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The problem of the localization of a magnetic moment around an impurity is formulated in a rotationally 
invariant way, making possible the calculation of the Curie constant. This calculation is carried out in 
lowest order, but, in principle, can be extended to arbitrary order. 

1. INTRODUCTION 

TH E Hartree-Fock method has been used to derive 
conditions for the existence of a localized magnetic 

moment around a transition element impurity dissolved 
in a metal by Anderson1 and from a different stand
point, Wolff.2 Anderson1 demonstrated that in the case 
in which the impurity is assumed to have only one 
relevant orbital state whose energy is below the Fermi 
level of the solvent, when singly occupied, but well 
above the Fermi level when doubly filled (due to Cou
lomb energy), the Hartree-Fock equations could yield 
solutions in which the effective potentials acting on up-
spins was different from that acting on down-spins. 
This, of course, implies a local magnetic moment. 

Because a preferred quantization axis is introduced 
into this theory from the very beginning, one is deprived 
of the possibility of calculating dynamical quantities 
such as the spin susceptibility. Figure 1 (dotted curve) 
shows schematically what the Hartree-Fock calculation 
will give for the magnetic moment M as a function of 
field H, at a finite temperature. Even for H=0, the 
calculated moment is finite. Experimentally, however, 
one finds something like a Curie law until saturating 
field strengths are reached (solid curve in Fig. 1). (The 
part of M due to the Pauli susceptibility is not shown 
in the figure.) Thus, it seems that the Hartree-Fock 
theory is capable of calculating the saturation moment, 
but not the effective Curie constant. The same question 
of principle arises in a ferromagnet in which the mag
netic moment is calculated by some self-consistent pro
cedure, e.g., molecular field theory. If no preferred axis 
is given, the experimental curve must again follow the 
solid line in Fig. 1; but now it rises extremely steeply 
because of the large value of the total spin. On the other 
hand, molecular field theory calculates the dotted curve. 
In a simple ferromagnet with known total spin, we 
know of course how to remedy this defect. In the calcu
lation of the partition function we include all the col
lective states of the form (5 ± ) r ^ r , where \F is any eigen-
state included in the calculation, S^ is the spin lowering 
or raising operator for the total spin S, and r is an in
teger ranging from zero to 2S. Inclusion of these zero 
wave number spin-wave states will give the required 

Curie law, but of course with an enormous Curie 
constant. 

In the context of the alloy problem, it is difficult to 
see how to derive a correct set of collective states serving 
the same function as in the ferromagnet, principally 
because the value of S is not definite (the Hartree-
Fock calculation naturally gives no clue to this). For 
this reason it is necessary to formulate the problem in 
such a way that rotational invariance is sufficiently 
well preserved to yield the solid curve in Fig. 1. In this 
paper we demonstrate that such a calculation is, in fact, 
possible. We shall use many-body perturbation theory 
to calculate the partition function. I t must be noted at 
the outset that at a finite temperature this theory, 
which is, in principle, more rigorous than the Hartree-
Fock method, cannot, if carried only to finite order, 
produce a sharp *'yes-no" condition for the existence 
of a moment. However, even in finite order it yields the 
correct qualitative behavior for the localized magnetic 
moment, all the way from small applied fields (Curie 
range) to the saturation range at large fields. 

2. THE RESOLVENT OPERATORS FOR THE MAG
NETIC AND NONMAGNETIC MANIFOLDS 

We first derive formal expressions for the density of 
states of the system consisting of the solvent in interac
tion with a magnetic solute. I t is useful for this purpose 
to introduce the resolvent operator 

(R(s)= 1/(36-*) , (1) 

where 3C is the Hamiltonian proposed by Anderson1 for 
this system: 

ka ' +7EW^W. (2) 

FIG. 1. Comparison of 
a Hartree-Fock calculation 
with experiment. 

