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Some difficulties in the interpretation of phonon-spin-wave interactions in magnetic films are considered. 
Experiments by various workers show that there is apparently a large difference in the wavelengths of the 
interacting phonon and spin waves. Furthermore, phonon excitation of the higher order spin waves is much 
stronger than expected; in some cases, the higher order spin waves are excited more strongly than are the 
lower order spin waves. It is shown that no difficulty exists when the spin-wave modes are Hermite functions, 
since then appreciable Fourier components of the spin-wave modes corresponding to the phonon wavelength 
exist. The strong dependence of the interaction on film thickenss is explained and the apparently erratic 
spin-wave-mode intensities appear reasonable on this basis. 

T 
INTRODUCTION 

'HE phonon-magnon interaction in thin magnetic 
films has been observed and studied by several 

groups.1-4 Several aspects of these experiments remain 
without adequate explanation. The following two are 
considered here. For the case of the steady magnetic 
field, perpendicular to the film, the phonon wavelength 
appears to be much longer than the wavelength of the 
spin waves which it excites2-4 and, in many cases, the 
higher order spin waves are more strongly excited by 
the phonons than the lower order spin waves.3'4 We 
propose an explanation to these two apparent anomalies 
in terms of spin-wave modes which are Hermite 
functions rather than cosine functions. 

Until recently it has been assumed that the standing 
spin-wave modes excited in a magnetic film by a 
uniform microwave field have been of the form of 
cosines,5'6 taking the center of the film as the origin of 
the thickness coordinate. Recently, however, Portis7 

has suggested that the form of the standing spin wave 
may be quite different due to a variation, in the film, 
of the (^-directed, uniaxial) internal effective field.7*8 

This hypothesis is supported by considerable experi­
mental evidence. It explains the tendency toward linear 
separation of spin-wave modes,2,7'9 the anomalously 
large intensities of the higher order modes,7*9 the 
"critical angle" effect,8 and the general behavior of the 
spin-wave resonances as the steady magnetic field is 
turned out of the plane of the film.8 This model will 
be applied here to the phonon-spin-wave interaction in 
magnetic films. 
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CALCULATION OF POWER FLOW 

We consider a magnetic film deposited on the end of 
a quartz rod. The film is coupled to the magnetic fields 
of a microwave cavity and provisions can also be made 
for direct piezoelectric excitation of phonons in the 
other end of the quartz rod. We wish to calculate the 
power flow for the processes: 

Process I. Power from cavity to spin-wave modes 
(photon to magnon). 

Process II. Power from spin-wave to phonon modes 
(magnon to phonon). 

Process III. Power from phonon to spin-wave modes 
(phonon to magnon). 

Process IV. Power from spin-wave modes to cavity 
(magnon to photon). 

These are shown diagrammaticaily in Fig. 1. We 
assume that the interactions take place throughout the 
film and are not associated with the film surfaces. 

The film is taken to lie in the xy plane with its 
surfaces at z=dzL/2. The equations describing the 
interaction of the magnons with the phonons are given 
by Kittel10 and we use them as written by Schlomann,11 

including the interaction with the cavity magnetic field. 

m==iyl(H-H^a2d2/dz2)m+b2(d/dz)R-Mh'] (la) 

pR=Pv2(d2/dz2)R+ (b2/M) (d/dz)m. (lb) 

The magnetic field H=Supplied—^TTM is perpendicular 
to the plane of the film. H^ is the exchange field, 7 is 
the gyromagnetic ratio taken positive for electrons, a is 
the lattice constant, 62 is a magnetoelastic coupling 
coefficient,10 p is the density of the film, and v is the 
velocity of transverse phonons in the film. These 
quantities are assumed to be constant throughout the 
film. The displacement of an atom from its equilibrium 
position R=Rx-{-iRy is assumed to have the form 
ei(o>t-kz) where k is the phonon wavelength; the micro­
wave field h=hx+ihy has the form eiu}K The saturation 
magnetization M will be assumed to have the form 
(Portis7) 

M=M0(l-4:ez2/L2), (2) 
10 C. Kittel, Phys. Rev. 110, 836 (1958). 
11 E. Schlomann, J. Appl. Phys. 31, 1647 (1960). 

