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Theory relating spin-lattice relaxation times to diffusion rates has been extended to include the relation 
of spin-spin relaxation times to diffusion rates. Certain tables presented earlier have been corrected to bring 
them into agreement with presently accepted theory. 

IN two previous articles hereafter referred to as I1 

and II,2 the general problem of nuclear spin relaxa
tion by diffusion was discussed. Results were obtained 
for the spin-lattice relaxation time T\ for lattice dif
fusion describable by a random walk to nearest neighbor 
positions in fee and bec lattices. In this paper the ex
tension to the spin-spin relaxation time T2 is made. 
This extension is possible because in the time since I 
and I I were presented, a more definite theoretical ex
pression for T2 has been developed.3 In this intervening 
time the theoretical expression for T± has also been 
revised4 so that certain tabular material appearing in 
I and I I is slightly incorrect, and the corrected results 
will also be presented. 

The expressions given by theory for the spin-lattice 
relaxation time T\ and the spin-spin relaxation time T2 

are, respectively, 

Tr1=l74*2 / ( /+l)C25i(coo) + 252(2a>o)], (1) 

r 2 - 1 = f 7
4 ^ ( / + l ) [ ^ o ( 0 ) + f 5 1 ( c o o ) + i 5 2 ( 2 W o ) ] , (2) 

where, for example, 

5o(o>)=/ e^%(t)dt, (3) 

*o« = E {F»m{t')Fnm (<'+0 W ) , (4) 

Fij^(t)=(l-3cos%j)/rij\ (5) 

and where f*y, %, and <p# are the time varying spherical 
coordinates of spin j relative to spin i, and OOQ is the 
Larmor frequency. Si(co) and 82(00) are defined in a 
similar manner in I. The expression for T1 given in I 
had the factor unity instead of 2 before £2(0)0) in (1), 
and the factor 2 has since been shown to be correct. 

In I it is shown that 

and that 
S^u) = l8ircnT/(15k*P)2G(k,y) (6) 

£2(co) = 4£1(co). (7) 
1 H. C. Torrey, Phys. Rev. 92, 962 (1953). 
2 H. C. Torrey, Phys. Rev. 96, 690 (1954). 
8 1 . Solomon and N. Bloembergen, J. Chem. Phys. 25, 261 

(1956). 
4 R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954). 

I t can also be shown following the outline in I that 

S0(<a) = 6Si(<a). (8) 

In (6) n is the number of lattice sites per unit cell, 
c is the number of atoms per lattice site, r is the time 
between jumps and is given by l2/6D, k is a normaliza
tion factor (given in I and II) , / is the jump distance, 
D is the macroscopic diffusion coefficient, y is cor/2, and 

1 — (sinx)/x dx 
G(k,y)= I *>Jzrf(kxh ; — • - • 

'0 \_l—(smx)/xj+y2x 
(9) 

Values of G(k,y) are tabulated below in Table I for 
fee and bec lattices, respectively. These values, along 
with those of <p(k,y) and R(k,y) defined below, were 
computed on the NAREC computer at the U. S. Naval 
Research Laboratory and are accurate to at least three 
significant figures. Methods used in simplifying the 
calculation of G(k,y) are given in the Appendix. 

For the purposes of condensed notation, Eqs. (1) 
and (2) can be rewritten 

where 

Ti 1 = Ccp(k,y), 

T2-1=CByG(kfi)+Q(k,y)l, 

C=y*m(I+l)8irnc/(5kzPa>), 

<p(k,y) = yG(k,y)+4yG(Wy), 

tt(k,y) = &G(k,y)+yG(k,2y). 

(10) 

(12) 

(13) 

(14) 

For convenience, <p(k,y) is given also in Table I. &{k,y) 
is not as useful to the experimenter, and is not tabu
lated. Its further use will be indicated below. 

