and to allow the 
parameter d\ to vary. This gives very good agreement 
with experiment; for potassium bromide the error turns 
out to be just half the experimental error. The ionic 
charge was 0.97 for potassium bromide, and the nearest 
neighbor forces increased correspondingly. The short-
range polarizability of the positive ion was, surprisingly, 
negative. For sodium iodide the model was substantially 
the same as Model III. 

/ . Model VI 

The best agreement with experiment was obtained 
when all the parameters were allowed to vary; the excel­
lent agreement obtained with the experimental dis­
persion curves in symmetry directions is shown in 
Figs. 1 and 2 and the agreement with the experimental 
elastic and dielectric constants is shown in Table IV. 
The error is only one quarter of the estimated experi­
mental error for potassium bromide and just equal to 

[oo.fl 

[0,0,0] 

RCO] MODEL II 
MODEL VI 

•[OOflL, [£C0]T,[tCC]T 
°[00£]T, [U0]L,[CCC]L 

[CCt ] 

£- [0,0,011,1,0] — £ [0,0,0] £ ~ . [ iuf] 

REDUCED WAVE VECTOR COORDINATE, £ 

11 J. E. Hanlon and A. W. Lawson, Phys. Rev. 113, 472 (1959). 

FIG. 2. The dispersion relations for sodium iodide in the [OOf], 
CrrO], and [f t?] directions at 100°K. The dashed curves have 
been calculated using Model I I and the solid curves using Model 
VI. 
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TABLE IV. The dielectric and elastic constants, polarizability of the ions and volume of the unit cell for potassium 
bromide and sodium iodide. The experimental measurements are compared with those calculated using Model VI. 

Potassium bromide 
Experi- Model 
mental (VI) 

Sodium iodide 
Experi- Model 
mental (VI) Remarks 

Elastic constants 
(1012 dyn/cm2) 

Cu 
C12 
Cu 

High frequency dielectric 
constant 

Polarizability of the ions 
(lO-^cm3) 

a2 

Volume of unit cell 
(10~24 cm3) 

v=2r0
z 

0.398 
0.056 
0.052 

2.33 

1.13 
4.12 

0.398 
0.0552 
0.052 

2.33 

2.12 
3.05 

0.353 
0.0825 
0.0767 

2.91 

0.28 
6.41 

0.353 
0.0797 
0.0767 

2.85 

1.98 
4.34 

70.4 66.0 

The elastic constants and high-frequency 
dielectric constant were used as experi­
mental observations for the fitting and 
weighted by their estimated experimental 
errors. The experimental values were 
taken from Refs. 8-10. 

These were parameters of the model and 
the experimental values were taken from 
Ref. 10. 

Refs. 10 and 14. 

it for sodium iodide. However, the short-range polariza­
bility of the positive ions turned out to be negative for 
both potassium bromide and sodium iodide, and the 
electrical polarizability of the same ions was larger than 
the crystal polarizability.10 

The second neighbor short-range forces of potassium 
bromide are attractive. If we assume a potential of the 
form C/rn, then C and n may be calculated from the 
second neighbor parameters A1 and B\ Reasonable 
agreement is obtained with the expected size of Van 
der Waals forces. For sodium iodide the second neigh­
bor forces are repulsive and about 7% of the nearest 
neighbor forces. The repulsion presumably arises from 
the overlap of the iodine ion wave functions; the ionic 
radii10 suggest that this is likely. 

The agreement with experiment is more satisfactory 
for potassium bromide than for sodium iodide. This is 
probably in part due to the greater difficulty in per­
forming the experiments on sodium iodide, as described 
in the companion paper,2 but it is also likely that the 
model is more satisfactory for those alkali halides for 
which the ions do not differ too greatly in size or 
polarizability. 

Some of the models have been fitted to the potassium 
bromide measurements at 400 °K, and the results are 

tabulated in Table V. The same general tendencies were 
present as at 90 °K but the nearest neighbor forces were 
reduced by nearly 10%. 

3. Calculations Using the Models 

The models described above were fitted to give ex­
tremely good agreement with the experimental meas­
urements of the dispersion curves of the normal modes 
in symmetry directions, of the elastic constants, and of 
the dielectric constants of potassium bromide and 
sodium iodide. A test of these models is whether they 
give as good agreement with independent experimental 
measurements of other quantities. 

a. The Lattice Vibrations in Off-Symmetry Directions 

Measurements of the frequencies of the normal modes 
in off-symmetry directions were described in the com­
panion paper.2 Figure 3 shows the excellent agreement 
with calculations of these frequencies from the models. 
The calculated frequencies appear to be even less sensi­
tive to the details of the models than are the frequencies 
in the symmetry directions, and do not give good evi­
dence in favor of any particular model. 