* Supported in part by the U. S. Air Force Office of Scientific 

1 P. W. Anderson, Phys. Rev. 124, 41 (1961). 
2 P. A. Wolff, Phys. Rev. 124, 1030 (1961). 
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Here ek<r and edfr are the energies, and tika, nd(T the occupa
tion numbers, of the band electrons and the d electron, 
respectively, k is the wave number and a the spin index. 
U is the Coulomb repulsion of the electrons in the d 
state. The last term, involving creation and annihilation 
operators of the band and the d electrons, describes the 
scattering of electrons from the d level to the band and 
vice versa. The spin index on the single electron energies 
allows for the presence of a magnetic field. 

The unperturbed states (V=0) can be divided into 
two manifolds M and S, according to whether a single 
electron occupies the d state with up or down spin (M), 
or whether it is empty or doubly occupied (S). We now 
obtain an exact expression for a new resolvent operator, 
R, which has no matrix elements connecting states in 
M with states in S. 

Let Hi denote the term in 3C proportional to V, and 
Ho the remainder. Clearly, if PM and Ps are the projec
tion operators of the M and S manifolds, Ho commutes 
with each: 

(PM,Ho)=(Ps,Ho) = 0, 
whereas 

PMH1=H1PS, 

PSH^H^M. 

We may similarly write 

<R=R+Rh 

where 
(PM,R)=(PN,R) = 0, 

whereas 
PMRI—RIPS, 

PSRI—RIPM. 

The complete (R satisfies the integral equation 

1 1 

H0—z Ho—z 

which may be resolved into two equations : 

1 1 
R= F A , 

Ho—z H0—z 

1 
Ri= HA. 

Ho-z 

Substituting the latter equation in the former, we arrive 
at the starting point of our theory: 

1 1 1 
R= 1 # i HtR 

Ho—z Ho—z Ho—z 

or, equivalently, 
1 

R= . (3) 
Ho-z-H1[\/{Ho-z)']Hl 

This equation is exact, and obviously decouples the 
magnetic manifold M and the nonmagnetic manifold 
S. Though we shall not make explicit use of this fact, 

it is easy to see that 

ffo-ffi[l/(ffo-*)]ffi (4) 

acts as some kind of Hamiltonian, and the projection of 
Hi[l/(Ho—z)~]Hi onto M closely resembles an exchange 
interaction between the localized, singly occupied d 
state, and the conduction electrons. 

3. PARTITION FUNCTIONS 

Next we make use of (3) to derive an expression for 
the partition function of the perturbed system. The 
density of the perturbed system is 

p( 2 )= (1/TT) Im Tr(R(z+id) 

in the limit 5 - ^ 0 (which from here on will always be 
implied), where z is real. The trace may be evaluated 
in the unperturbed representation, and in this repre
sentation TrRi=0. The density of states is, therefore, 

p(z)=(l/ir)ImTrR(z+iS). 

We may first take the partial trace over the band states, 
arriving at 

PM*(Z)= (1/TT) ImTr^RMa(z+id) 

for the contribution to the density of states from the 
part of the M manifold with the one localized electron 
having spin orientation cr, and at 

p* a i /(s)= (1/TT) Im Tr<»R80tf(z+i8) 

for the contribution to the density of states from the S 
manifold completely empty (e), or completely filled 
( /) . Trace(&) indicates: trace over all the band-electron 
states. Clearly, if p&(E,) is the density of band states 
(evaluated in the presence of a magnetic field), then 

PMo(z) = - / dEPb(E) 

Im £ « ( * « ( £ ) , RM*(z+iS)*a(E)) 

Here a is the set of all quantum numbers consistent with 
energy E. We write 

Im Z « ( * « ( £ ) , # M ^ « ( £ ) ) / E a 1=DM: (5a) 

The important point about DM<T is that to a good ap
proximation, provided the temperature is not too high, 
it is a function of z-E alone. This property results from 
replacing band-state occupation numbers by their aver
age values [cf. Eq. (8) et seqJ], 

One further point must be made here: If the system 
as a whole has N+l electrons, then p&(E) in the above 
formula is the density of states of a system of exactly 
N band electrons, i.e., the density of levels with energy 
E €k*nk* subject to Y,h*nko=N. We should, therefore, 
write pi>(E,N). In the same way, we may define DSe and 
DSf, and in writing down the corresponding formula, 
(5), we must use pb(E,N+l) and pb(E,N—i), re-
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spectively. Since we expect to find a local moment of 
the order of a single Bohr magneton, it is safest to work 
for the time being in a canonical ensemble. 