As o)t becomes much less than unity, it is to be ex
pected that T2= T\. This can be shown to be the case 
if G(kfi) is used in all the spectral density functions S 
as shown in (6). Then 

Tr^Tr^SCyGlkfl). (15) 

Another region of interest is that within the limits 
coCM and o-0̂ <3Cl (where O-Q is the square root of the 
rigid lattice second moment expressed in sec-1), i.e., 
the region below the T\ minimum and before the onset 
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TABLE I. The functions G(k,y), (p(k,y), and R(k,y) evaluated at selected values of 6 for body-centered 
cubic and face-centered cubic lattices. 

& = 0.76293 ( b c c lattice) £ = 0.74280 (fee lattice) 

y 

0 
0.025 
0.05 
0.1 
0.15 

0.2 
0.25 
0.3 
0.35 
0.4 

0.45 
0.5 
0.55 
0.6 
0.65 

0.7 
0.8 
0.9 
1. 
1.1 

1.2 
1.3 
1.4 
1.6 
1.8 

2. 
2.25 
2.5 
2.8 
3. 

3.5 
4. 
5. 
6. 
7. 

8. 
10. 
14. 
20. 
30. 

40. 
60. 

>80. 

G(k,y) 

0.6369 
0.5557 
0.5220 
0.4740 

. 0.4371 

0.4059 
0.3784 
0.3537 
0.3312 
0.3104 

0.2912 
0.2733 
0.2567 
0.2413 
0.2269 

0.2135 
0.1893 
0.1684 
0.1501 
0.1343 

0.1205 
0.1085 
0.09809 
0.08085 
0.96749 

0.05699 
0.04684 
0.03907 
0.03197 
0.02824 

0.02127 
0.01656 
0.01081 
0.007598 
0.005620 

0.004322 
0.002781 
0.001425 
0.0007003 
0.0003116 

0.0001754 
0.0000780 

0.2808/y 

G(k,2y) 

0.04865 

0.04194 
0.03647 

0.02510 
0.02019 

0.01324 

0.008689 

0.001936 

0.001092 

0.0003577 

0.0000439 
0.0000195 

<p(k,y) 

0 
0.06609 
0.1209 
0.2097 
0.2778 

0.3295 
0.3680 
0.3957 
0.4148 
0.4271 

0.4341 
0.4370 
0.4368 
0.4341 
0.4298 

0.4241 
0.4102 
0.3945 
0.3781 
0.3618 

0.3460 
0.3308 
0.3164 
0.2900 
0.2668 

0.2465 
0.2245 
0.2058 
0.1868 
0.1759 

0.1531 
0.1354 
0.1097 
0.09207 
0.07925 

0.06954 
0.05582 
0.03998 
0.02803 
0.01870 

0.01403 
0.009357 

0.56l5/;y 

R(k,y) 

0.7000 
0.7229 
0.7356 
0.7584 
0.7810 

0.8043 
0.8285 
0.8534 
0.8786 
0.9040 

0.9291 
0.9536 
0.9775 
1.000 
1.022 

1.042 
1.080 
1.114 
1.143 
1.168 

1.190 
1.209 
1.226 
1.253 
1.274 

1.290 
1.305 
1.317 
1.328 
1.333 

1.344 
1.350 
1.359 
1.364 
1.366 

1.368 
1.370 
1.372 
1.373 
1.374 

1.374 
1.374 

1.375 

G(k,y) 

0.6145 
0.5394 
0.5081 
0.4635 
0.4289 

0.3994 
0.3734 
0.3498 
0.3282 
0.3082 

0.2896 
0.2723 
0.2561 
0.2411 
0.2269 

0.2138 
0.1900 
0.1692 
0.1511 
0.1353 

0.1216 
0.1096 
0.09911 
0.08180 
0.06835 

0.05776 
0.04750 
0.03965 
0.03247 
0.02868 

0.02162 
0.01683 
0.01100 
0.007728 
0.005717 

0.004397 
0.002829 
0.001450 
0.0007126 
0.0003171 

0.0001785 
0.0000793 

0.02857/;y2 

G(k,2y) 