TABLE V. The results of the least squares analysis for potassium bromide at 400 °K. 

Model 

I 
I I 
I I I 
I V 
V 
V I 

Nearest 
A 

11.96 ±0.32 
12.57 ±0.98 
11.10±0.31 
11.29 ±0.43 
11.88 ±0.11 
12.30 ±0.84 

Short-range forces (units e2/2v) 
neighbors Second nearest 

B" A 

0.092 ±0.070 
-0.086 ±0.053 
-0.088 ±0.062 
-0.079 ±0.052 
-0.069 ±0.048 

-0.653 ±0.099 -
-0.171 ±0.121 -
-0.224 ±0.158 -
-0.433 ±0.40 
-0.590 ±0.302 -

neighbors 
B' 

-0.061 ±0.063 
-0.173 ±0.052 
-0.140 ±0.093 
-0.088 ±0.053 
-0.065 ±0.057 

Ionic 
charge 

(electronic 
charge) 

Z 

0.888 ±0.025 
0.905 ±0.040 
0.951 ±0.072 
0.979 ±0.058 

Electrical polarizability 
(10-24 C m 3 ) 

Positive Negative 

0.07 ±0.43 

2.21 ±0.50 

5.34 ±0.95 

4.05 ±0.19 
5.06 ±0.53 
4.36 ±0.20 
3.25 ±0.49 

Short-range polarizability , 
(electronic charge) 

Positive Negative 
d\ di 

-0.058 ±0.072 
-0.124 ±0.06 

0.322 ±0.119 
0.283 ±0.030 
0.225 ±0.027 
0.265 ±0.035 
0.236 ±0.037 
0.180 ±0.038 

Ratio of 
error of 

model to 
estimated 

experi­
mental 
error 

41.7 
2.21 
1.27 
1.65 
1.12 
0.88 
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[0.4,0,0] £__ [1,0.6,0.6] [0.5,0.5,0.5] , _ • Q.°.°] 

REDUCED WAVE VECTOR COORDINATE, £ 

FIG. 3. The dispersion relations for two off-symmetry directions 
in potassium bromide at 90°K. The dashed curves have been cal­
culated using Model I and the solid curves using Model VI. 

b. The Specific Heat and the Frequency Distribution 

Before the advent of inelastic neutron scattering 
techniques, nearly all detailed lattice dynamical cal­
culations were directed towards calculating the specific 
heat of the crystal. The specific heat and frequency dis­
tributions of various models have been calculated 
using the Datatron computer at Chalk River. The 
frequencies of the normal modes were calculated at 
the 47 independent points in reciprocal space, for which 
Kellermann6 has calculated the Coulomb coefficients. 
In the region near q = 0 , the frequency distribution was 
calculated as a Debye function, so as to obtain the cor­
rect behavior of the specific heat at very low tempera­
tures. The Debye temperature at 0°K, was then the 
Debye temperature of this small element, and was cal­
culated from the model elastic constants using the 
method and table of de Launay.12 The Debye function 
was taken from a table of Beattie.13 

The specific heats of various models of potassium 
bromide and sodium iodide at 100°K are tabulated in 
Table VI together with the experimental measurements 
of Berg and Morrison.14 The frequency distributions of 
the best models are shown in Fig. 4, and the tempera­
ture dependence of the Debye temperature in Fig. 5. 

TABLE VI. The specific heat (cal/g atom) for several models 
of potassium bromide and sodium iodide at 100°K. 

Model 

I 
I I 
I II 
VI 

Experimental* 

a See Ref. 14. 

KBr 

5.0435 
5.0519 
5.0848 
5.0811 
5.0755 

Nal 

5.0474 
5.0867 
5.0773 
5.0665 
5.0465 

I t is very difficult to estimate the error in calculating 
the frequency distributions and specific heats; the 
Debye temperature is probably accurate to 3°K, but 
the finer structure of the frequency distribution is 
probably not significant. 

At temperatures other than 90 °K for potassium 
bromide and other than 100°K for sodium iodide, a 
correction should be applied to the Debye temperatures 
for the change in frequency distribution with tempera­
ture. An estimate of this correction can be obtained from 
the temperature dependence of the elastic constants, 
and the correction increases the calculated Debye tem­
perature by about 4°K at low temperatures. For po­
tassium bromide the theoretical and experimental curves 
are then within 2.5°K of each other, which is well within 
the error of the calculations. 