If we accept the assertion that the JD'S are functions 
of z-E only, we may derive the partition function of the 
system from (5) (and analogous formulas for S), by 
taking the Laplace transform of Eq, (5). The total parti
tion function is 

Z=ZM-\-ZS 

where 
ZMM = Zb((3,N)dMM-

Here p=l/kT, k is Boltzmann's constant, Zb((3,N) is 
the partition function of exactly N band electrons, and 
%Mc(P) is the Laplace transform of (l/7r)DM^ Similarly, 

Zse=ZbfaN+i)*s*(P), 
ZSf=Zb(p,N-l)dsM. 

We shall also write &M= %Mt+dMi, and ds= dse+ds/-
The D's and, therefore, the d9s may be evaluated in 
terms of linked-cluster methods to any desired order in 
HI\A/(HQ—Z)~]H\. Before doing this, however, we shall 
first derive a formula for the magnetic moment. 

4. THE TOTAL MAGNETIC MOMENT 

Since the energy due to a uniform magnetic field com
mutes with H, we may write, for the total moment 

Wl=(l/Z)(dZ/dpH). 

This may be cast into the form 

201= (l/Z)[Zh(N)djimc+Zb(N)dMmp(N) 
+Zb(N-l)dSfWlp(N-l) 

+Zb(N+l)d8&lp(N+l)l, (6) 
where 

Z=Zb(N)dM+Zb(N+l)dse+Zb(N-l)dSf. 

In formula 6, the various 9TCP denote the Pauli magnetic 
moments of the indicated exact number of band elec
trons,3 and 

Wlc=(l/dM)(ddM/dm) (7) 

is the part of the moment that will be shown to follow 
very nearly a Brillouin curve of the free ion. Derivatives 
of ds have been neglected in (6), since they are very 
nearly zero. (See Appendix.) All the Pauli moments are 
very nearly temperature-independent, and the various 
different Z(N)'s differ very little from each other. 
Therefore, the effective strongly temperature-dependent 
part of the moment is, from (6), 

Wlc(efi)=mc / (1+ (ds/djn)). (7a) 

As we shall see, the factor (1+<W3>M) - 1 has a strong 
3 Note that if the number of band electrons is odd, the corre

sponding Mp will also have a Curie contribution, but for a finite 
concentration of impurities this effect will not be seen. See also 
the discussion in Sec. 6. 

field dependence [dM~cosh(gHBH/2kT)2, but for small 
H it determines the effective Curie constant C. Neglect
ing a certain small g shift due to the band electrons, we 
have 

Cett= El-f" (^V^M)fl r=o]~1C ,free« 

If we wish to ascribe this result to a new effective mo
ment, we have 

Meffective2= [ 1 + (%s/^M)iy==o]~W . 

However, at large fields, such that 

coshgnBH/2kTM%s/%M)H=o, 

Heft reverts to fxB. 

5. CALCULATION OF ds/dM 

Equation (7a) shows that the effective moment will 
be largest when ds/%M is smallest. From the discussion 
of the previous section we may infer the following quali
tative behavior of this ratio: 

Suppose that the situation is favorable to the existence 
of a magnetic state, that is e<z<0 (all energies are meas
ured from the Fermi level) and ed+U>Q, as explained 
by Anderson.1 In the lowest linked-cluster approxima
tion, the imaginary part of DM has a numerator of the 
form 

5+ImAf Iffi HL\M\ . 
\ Ho-z-i8 / 

The second term in this expression is simply the 
damping of a particular "magnetic" state calculated 
by the lowest order "golden rule" formula. This damp
ing, when averaged with the Boltzmann factor as weight 
(to obtain 3M), goes to zero with the temperature, be
cause then no nonmagnetic states are available for the 
magnetic one to decay into. It follows that 8 becomes 
dominant everywhere in DM, SO that eventually 

1 f be-t* 
%MO^— I dx 

IT J %2+82 

- » 1 
as 5 —> 0. 