1070 



I N T E R A C T I O N O F P H O N O N S A N D S P I N W A V E S 1071 

CAVITY 

(PHOTON) 
FILM 

(MAGNON) 

FILM 

(PHONON) m 

FILM 

(MAGNON) 
CAVITY 

(PHOTON) 

FIG. 1. Diagram of energy flow between the electromagnetic 
cavity mode, the spin-wave modes in the film, and the acoustic 
waves in the film. 

where e= AM/M the fractional change of magnetization 
from 0 to ± L / 2 . I t is not necessary to have a variation 
of M throughout the film, but only a variation of the 
z directed, uniaxial, effective internal field. The form 
(2) is used for convenience. With this form for the 
magnetization, the homogeneous part of Eq. (la) has 
the solution 

m(z,t) = mx+imy=eia3t £ cn^n(z), (3) 
n 

where the cn are constants and 

M$ = e-^Hn&, ^a^z (4) 

are the Hermite functions for a harmonic oscillator7,12 

with the usual transformation on z. The constant a is 
given by 

« = — ( ) , (5) 

where a small term in d2M/dz2 has been neglected.7 

I t is necessary for subsequent calculation to notice, 
as Kittel has pointed out,10 that the term (—b2/M)dR/ 
dz of Eq. (la) represents an effective driving field on 
the magnetization due to the lattice displacement. 
Similarly the term (ab2/M)dm/dz represents a force 
per unit area on the lattice due to the magnons. This 
force/area tends to drive an xy plane of atoms trans­
versely away from its equilibrium position. 

The power per unit area of film will now be calculated 
for each of the processes I, II, III, and IV, using Eqs. 
(1) with the wave functions given above. 

Process I : Photon to Magnon 

Consider Eq. (la) in which R is zero and the term in 
h is a small perturbation. The spin waves will then 
have the form (3) and Eq. (la) becomes 

£ (cO+ZTrT1 — 0)f)cn^n(z) = — jM(z)h , (6) 

where the relaxation time rn of the ^th mode has been 
introduced and o)f = y(H—He^a2d2/dz2). If the field, 
^applied, is adjusted to resonance (a>— w,n)^n(z) = 0,' 
since \l/n(z) is a solution, so that irw

_1 only remains 
in the parenthesis on the left side. Both sides of Eq. 
(6) are then multiplied by cm*\f/m(z) and integrated 
from — L/2 to +L/2. From the value of a which will 
be introduced later one can find that the functions 

12 L. Pauling and E. B. Wilson, Jr., Introduction to Quantum 
Mechanics (McGraw-Hill Book Company, Inc., New York, 1935), 
Chap. 3; Leonard I. Schiff, Quantum Mechanics (McGraw-Hill 
Book Company, Inc., New York, 1949), Chap. 4. 

$n(%) become negligible at zbL/2 unless the mode 
number n is large. Therefore, dbL/2 will be replaced 
by ± Qo. The amplitude of the nth spin-wave mode is 
then 

/

+00 

fn(z)dz, (7) 
-00 

where the orthonormality of the Hermite functions 
has been used and 

iVrn2=(a/x)1 '2(l/2"w!) (8) 

is the usual normalization factor.12 We will restrict 
ourselves to small variations in M so that on the right 
side of Eq. (7), M~MQ. From (7) it is seen that only 
even modes can be excited by a uniform h field since 
the Hermite functions yj/n(z) are even for even n and 
odd for odd n. 