When this correction is applied, the curves for sodium 
iodide are also in good agreement above 4°K. Below 
4°K the calculated Debye temperature is larger than 
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12 J. de Launay, J. Chem. Phys. 30, 91 (1959). 
13 J. A. Beattie, J. Math. Phys. 6, 1 (1926-7). 
14 W. T. Berg and J. A. Morrison, Proc. Roy. Soc. (London) 

242,467 (1957). 

0 1.0 2.0 3.0 4.0 5.0 6.0 
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(b) 

FIG. 4. The frequency distribution calculated using Model 
VI of (a) potassium bromide at 90°K, (b) sodium iodide at 
100°K. 
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FIG. 5. (a) The specific heat of potassium bromide. The dashed 
line shows the Debye temperature determined experimentally by 
Berg and Morrison and the solid line calculations using Model 
VI. (b) The specific heat of sodium iodide. The dashed line shows 
the Debye temperature determined experimentally by Berg and 
Morrison and the solid line calculations using Model VI. 

value used in the calculations, quite good agreement 
with experiment is also obtained. 

Quantum-mechanical calculations16,17 of the cohesive 
energy give the electrostatic energy as the sum of three 
terms: the Madelung energy, a term from the repulsion 
of the electrons, and a term from the attraction of the 
electrons and the nuclei. Although the last two terms 
are quite large, they are of opposite sign and hardly 
contribute to the cohesive energy, but it is by no means 
obvious that these two terms will cancel when the forces 
in the crystal are calculated. 

The cohesive energy of the models has been calcu­
lated by representing the nearest-neighbor short-range 
forces by a potential C/rn, where C and n have been 
calculated from the parameters A and B. Table VII 

TABLE VII. The cohesive energy (kcal/g mole) for several 
models of potassium bromide and sodium iodide. 

Model KBr Nal 

Experimental* 
I 
I I 
I I I 
VI 

156.2 
165.5±5 
171.2±5 
137.2=fcl0 
154.5=1=10 

166.4 
167.5±5 
165.3db5 
122.5=1=10 
136.5±10 

a Reference 14. 

shows the experimental and theoretical cohesive energies 
for a number of models. Good agreement is obtained 
for the models whose ionic charge is one or nearly one, 
but for the other models the results are significantly 
lower than the experimental measurements. (The change 
in cohesive energy between 0°K and the model tempera­
tures and the neglect of the zero point energy are small 
compared with the errors of the calculations.) 

the experimental; this arises because the low tempera­
ture specific heat and elastic constants give different8 

Debye temperatures at 0°K, by 4.4±2°K. Ludwig and 
Leibfried15 have shown that anharmonic effects may 
possibly explain this. 

c. Cohesive Energy 

Very good agreement with the experimental cohesive 
energies of alkali halides has been obtained by using a 
rigid ion model of the crystal.3 By far the largest con­
tribution is the Madelung electrostatic energy, which is 
proportional to the square of the ionic charge. However, 
this good agreement does not prove conclusively that 
the ions are fully charged. For example, when the theory 
is applied to Wurtzite and similar crystals whose ionic 
charges are almost certainly much less than two, the 

16 W. Ludwig and G. Leibfried, in Solid State Physics, edited 
by F. Seitz and D. Turnbull (Academic Press Inc., New York, 
1962), Vol. 12. See also T. H. K. Barron and M. L. Klein, Phys. 
Rev. 127, 1997 (1962). 

III. DISCUSSION 

1. Models Used by Other Authors 

In the previous papers,1'2 a rigid ion model was shown 
to be inadequate to describe the lattice dynamics of 
sodium iodide and potassium bromide. The electrical 
polarizability of the ions was included by Lyddane and 
Herzfeld18 and Lundquist et a/.,19 and the importance of 
including the interaction between the polarizability and 
the short range forces was emphasized by Szigeti.20 

Detailed calculations based on models which include 
both electrical and short range polarizability have been 
made by Hardy.5 The equations of motion which he 
uses are the same as Eqs. (1) and (2) apart from the 
neglect of a term TS"-1!'27 (see Appendix). This term 

16 R. Landshoff, Phys. Rev. 52, 246 (1937). 
17 P. O. Lowdin, Some Properties of Ionic Crystals (Uppsala, 

1948). 
18 R. H. Lyddane and K. F. Herzfeld, Phys. Rev. 54, 846 (1938). 
19 S. O. Lundquist, V. Lundstrom, E. Tenerz, and I. Waller, 