0.04934 

0.04255 
0.03702 

0.02550 
0.02051 

0.01346 

0.008837 

0.001970 

0.001111 

0.0003640 

0.0000446 
0.0000198 

<p(k,y) 

0 
0.06430 
0.1181 
0.2061 
0.2742 

0.3264 
0.3657 
0.3942 
0.4142 
0.4273 

0.4349 
0.4384 
0.4387 
0.4365 
0.4325 

0.4272 
0.4137 
0.3983 
0.3822 
0.3660 

0.3502 
0.3350 
0.3205 
0.2941 
0.2707 

0.2502 
0.2280 
0.2091 
0.1898 
0.1787 

0.1557 
0.1377 
0.1116 
0.09367 
0.08064 

0.07076 
0.05680 
0.04069 
0.02852 
0.01903 

0.01428 
0.009522 

0.5714/3; 

R(k,y) 

0.7000 
0.7218 
0.7340 
0.7559 
0.7778 

0.8006 
0.8243 
0.8489 
0.8740 
0.8992 

0.9242 
0.9487 
0.9726 
0.9955 
1.017 

1.038 
1.076 
1.110 
1.139 
1.165 

1.187 
1.207 
1.233 
1.251 
1.272 

1.288 
1.304 
1.316 
1.327 
1.332 

1.343 
1.350 
1.359 
1.363 
1.366 

1.366 
1.370 
1.372 
1.373 
1.374 

1.374 
1.374 

1.375 

of the rigid lattice behavior. In this region 

Tt-^iCyGQifl), (16) 

which is just YQ the value given by (15). 
Where T2 data are available in the vicinity of the T\ 

minimum it will be desired to remove the "hump" 
which will appear in the semilog plot of T2 versus re
ciprocal temperature in the range where transition is 
occurring between the two asymptotic regions described 
by (15) and (16). Stated another way, it will be desired 

to make the customary Ti correction, A procedure for 
doing this is indicated here. Define a quantity 7Y as 

(T2')-i=§CyG(k,0). (17) 

It can be seen that (2Y)_1 is a linear function of y, and 
does not have the "hump." Then 

(Tz'y^T^-RTr1, (18) 
where 

R=U(k,y)/<p(k,y). (19) 
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This ratio R is also presented in Table I, since it will 
probably be of most direct use to the experimenter. 

ACKNOWLEDGMENTS 

The authors would like to thank Mrs. Janet Mason 
and Dr. Benjamin Lepson for computing G(k,y), etc., 
on the NAREC computer at the U. S. Naval Research 
Laboratory. 

APPENDIX 

The integral in Eq. (9) for G(k,y) converges slowly. 
It has been recast as follows: 

H. A. R E S I N G AND H. C. T O R R E Y 

where 
AoCv)=(l+^)-1, 
hi(y)=(i-f)/(i+y2)2, 
h2(y)=(l-3f)/(l+fy, 

under the conditions that §<&<1. Also 

oo cosT(n+l) tan_1yl 
J (* ,y)=£ Uk)— —• 

n=3 T(j[_|_^2)l/2ln+l 

l -3y 2 z*00 

G(k,y) = Re Z [ ( l -*? ) - 1 ] 1 * 1 ^*) , (Al) 
o 

(i+fy I J%/22(k,x) 

where 

-f 
Jo 

X-

gn(k)= / J3/2
2(^)C(sin^)A]wx-Wx. (A2) 

(A4) 

(A5) 

1 - (smx)/x-y2(S-y2)/(l-3y2) 

[1— (smx)/x]2+y2 

X [ (sinx)/x'Jx~1dx. (A6) 

Write (Al) as 

G(k,y) = go(k)h(y)+gi(k)h1(y) 
+g2(k)h2(y)+I(k,y), (A3) 

The integral I(k,y) converges more rapidly than 
G(k,y) and was used in the calculations. Integration 
was done using Simpson's rule. The upper limit found 
sufficient was AT. . 