In order to present the results in consistent form for 
all four processes, I, II, III, and IV, the Fourier 
transform of the Hermite functions13 

/

+00 

-00 

^)eiK^=i-(27ry^n(K) (9) 

is introduced, where %=a1,2z and K=k/a1/2. In terms 
of (9) the amplitude coefficients (7) become 

cn= iTnvMohgn(0)/2"n ITT1'2 , n= (0, 2, 4, • • •) (10) 

where (8) has been used to eliminate 7VW. 
The power absorbed by the nth mode, per unit area 

of the film, is 

P i = 
Sir 2w J _< 

T dtn*(z,t) 
h{t) dtdz 

dt 
(11) 

where d=L/2 have been replaced by ± o o . By use of 
(3), (9), and (10), and remembering that hocei(1}t, the 
power absorbed is found to be 

Pi = -
a>TnyMoh2lMO)J 

4:(Tra)1/22nn\ 
( n = 0 , 2 , 4 , - . . ) . (12) 

Except for the mode n=0, which is eddy-current 
broadened, the relaxation time is constant to within 
10% from line to line so that the only part of this 
expression which is strongly dependent on n is 

Pi oc[^„(0)]V2»»! («=<), 2, 4, • • • ) . (13) 

This is identical to the result of Portis.7 

Process I I : Magnon to Phonon 

For this case we assume phonons of the form 

R=H Rhe^'-** (14) 
k 

13 E. C. Titchmarsh, Introduction to the Theory of Fourier 
Integrals (Oxford University Press, Oxford, 1948), 2nd ed., p. 81. 
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which are being perturbed slightly by the spin-wave 
term (b2/M)dm/dz of Eq. (lb). Proceeding as before, 
we have from Eq. (lb) 

we find 

p E ( ^ ~ 2 i W r f 1 -
k 

•o)2)Rke~ikz 

•-(bz/tflCnfynM/dZ, (15) 

where the relaxation time for phonons rk has been 
introduced by letting a> —>o)+irk~l and neglecting rf2 

as a small quantity.14 We again assume M=Mo on the 
right side. Multiplying both sides by eikz and inte­
grating from —-L/2 to +L/2 we find 

* * = 
irkhcn r+LI2d$n(z) I zdz. 

2ooLpMo J-L/2 dz 
(16) 

Integrating by parts and remembering that \pn(±L/2) 
« 0, the amplitude of the Mh phonon is found to be 

Rk= (»=0,2,4, • - . ) . (17) 

2o)LPM0a
1'2 

The power from the spin waves to the phonons is 

I w -+L/2 rT,ab2 dm(z,t)\dR*(z,t) 

\2TLJ^L/2JO W O dz J dt 

Pn = -dt dz (18) 

where the term (ab2/Mo)(dm/dz) is the appropriate 
force/area as discussed above. By inserting (3) and 
(14) into (18), and using (9), the power flow from the 
nth. spin-wave mode to the Mh acoustic mode is found. 

P n = -
(7ra)lf2pL2nnl 

( * = 0 , 2 , 4 , - . . ) . (19) 

The amplitudes cn have been set by the normalization 
condition 

1 r+0° 
I CnCn j 

Li J—ao 

[$n{z)Jdz--
CnCn 

LNJ 
-=rfM<? (20) 

where t\ is a small number. Here again the only term 
strongly dependent on n is \jf/n(K)22/2nn\. 

Process III: Phonon to Magnon 

The spin-wave excitations are determined from (la) 
with h=0 and the term in R assumed small so that the 
modes are essentially pure spin-wave modes which are 
being excited by a phonon flux. Equation (la) becomes 

£ (u+iTn-
1-«')*»*»(*) = -ikyb2Rke-^ , (21) 

n 

for the &th phonon. Proceeding in the standard way 
14 The elastic constant cu and density, and therefore v, are 

assumed independent of z. This is a good approximation for 
small variations in the composition of permalloy since these quan­
tities are quite similar for both iron and nickel, 

Tnyb2kRkgn(K) 
cn= ( » = 0 , 2 , 4 , . . . ) . (22) 

irll22nn\ 

(We arbitrarily restrict n to even values here since, 
only even spin-wave modes excite the cavity.) Using the 
effective field due to phonons (—b2/M)dR/dz) in Eq. 
(11) we find 

WTnVRfy^ZMK)!2 

P I 1 I = ( « = 0 , 2 , 4 , - . . ) . (23) 
(<jra)ll2(4>rryMo)2nnl 

Since rn is a weak function of n, Pm depends on n 
mainly through \\f/n(K)J/2nni Therefore, P m has the 
same n dependence as Pn. 