Arkiv Fysik 15, 193 (1959). 
20 B. Szigeti, Proc. Roy. Soc. (London) A204, 51 (1950). 
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takes account of the short range interaction on an ion 
by the neighboring dipoles and the present authors can 
see no justification for neglecting it. The short-range 
forces specifying the S matrix are also simplified and in 
our notation the matrix reduces in symmetry directions 
to 

/ * i 0 \ 
S = ( ). (12) 

Detailed calculations have been made for sodium and 
potassium chlorides using a model which is equivalent 
to our model I, except that in our notation the R and T 
matrices were not assumed to be identical for all wave 
vectors, although they are at q=0 [Eqs. (8) and (9)]. 

Detailed calculations on sodium iodide and potas­
sium bromide have been made by Tolpygo and co­
workers.22,23 Their theory is identical with ours, apart 
from the neglect of short range dipole-dipole forces; 
i.e., the S matrix is written as in Eq. (12). In the detailed 
applications the R matrix was not assumed to be iden­
tical with the T matrix, and the models include the ef­
fects of first and second-neighbor short-range forces, the 
electrical polarizability of both ions and the short-range 
polarizability of the negative ion. The results they ob­
tain are similar to these given by our models II and III. 
The theories and notations used by these authors are 
further compared with ours in the Appendix. 

2. The Approximation R = T 

The parameters which we used to describe the models 
allow us to choose R = T at q=0. We have then made 
the further assumption that R = T for all wave vectors. 
This assumption has not been made in the detailed cal­
culations of Hardy et al.,b or of Tolpygo et al.,A and its 
only justification lies in the simple description of the 
ions by the shell model as outlined above. The surprising 
polarizability parameters of the best models suggest that 
a simple shell-model description is unrealistic and so the 
validity of the approximation must be further discussed. 

The short-range force constants between the ions de­
pend on the overlap of the ground state wave functions 
of the ions, while the forces between the dipoles and the 
ions represented by the T matrix, depend on the overlap 
of the ground-state wave functions of one ion with the 
excited states of the other. Tolpygo et al.2Z suggest that 
if we introduce short-range force constants Aj, An, 
Bi, Bn, specifying the T matrix, analogously to those 
introduced in Sec. II. 1 and as detailed in the Appendix, 
then we expect 

Aj\ 

—\< 
Bil 

A 
— 
B 

Au 

Bu 

< 
A 
— 
B 

22 A. A. Demidenko, Z. A. Demidenko, and K. B. Tolpygo, 
Usp. Fiz. Zh. 3, 728 (1958). 

23 Z. A. Demidenko and K. B. Tolpygo, Fiz. Tverd. Tela 3, 3435 
(1961) [translation: Soviet Phys.—Solid State 3, 2493 (1962)]. 

A more quantitative estimate is given by an argument 
originally due to Dick and Overhauser.24 The parameters 
A i, A ii, Bi, Bn can be used to describe the dipole mo­
ment associated with a short-range force in the crystal. 
It is suggested that this dipole moment is proportional 
to the square of the overlap integral S and further that 
S2 ozrV(r), where r is the distance between the ions and 
V(r) the short-range potential. If V(r) = C/rn, then 
\Ai/Bi\ = \Au/B1i\=n-l, while \A/B\=n+1. The 
difference between the parameters of the T matrix ob­
tained from these relations, and the assumptions which 
we made is quite small, and the changes in the frequen­
cies of the lattice vibrations are correspondingly very 
small. 

3. The Failure of the Simple Shell Model 

The best agreement with experiment is given by 
models which give surprising polarizabilities to the ions: 
The short-range polarizability of the positive ions, di, 
is negative, and the electrical polarizability is shared 
between the two ions more than expected. Equations 
(7), (8), and (9) show that the negative short-range 
polarizability implies a positively charged shell and this 
is clearly unrealistic. However, it should be emphasized 
that particular charges on the shells are simply a mathe­
matical consequence of the method used to eliminate 
the two arbitrary parameters in the equations of motion, 
in this case by using Eq. (9). If we rewrite this equation 
(Tu)o= — (T22)o= — (Rii)o, then the charges on the 
shells are negative, but the short-range forces cannot 
be readily understood in terms of a shell model. These 
unexpected results occur only in models which give a 
good fit to the (JIT] zone-boundary frequencies, while 
keeping the ionic charge reasonably large. 