On the other hand, the S manifold, since it is not the 
ground state of the uncoupled system, can decay into 
magnetic states even at zero temperature. Therefore, 

Im/s | Hi Hi | s \ 
\ Ho-Z~id f 

dominates the expressions for Ds and for ds- Hence, 
ds depends on V, €<*, and U. It will, in fact, turn out 
that in the lowest linked-cluster approximation4 ds is 
least when e<* is as far below the Fermi level as ea+U 
is above, and this agrees with Anderson's Hartree-Fock 
calculation. On the other hand, in contrast with the 
Hartree-Fock result, while ds decreases with increasing 
U and decreasing V9 no sharp lower bound on U/V2ps is 

4 Corresponding to ordinary lowest order damping theory. 
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obtained in the present theory, which is only carried 
as far as the lowest linked-cluster approximation. I t is 
not inconceivable however that the inclusion of an in
finite class of linked cluster terms5 might give such a 
sharp lower bound. (ps denotes the density of states of 
single band electrons of both spins.) 

In the basically nonmagnetic situation (e<z, ed+U 
both above or both below the Fermi level) the opposite 
situation prevails; ds is of order unity, and dM comes 
from low-order damping processes. However, in that 
case the moment becomes exponentially small in 1/T 
as the temperature tends to zero. 

The linked-cluster theorem6 states that 

£ ) « 1)DM*(E) 
= Im Z«(*a(E),RM<&a(E)) 
= Im]C« {l/£E+€dc— z— id—GM<r{z,E,a)~]} , 

where 

GMa{z,E,a) 

-V+V— -"0 I *«(£)) 
- ( * 

(£), 
Ho -iS -»linked 

and where the subscript Mo- always implies that the ex
pectation value over the single-particle d state, with 
spin orientation a is to be taken, although it is not ex
plicitly shown. The effective perturbation here is 

• O = - f f 1 [ l / ( f f 0 - 2 - « ) ] f f 1 . 

Thus, we have 

d+lmGMc(z,E9a) 

( E i ) ^ = E a (E-z+edff¥+{5+ImGM<r(z,E,a)¥ 

and, in lowest approximation, we take 

1 

(8) 

°GMa(z: M=(*« (E)HV 
Ho—z—i8 

-H&a(E) 

Ultimately, we thermally average D. Clearly the a 
represent the various possible distributions of band-
state occupation numbers consistent with E. At low 
temperatures the overwhelming weight will be attached 
to those distributions for which the tikS are very nearly 
Fermi factors, (l-f-e^ft)-1. Therefore, we retain only 
this one distribution, and then X)« 1=1? a n d the sum
mation over a on the right-hand side of (8) can be 
omitted. I t follows that G, and therefore D is a function 
of z-E alone. 

We also note in passing that in writing (8), we have 
neglected the shift in the eka resulting from R1GM<T. 
Since RIGMV is spin-dependent, this amounts to neglect
ing any g shift of the d electron arising from coupling 
with the band electrons. But because of the factor 
( 1+ ds/^M)~l this will almost always be masked by the 
practical uncertainties concerning ed, U, and V. 

Substituting ffpF^^Aa+CciAk), we find im
mediately 

0 GM<T(S-£) = F 2 E -
E-z-id+2ed+U-ek,-« 

(1 — tito) 

+F 2E-
* E- •z—id+ek<T 

(9) 

In the calculation of Im°GM<x, we will, henceforth, neg
lect the spin dependence, i.e., we will calculate Im°GM<r 
in the limit of zero field. This is obviously justified so 
long as the magnetic single-particle energies are much 
less than the critical energies ed, U, and V. 