Process IV: Magnon to Photon 

The microwave magnetic field generated by the 
spin-wave mode n is 

1 r+Ll2 

hcc— / Cn^n(z)dz CCCngn(0) . 
L J-L/2 

The power into the cavity is 

P I V cc# o c [ ^ n ( 0 ) ] 2 cc [> n (0) ] 2 /2^! 

(11=0,2,4,- - - ) , (24) 

when the normalization (20) is carried out. Therefore, 
Piv has the same n dependence as Pi. 

Phonon Boundary Conditions 

In the preceding analysis the effects of the boundaries 
z=zkL/2 on the form of the phonon wave functions 
have been neglected. We now take into account the 
metal-air boundary at z=—L/2 and the metal-quartz 
boundary at Z—+L/2. The appropriate sound velocity 
in quartz is 5.4X105 cm/sec and in nickel (which we 
take to be reasonably similar to permalloy) it is 3.OX 105 

cm/sec. This gives a theoretical reflection coefficient of 
0.08. We will, therefore, assume the medium to be con­
tinuous acoustically at the permalloy-quartz interface. 
At the air-metal surface (2=—L/2) the reflection co­
efficient will be unity and an antinode of the phonon 
wave function will exist there. The phonon wave func­
tion will be 

R=sj»t £ Rk C0Sk(z+L/2), (25) 
k 

which satisfies the foregoing requirements. 
The power flow for processes II and III can now be 

recalculated using this form for the phonons. Following 
the same procedures as before but using Eq. (25) for 
the phonons, we obtain 

Rk=-i-
btf-kkgn {K)cnr kL sin (kL/2) 

uLpMoa112 LkL+sinkL cos&LJ 

(?*=03234, •) (26) 
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for the amplitude of the phonons excited by the spin 
waves. The power is 

Pn = 
(Tra)lf2pL2nnl 

r 2kLsin2(kL/2) 
X ;] LkL+sinkL coskL. 

( » = 0 , 2 , 4 , . . - ) , (27) 

which is identical to Eq. (19) except for the factor in 
square brackets. For a given k the dependence on n is 
unchanged. 

Similarly, for process III we obtained for the ampli­
tude of spin waves excited by phonons 

Tnyb2kRkgn(K) 
cn= —i [sin(&Z,/2)] 

7 T 1 / 2 2 ^ 1 

The power for process III is 

™Tnk*Rj?y*b2*fyn(K)J 
PIII = -

(Ta)1^2 (4:7ryMo)2nnl 

(»=0,2,4, • 

[2 sin2 (kL/2)1 

• ) . (28) 

( W =0 ,2 ,4 , . . - ) . (29) 

This is identical to the previous expression, Eq. (23), 
except for the factor in brackets. Again, the dependence 
on n is unchanged. The extra term in Eqs. (27) and 
(29) shows that, for kL=pw where p is an odd integer, 
the power is doubled due to constructive interference 
from the free surface of the film. When p is an even 
integer the power is zero due to destructive interference 
from the free surface. If other boundary conditions 
than these are imposed on the phonons, one would 
obtain different interference terms. The dependence of 
the spectrum on the spin-wave-function index n, 
however, would not change. This can be seen by 
carrying out the calculation with an arbitrary combi­
nation of sine and cosine phonon wave functions with 
arbitrary phases. It is not hard to see that the form of 
Eqs. (26) or (29), in which the interference term and 
the term containing n occur as separate factors, will 
always be obtained provided the phonon wave function 
can be separated into a time and a space factor. 

Combinations of I, II, III, and IV 

In the experiments of Pomerantz2 the cavity is 
excited by spin waves which, in turn, are excited by 
independently generated phonons. The intensities of 
excitation of the cavity are then given by the product 
of process III and IV (n dependence only). 