Figure 6 pictures a two-dimensional analog of the 
motion of the ions in the zone boundary mode for which 
<1= (hh&fa/a)- I n t n e longitudinal optic mode, with 
this wave vector, planes of positive ions move while the 
planes of negative ions remain fixed. Figure 6 shows a 
possible arrangement of dipoles produced on the nega­
tive ions, B, by the motion of the rigid positive ions, A. 
The frequency of this mode of vibration will clearly 
depend on these dipoles, but in the shell model or dipole 
approximation, no distortion of the negative ions occurs 
in this mode of vibration. 

The distortions are not neglected, if instead of sum­
ming the dipoles over the negative ions, we sum them 
over the positive ions. In the shell-model formalism, 
this is achieved by associating a considerable part of 
the polarizability with the positive ion. The arrows, 
showing the direction of motion of the electrons in Fig. 
6, indicate that the motions of the electrons under short-
range forces are opposite to the expected motion of a 
shell on the positive ion. The short-range polarizability 
is, therefore, negative while the electrical polarizability 

24 B. J. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958). 
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EQUILIBRIUM CONFIGURATION 

DISTORTED CONFIGURATION 

FIG. 6. A two-
dimensional analog 
of the motion of the 
atoms in the (J, J, 
J) longitudinal optic 
mode of vibration, 
in which alternate 
planes of positive 
ions move in opposite 
directions. The nega­
tive ions are labeled B 
and the positive ions 
A, while the arrows 
show the direction 
of motion of the 
electrons of the nega­
tive ions. 

is fairly equally shared between the ions. These unex­
pected parameters are, therefore, required to describe 
adequately this mode. 

The model could possibly be improved so as to de­
scribe the above phenomenon more realistically. The 
multiple dipoles on ions B, Fig. 6, are equivalent to 
quadrupole moments on the negative ions. The equa­
tions of motion of the model can be easily extended to 
include quadrupole moments produced both by short 
range forces and electrostatic forces. However, it is 
necessary to introduce a large number of additional 
parameters to specify all the forces, and we are not con­
fident that it would be possible to demonstrate con­
clusively that quadrupole interaction is important. 

An alternative approach, which is not unconnected, 
would be to use a model in which dipoles are placed on 
the bond between the two ions. The magnitude of these 
dipoles then depends on the short-range forces and elec­
trostatic fields at the dipoles. The advantage of this 
procedure over the quadrupole model is that the num­
ber of arbitrary parameters, which are needed to specify 
the forces, is considerably less. 

IV. CONCLUSIONS 

In this paper, we have obtained models of the lattice 
dynamics of sodium iodide and potassium bromide 
which give good agreement with experimental measure­
ments. The equations of motion of these models are de­
rived from an expansion of the potential energy of the 
crystal which includes terms from the displacements of 
the ions and from the dipole moments producible on the 
ions during the vibrations. The models have been fitted 
to some of the experimental measurements and give 
good agreement both with these measurements, and 
also with other measurements to which they were not 
fitted. The models, therefore, probably give a very 

accurate description of the harmonic properties of these 
two alkali halides, at the temperature of the experi­
mental measurements. 

The good agreement is obtained however, only when 
some of the parameters have rather unrealistic values 
and the models cannot be readily interpreted in terms 
of shells of electrons. These artificial parameters are a 
direct result of a deficiency in the model, and more com­
plicated models which include the effects of quadrupole 
moments have been suggested to overcome this de­
ficiency. However, we have already obtained agree­
ment which is well within the experimental errors of 
the measurements, and the more complicated models 
have even more arbitrary parameters. 
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APPENDIX 

In this Appendix the notation and theories of other 
authors, Hardy et al.5 and Tolpygo et a/.,4-22-23 are com­
pared with those presented in this paper. The approxi­
mation R = T for all wave vectors is not made by the 
other authors, therefore, our notation must be extended 
to include the extra parameters which are required to 
specify the more general short-range interactions. These 
interactions for the T matrix are more complicated than 
for the R matrix. They correspond to two types of in­
teraction: (a) The negative ion interaction with the 
electronic dipole moment on the positive ion is labeled 
I, (b) The positive ion interaction with the electronic 
dipole moment on the negative ion is labeled I I . These 
two interactions will not necessarily be identical. In 
analogy with the parameters for the short-range inter­
action specifying the R matrix, for nearest neighbors 
two parameters are defined for each of the two types of 
interaction: 

(a) Interaction I 

\ dr2 J 

(b) Interaction I I 

rd2Vj 

-'A ( d2V\ e2Bi 

dr2JL 2v 

/dAVu\ 

\ dr2 A 

e2Au fd2V\ e2Bn 

2v \ dr211 2v 

These parameters are not independent, however, and 
Eq. (9) now reduces to 

4 i + 2 £ I = 4 n + 2 £ n = 4 + 2 ( £ + 5 ' ' ) . 