In analogy with (8) and (9) we have 

DseAz-E) 
5+ImGs,ef(z—E) 

where 

[_E-z+EeJ{d)J+[_b+ImGseAz-E)j'' 

Ee(d) = 0, 

Ef(d) = 2ed+U, 

(10) 

and where, in lowest approximation (neglecting spin 
dependence) 

°Gs,e= F2 E , 

°Gsj=V*Z-

k<r E — Z — i8-\-€d—6k 

1-
(11) 

-nua 

far E—z—id+ed+€k 

As we have already remarked, the tik's are Fermi func
tions of €*,. Thus, we have 

Im"GMa{i) = h^V"pl\-n(i)+n{-^2ed+U)-] (12a) 

Im°G^(?) = 7 r F 2 p ^ ( - g + € , ) (12b) 

Im i« j5/(«) = i r F 2 p . C l - » ( { - € d ) ] . (12c) 

In these formulas, the variation of the single-particle 
density ps with energy has been neglected. I t follows, 
then, that 

7T%Mc 

-00 

{^V*pll-n(8+n(-l:+26d+Ul+8}e-mz -L 
— p—$Ui 

+c°{TrV*pZl-n(Z+ed)+n(-Z+ed+U)l+8}e-mt i 
J —c 

?+{TrV*pll-n(l:+ed)+n(-!i+ed+U)-}+8}z 
6 Or of a finite number of irreducible linked-cluster terms using modified propagators (that is to say, self-consistent propagators). 
6 For example, L. Van Hove, Physica 21, 901 (1955). 
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Using the obvious identities 

we see that 

— p—/SedffJ 1 

I J —oo < 

e - « [ l - w ( ^ + ed)'] = e^n(i+ ed) 

e - < % ( - £ + ed+ U) = e-^+u>n(H- ed- U), 

S?+{hTrV>pll-n{Z+ed)+n(-t+ed+U)l+5}* 

'•+<*> n(£-ea-U)d£ 
+|7rF2pse-«e"+c/> 

/ 
J —oc 

e+{frV%ll-n(l:+ed)+n(-t+ed+U)-]+5¥ 

J —c 

(12d) 
¥+{^VW-n(t+ed)+n(-t+ed+U)-]+8y 

We are now in a position to proceed to the low-temperature limit inside the integral signs. 

A. The First Integral 

The first integral extends from — oo (or more accurately from the bottom of the band) to — ed. I t is thus equal to 

L ?+lir2Vyn(-t+ed+U) 
and, henceforth, 5 may be neglected. 

Subcase 1. ed<0, ed+U<0, 2ed+U<0 

The integral is 

td+U d£ 

L T-+L 
d$ 1 l r 

where 
ed+U *A 

tan 

e Jed+ue+i*2vw 
A=rV2

Ps. 

Subcase 2. ed>0, 2ed+U>Q. The integral is simply l/ed.
7 

B. The Second Integral 

This is more conveniently written 

l\-n(ed+U-i)^ 

(irh^-ir)]' 

ed+U 

e+lA*Ll-fiti+ed)+n(-Z+ed+U)J 

Subcase 1. ed+U<09 ed<0, 2ed+U<0. The integral 
becomes 

ftd+U 

J —oo < 

dt l r 

? + i A * §Al 
tan" • ' ( IT ) -

'ed+U\ ir-

Subcase 2. 2ed+U>0. Then the integral is7 

f-tdd% red+u d£ 

/_, e J~td ^ + A 2 

l l r ed+u 
= — + — tan - 1 htan" 

ed |AL JA *AJ 
7 If €d<0, and ed+Z7>0, the integrands of A and B contain a 

double pole. The rule is then to omit the divergent parts of the 
integrals. This is evident, if one disregards 5 throughout, but re
tains the exponentially small n values near £=0 in the denomi
nators. The offending portions of the integrals A and B, in the 
limit T —» 0, then precisely add up to the third integral in the 
limit 8 -> 0. 

The formulas for subcases A2 and B2 are correct only 
so long as ] ed+U\ and | ed\ are each larger than kT, 
otherwise the n factors cannot be replaced by step 
functions. 

C. The Third Integral 

This can be neglected, except in the range in which 
£+ed<0 and simultaneously — %+ed+U>0, i.e., in 
the range 

£<min(— ed, ed+U). 