7 n ^(Z)oc[^(0)^(Z: ) /2^! ] 2 (»=<), 2,4, . • • ) . (30) 

In the experiments of Lewis, Philips, and Rosenberg4 

and of Seavey3 the spin waves are excited by the cavity 

which in turn excites phonons. The phonons travel to 
the opposite end of the quartz rod, are reflected, and 
re-excite the spin waves which finally excite the cavity. 
The intensities observed are found from the product of 
processes I, II, III, and IV 

7 ^ ( Z ) c c [ ^ ( 0 ) ^ ( ^ ) / 2 ^ G 4 , (*=0,2,4, • • • ) . (31) 

Formulas (30) and (31) are valid for all n except 
n=0, for which eddy-current damping is appreciable,9 

and large n, for which Hermite functions are no longer 
the proper wave functions.7 

The first few functions \jf/n(K)~]2/2nn\ are listed in 
Appendix A. 

COMPARISON WITH EXPERIMENTAL RESULTS 

Let us first consider the experiment of Pomerantz2 

on permalloy films. In order to fit his mode positions 
to a square law Hn ozn2, he labels them n=0, 9, 11, 13, 
15, and 17. This indicates that they actually go quite 
linearly, that is, they could be labeled n=0, 2, 4, 
with Hnccn without serious error. The spin-wave 
functions are, therefore, likely to be reasonably close 
to Hermite functions and the foregoing theory is 
applicable. 

In order to calculate the intensities In
{l){K) the 

value of K=k/a112 must be determined. Pomerantz 
gives the values £=2600 A, and &«2X105 cm"1. We 
take 4TTM=104 G, a=2.5Xl0~8 cm and # e x = 2A/Ma2 

= 4X106 Oe. The value of the exchange constant A is 
taken as 10~6 erg/cm. Portis finds the value AM/M 
— 0.08 for a film7 and we will use this value. The 
reduced phonon propagation vector then becomes i£~ 1. 
The comparison of calculated and experimental values 
of In^iK) is made in Table I. The higher orders are 
excited appreciably because the spin-wave functions 
have appreciable Fourier components at the phonon 
wave length. 

We next consider the experiments of Seavey3 on 
permalloy. His measured-mode positions are nearly 
linear and the above theory should apply. In order to 
compare Seavey's results (his Fig. 6) to the expression 

TABLE I. Comparison of theory and experiment for the in­
tensities observed by Pomerantz (Ref. 2) and by Seavey (Ref. 3). 
Pomerantz performed a two-step (III and IV of Fig. 1) experiment 
on a 2600A, permalloy (80-20) film at 8.9 kMc/sec with JD»1. 
Seavey performed aofour-step (I, II, III , and IV of Fig. 1) experi­
ment on a«4500 A permalloy (88-12) film at X band with 
K — 1.3. Normalized to unity for n = 0. 

n 

0 
2 
4 
6 
8 

10 

Theory 

/. (1 )(1) 

1.00 
0.25 
0.39 
0.23 
0.07 

Experiment 
Pomerantz 

/n (1)(D 

1.00 
0.25 
0.12 
0.05 

Theory 

In™ (1.3) 

1.00 
2.35 
0.27 

~ 0 
3.90 
0.08 

Experiment 
Seavey 

7„<2>(1.3) 

1.00 
1.08 
1.98 
1.78 
1.16 
0.22 
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FIG. 2. Plot of cavity power against steady magnetic field for 
two nickel films when k||M|[jg, from Lewis, Philips, and Rosenberg 
(Ref. 4). Their mode labeling has been omitted here since it is 
apparently based on the hypothesis of a uniform film with perfect 
surface-spin pinning. Although the ordinate is labeled "phonon 
power" the description of the experiment makes it evident that 
it is actually "cavity power." 

for the intensities In
{2)(K), we use the same parameter 

values as used for Pomerantz's experiment, except for 
the film thickness which is £ ^ 4 5 0 0 A. This gives 
K^l.3. The comparison of theory and experiment is 
given in Table I. 