In general, similar parameters should be introduced 
both for the S matrix, and for second neighbor interac-
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tions in the T and S matrices. These additional param­
eters will not, however, be introduced here as the other 
authors have not included them. 

(1) The Model of Ha rdy et al. 

The equations of motion used by Hardy seem at first 
sight to be considerably different from Eqs. (1) and (2), 
which were used in this work. These equations may, 
however, be written in a similar form to those of Hardy 
if the effective electric field E is introduced. The equa­
tions of motion (1) and (2) then become 

mco 2 U=RU+TW-ZE, (Al) 

where . 0 = T r U + S W - Y E , (A2) 

E = - C ( Z U + Y W ) . (A3) 

When W is eliminated from Eqs. (Al) and (A3) and 

INTRODUCTION 

ALTHOUGH a considerable body of knowledge has 
accumulated on the crystalline Stark splittings of 

energy levels of rare-earth ions in nonconducting, ionic 
crystals, relatively little is known about the splittings 
in metallic environments. A broad anomaly in the speci­
fic heat of praseodymium metal centered about 50°K 
provided possibly the first clear evidence that Stark 
splittings might be appreciable in the rare-earth metals.1 

The anomaly could be fitted by assuming that it arises 
from a cubic Stark splitting of 80 °K between a singlet 

t Research at Yale supported in part by the U. S. Air Force 
Office of Scientific Research. 

* Present address: National Bureau of Standards, Washington, 
D. C. 

1 D. H. Parkinson, F. E. Simon, and F. H. Spedding, Proc. Roy. 
Soc. (London) 207, 137 (1951). 

then E is eliminated, a single equation of motion 
remains; 

mo>2U= [ R - T S - ^ H - ( Z - T S n Y ) C ( Z - YS^T21) 
- ( Z - T S - ^ C Y S - ^ Y C I + C Y S - ^ ^ C C Z - Y S ^ T ^ U , 

where I is the unit matrix. The equation is now of the 
same form as Eq. (15) of Hardy (1962),6 apart from 
Hardy's neglect of the term TS^T27, which was men­
tioned in Sec. I I I . l . 

(2) The Model of Toypygo et al. 

When Eqs. (1) and (2) are compared with Eqs. (1) of 
Ref. 23, the equations of motion used by Tolpygo et al. 
are easily seen to be similar to those used in this paper. 
The only difference between the theories is the neglect 
of short-range dipole-dipole interactions in the S matrix, 
as described above (Sec. I I I . l ) . 

and a triplet in the ground term of Pr3+ ions.1,2 More de­
tailed calculations based on the actual symmetry of this 
metal, which is hexagonal rather than cubic, are in prog­
ress,3 and will hopefully also explain the susceptibility,4 

which in simplest approximation requires a considerably 
smaller Stark splitting.2 

A maximum in the specific heat of metallic cerium at 
100 °K has been attributed by Murao and Matsubara5 

to a cubic Stark splitting in the ground term of Ce3+ of 
200-250°K. A splitting of this size is also compatible 
with the susceptibility of the metal, which, especially 
on first cooling and warming shows departures from 

2 B . Bleaney, J. Appl. Phys. 34, 1024 (1963). 
3 B . I. Bleaney (private communication). 
4 J. M. Lock, Proc. Phys. Soc. (London) B70, 566 (1957). 
5 T. Murao and T. Matsubara, Progr. Theoret. Phys. (Kyoto) 

18, 215 (1957). 
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The susceptibility of polycrystalline Ce^La^A^ with several different concentrations of cerium has 
been found to decrease to about one fourth the value for free-Ce^34" ions between room temperature and 
4.2°K. The observed behavior is consistent with a cubic-crystal field splitting in the J— % ground term 
of Ce3+ of 200°K. The observed splitting is close to that predicted on a point-charge ionic model ignoring 
shielding by conduction electrons if the rare-earth ions are assumed to be tripositive and the aluminums 
negative, and if the 4 / electron of Ce3+ is represented by a Hartree-Fock function. It is about one third as 
large as might have been expected on the basis of experience with cubic nonconductors had the Ce:LaAl2 

been a nonconductor with this distribution of charges rather than a conductor. 