But in this range, it gives ir in the limit 5 —> 0 if 
min(— ed, ed+U)>0, and zero otherwise. Thus, in a 
nonmagnetic situation, with ed negative and ed+U 
less than zero, it gives zero. Similarly, for ed positive 
it gives zero. For a nonmagnetic case, therefore, only A 
and B survive. 

In the magnetic case, on the other hand, the third 
integral is x, while A and B become small at low 
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FIG. 2. Contours 
of constant effective 
moment in the lowest 
approximation. 

temperatures (which is also the reason why the spin 
may be neglected in the calculation of °GM). In that 
case, we find 

dM*=e-fi***. (13) 

The calculation of %s proceeds similarly. We have 

/

+O0 

-oo 

and so, using (10), (12b), and (12c), we get 

r + M [ A « ( - ? + e , 0 + s > - « ^ 

•L £ 2 + [ A « ( - M - e d ) + 5 j 

f+°° A»(£-ed)<J£ 
-0«<* 

/

+0O 

-oo < 

5e-Kd£ 

_ e+lAn(-Z+ed)+dJ 
The last term is significant only in the range — £ + ed>0 
or %<ed. But €d is negative in the magnetic case, so 
that this term goes to zero as 5 —> 0. On the other hand 
in the nonmagnetic case, it goes to T, if e^>0, and to zero 
if ed<0 (see Sec. 6). The first term8 is 

Ae~^d 

Similarly, 

r*dd£ 

i-oof" 
-e-P*d, ed<0. 

€d 

J-oo (£— 2ed 

f 
«/ —c 

{A[\-n^-ed)~]+b}e-m^ 

= e-p(2ed+U) 

/

+oo 

-co < 

tf)2+{A[l-«(£-ed)]+5}2 

+°° { A [ l - » ( f + « d + J / ) ] + S } e - « ^ 

i?+{AZl-n(Z+ed+U)-]+5¥ 

An(%+ed+U)dZ 
-e~P*d-\-a 5 term. 

-oo e+A*£l-n(i;+ed+U)J 

Again, the 5 term survives only in the range 
£<- - (€d+£ / ) , and as 5—>0, goes to zero for the 

8 For €d>0, see remarks at end of subcase Al, in the calculation 
of dM. 

magnetic case. In the nonmagnetic case it is 
7T77(— (ed+U))e-W*d+u).9 The other term is 

Ae-?ed 
-Ud+U) d£ 

p-ptd 

e ed+u 
(for €d+U<0, see end of subcase Al in calculation 
of ^Af). Thus, in the magnetic range, we have 

= Ae~M V 
\ed+U J 

And 

Hence, 

ds / 1 1 \ / /, 
— = A 1 / 2 cosh 
%M \ed+U JI \ 

f»BgW\ 

In Anderson's notation,1 we write \ed\/U=x and 
y=U/A. Then 

ds 1 / 1 1\ / 
— = - + - ) / 2 cosh {ixBgHfi/2). 
%M y\l — x xl' 

This is infinite at x=0 and # = 1, and has a minimum, 
equal to 2/y, at x=§. The effective moment as measured 
via the Curie constant is thus 

Meff = 

2yx(l — x) (1-x) n1/2 

-aO + l J L.2yx(\ — x)-\-

[ In actual fact for x=0 or 1, the above estimates of the 
integrals are not reliable. They break down when ed 

or ed+ U^kT, but this case is not generally important.] 
The curves off constant jneu in the (%,1/y) plane are 

shown schematically in Fig. 2, which represents as 
close as this calculation can come to Fig. 4 of Anderson's 

paper. 

6. THE NONMAGNETIC CASE 

I t is of interest to examine what happens when condi
tions for the development of a magnetic moment are 
unfavorable. In that case, the C integral in dM is zero, 
while the A and B integrals dominate, ds, on the other 
hand, is10 

v(ed+rj(-(ed+U))e-^d^+o(~) . 