The agreement of experiment with theory is generally 
within an order of magnitude. I t appears to be possible 
to obtain somewhat better agreement just by careful 
adjustment of the value of K. I t is likely that the 
remaining differences between theory and experiment 
are due to the spin-wave modes having mixtures of 
other functions, i.e., sinusoidal, with the Hermite 
functions. As the films are made more uniform with 
respect to the thickness dimension the Hermite spin-
wave functions should be replaced by cosine functions 
provided some means of spin pinning still remains at the 
surfaces. Under the assumption of pure cosine spin-wave 
modes it would not be possible to get a phonon-spin-
wave interaction at all, except for the lowest modes of 
thick films or for multiple phonon-magnon processes. 
I t , therefore, appears that nonuniform films are re­
sponsible for the large spin-wave-phonon interactions 
which are observed for the higher spin-wave modes. 

The apparently erratic intensity variations which 
occur are a consequence of the rapid variation of the 
Hermite functions with respect to either the reduced 
wave vector K (given n) or the index n (given K). 
These variations are amplified enormously in the experi­
ments in which several of the processes I, I I , I I I , or IV 
occur consecutively. This behavior is shown by the 
results of Lewis, Philips, and Rosenberg.4 Their results 
of measurements on nickel, made in the same way as 
those of Seavey on permalloy, are shown in Fig. 2. 
Several qualitative comparisons to theory can be made. 
(1) The intensities are apparently erratic, in agreement 
with the foregoing discussion. (2) Some modes are 
missing or very small due to the zeros in the Hermite 
functions. (3) For the 2600 A film, Fourier components 

TABLE II. Theoretical dependence of mode intensities on the 
film thickness for the two-step experiment, processes III and IV. 
The InM(K) are normalized to 1.00 for n = 0. For the four-step 
process the values would be squared. 

n 

0 
2 
4 
6 
8 

£,=2600 A 
/»(1)(D 

1.00 
0.25 
0.39 
0.23 
0.07 

£ = 5 2 0 0 1 
in^m 

1.00 
2.25 
0.39 
0.05 
0.43 

L= 10 400 A 
/n ( 1 )(2) 

1.00 
12.3 
5.6 
4.6 
0.02 

of the Hermite spin-wave functions, corresponding to 
f the phonon wavelength, are weak for the higher spin-
erg wave modes and, therefore, no appreciable excitation 
- is is observed. For the 5600 A film, however, the appro-
Ton P r i a te Fourier components are large and appreciable 
:iat excitation of the higher-order spin waves is observed. 

The expressions for the mode intensities, Eqs. (30) 
and (31), give this behavior quantitatively through the 

ter dependence of K on the film thickness (K=k/a1/2 ozL1/2). 
for A set of values calculated from Eq. (30) is given in 
res Table I I to illustrate this thickness dependence. 
is The "highly individual behavior" of nickel films and 

the frequent "second burst of phonon power" occurring 
lly at higher mode numbers mentioned by Lewis, Philips, 
ble and Rosenberg4 are understandable in terms of the 
ful rapid variations of the Hermite functions as the film 
;he parameters are changed. In addition to being sensitive 
jnt to the film thickness, the spectrum will be sensitive to 
of changes in the magnetization variation15 throughout 

ite the thickness of the film. Even though this enters K as 
ith (Mo/AM)1/4 its effect may be considerable due to the 
in- strong dependence of the intensities on K. As Portis 
>ns has pointed out,7 if AM becomes sufficiently small the 
;he Hermite spin-wave functions will no longer be the 
ve correct functions. One should take care not to apply 
in- the results given here unless Hnccn, a situation which 
of is reasonably correct for many films. Furthermore, it 

es. should be remembered that the results given here are 
re- for weak coupling only. The phonon-magnon coupling 
>ns of permalloy near its zero magnetostriction composition 

is presumed to be weak. 
ich The spectrum should also be strongly dependent on 
:he the phonon wavelength. Since this is fixed by the 
:ed microwave frequency one would expect the spectrum 
£). to be strongly frequency dependent. 
;ri-
IV CONCLUSION 
he 
' The apparent discrepancy between phonon and 

magnon wavelengths in magnon-phonon interactions 
9 in magnetic films is removed if the spin waves are taken 

i to be Hermite functions. Appreciable Fourier compo-
3nt 15 i t should be emphasized that this magnetization variation is 
i re simply a convenient way of introducing a z dependence of the z 
i t e directed, uniaxial, internal field. Other mechanisms such as a 

variation of strain throughout the thickness of the film may 
fits actually be operative. 



I N T E R A C T I O N O F P H O N O N S A N D S P I N W A V E S 1075 

nents of the spin wave then exist corresponding to the 
phonon wavelength and the calculated excitation of 
the spin waves by the phonons comes out in good 
agreement with experiment. The dependence of the 
spectrum on film thickness and the apparently erratic 
intensities are understandable on this basis. 

The effects of eddy currents are quantitatively 
neglected but must be taken into account for the n=Q 
mode and perhaps for higher-order modes if the film 
thickness is increased past 5000 A. I t is apparent that 
the spin-wave functions will not be exactly Hermite 
functions in all cases because of variations in film 
fabrication. I t appears that more exact comparison 
between experiment and theory will be possible if 
efforts are made to produce either perfectly uniform 
films or films in which the internal effective field varies 
exactly parabolically. 

INTRODUCTION 

FOR many years the picture of the F center in alkali 
halides has seemed reasonably complete.1 The 

center consists of an electron at a negative ion vacancy. 
The principal electronic transition is seen in absorption 
as the F band which raises the electron to an energy 
level a few tenths of an electron volt below the conduc­
tion band. A weaker transition on the high-energy side 
of the F band is known as the K band. I t also arises 
from the F center and is thought to involve excitation 
of the electron either into the conduction band or very 
close to it. 

A startling development, due to Luty, has been in­
jected into this picture.2 In additively colored potassium 
and rubidium salts he has found three new bands on the 
high-energy side of the F and K bands. These bands, 
called Li, L%, and L% bands, are smaller than the F band 
by one to two orders of magnitude but are proportional 
to the F band. The peak positions of the L bands vary 

1 For a recent review of the properties of the F center see J. H. 
Schulman and W. D. Compton, Color Centers in Solids (Pergamon 
Press Inc., New York, 1962). 

2 F. Luty, Z. Physik 160, 1 (1960). 
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APPENDIX I : THE FUNCTIONS Jn{K) = l^n{K)y/2nn\ 
WHERE ifcn(K) = exp(~K2)Hn(K). 

Jo(K) = exp(-K2), 

J2(K) = exp(-K2) (2K*-1)2/2, 

J4(K) = e x p ( - K2) ( 4 Z 4 - 12i£2+3)2/24, 

J6(K) = exp(-K2) (8KQ-60K*+90K2-15)2/720, 

JS(K) = e x p ( - K2) (16K8- 224Z6+840i£4 

-840Z 2 +105) 2 /40 320. 

as the host lattice is changed and follow the empirical 
Mollwo-Ivey relation3 as do the F and K bands. This 
relationship is 

vdn= const, (1) 

where v is the frequency of the maximum of the band, 
d is the lattice constant of the host material, and n is a 
constant which is nearly 2. 

The most surprising feature of these bands is that 
they lie from about 0.7 to 2.5 eV higher in energy than 
the F band. From all that is known about the F center, 
these transitions would be to states well within the 
conduction band if the F center is the defect responsible 
for the bands. One might expect that photoconductivity 
would be observed on irradiation into these bands; this 
had indeed been observed by Inchauspe before the 
discovery of the L bands.4 In KBr at 80°K, Inchauspe 
found photoconductive peaks at the L2 and Lz positions 
and has found another peak at even higher energies 
which has not been identified in optical absorption. 
Wild and Brown have examined the photoconductivity 

3 E . Mollwo, Nach. Ges. Wiss. Gottingen, II, 97 (1931); 
H. Ivey, Phys. Rev. 72, 341 (1947). 

4 N. Inchauspe, Phys. Rev. 106, 898 (1957). 
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Various L bands have been measured in KC1 and KBr x rayed at liquid-helium temperature and in 
KC1:H x rayed at room temperature. These results argue against the suggestion that the L bands arise from 
complexes involving F centers and support the argument that the L bands arise from the F center itself. A 
charge-transfer model of the L bands is proposed in which the transitions correspond to a combination of 
transferring the F-center electron to a neighboring alkali ion and raising the resulting alkali atom to one 
of its excited states. 