In the calculation of the ZMC, it is now no longer possible 
to neglect the spin dependence of the intermediate 

9 If (ed+U) <0. If ed+U>0, then we certainly have ed>0, and 
the d term in the calculation of dse then gives ir. 

10 For €d<0, the empty level can decay by scattering from 
the band, so that the 5 contribution to the dse expression is zero. 
Not so for ed>0. Hence, the i\ term. \j](x) = l for x>0, = 0 
otherwise.]] 
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state, because this spin dependence eventually enters 
the exponentials multiplying the integrals A and B. 

The A term arose from an intermediate state in which 
the d electron with spin <r, was destroyed, and replaced 
by a band electron with spin cr. The B term involved an 
intermediate state in which d electron with spin — cr was 
created, and a band electron with spin — cr was de
stroyed. Suppose now that the levels are such that both 
ed and €d+ U are negative. Then the B term dominates 
at low temperatures. If, in the analysis leading to the 
expression for %M careful count is kept of the spin in
dices, it is found that the exponential coefficient of the 
B integral inside the parenthesis of Eq. (12d) is 

exp(—/3(e<*,_<r+27+77^)) 

where, for short, r\-a is the magnetic energy of a band 
electron in spin state —-<r. Together with the coefficient 
outside the parenthesis of (12d) we get, since 
€d,<r+€<*,_<,= 2 e<j, a factor 

€-/3r?-<rg-/3(2e(i+C7) 

outside the B integral. This would give the appearance 
of having yielded a Curie-law-type band electron but 
with negative intrinsic moment. This should indeed 
occur, since one of the band electrons has become a d 
electron in a real transition. Had we started with an 
even number of band electrons, we must end up with an 
odd number, and hence, with a Curie moment, after 
the transition. Had we started with N odd, this Curie 
moment should go away in the transition, and indeed it 
does. Referring to Eq. (6), we see that the Curie part 
of the band electron moment is very nearly equal to 

[l/(l+W»M)][9fTCp(iV)]0nrie. 

This is cancelled by the newly acquired term just dis
cussed, since that term corresponded to an electron 
with negative moment. 

Of course, as the number of impurities is increased 
to a finite concentration, the question of even or odd 
numbers of band electrons becomes immaterial, since 
these will always arrange themselves in such a way that 
at T = 0 , at most one has a Curie moment, thus con
tributing negligibly to the total moment. 

7. EXTENSION TO PARTIALLY FILLED d SHELLS 

Quite obviously the above method can be extended 
to magnetic states in which the d shell of the impurity 
has more than one hole. I t is necessary only to introduce 
additional magnetic manifolds corresponding to two, 
three, or more, holes. This will be done in a later paper. 

APPENDIX. THE WEAK FIELD DEPENDENCE OF 
ds IN THE MAGNETIC CASE 

Here we examine the very small field dependence of 
ds, insofar as such dependence enters the exponential 
factors outside the various integrals. In the process 
leading to dse, a d electron of spin a is created, and a 
band electron of spin cr destroyed. The zero of the real 
part of the denominator in Hl[\/(Hv— z— id^H1 is 
thus at 

€k= — £ + ed+ rj/— rjab, 

where rjd and rjb are the magnetic energies of the d and 
band electrons, respectively. 

Eventually, in the calculation of dse, the difference 
of these quantities appears in the exponential. I t 
follows that dse is given by 

dSe= (dse)H=o cosh[(gd-g&)M 5i7/3/2]. 

In the calculation of ds/, we note that a d electron of 
spin cr, say, is destroyed and a band electron of spin <r 
created. The relevant denominator now vanishes at 

€k= £— ed— 7}/— t\-ah 

= £ - € d - ( i ? , d - i 7 , 6 ) 

and so, once again, 

dsf= (&*/)*-<> cosh[(g r f-g V , f f 0 / 2 ] . 

Thus, to the extent that d and b electrons differ in g 
value, there is an additional magnetic moment, ap
proximately equal to 

[ 1 / ( 1 + W ^ ) ] M , 

where M is the magnetic moment of a free electron with 
g value gd— gh. 


