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This is a calculation of the effect produced by a nearby vacancy on the energy of the transition of an 
electron from a negative ion in an alkali halide crystal to a neighboring positive ion ("charge transfer" 
model of the exciton). Some, but not all, of the results agree satisfactorily with experimental observations 
of the a and y bands. The evaluation of certain "dipole" lattice sums of interest in other problems as well 
as this one is reported in the Appendix. 

H P r l E so-called "fundamental absorption band" in 
-1 alkali halides is generally assumed to result from 

the creation of an exciton, and the so-called alpha and 
gamma bands, which are observed on the long-wave­
length side of the fundamental absorption,1-2 have been 
attributed to that same transition perturbed by a 
nearby negative-ion vacancy. The position of the alpha 
band was first calculated by Bassani and Inchauspe3 on 
the basis of the "charge-transfer" model of the exciton 
(defined in the paragraph below and also in the caption 
for Fig. 1) for the configuration of vacancy, positive 
ion, and negative ion shown in Fig. 1 (a). The formalism 
was extended to arbitrary configurations by Tsertsvadze4 

and evaluated numerically by him for the configuration 
shown in Fig. 1 (b). Klick and Patterson2 have suggested 
that the configuration shown in Fig. 1 (d) would provide 
a reasonable model for the gamma band, and the cal­
culation for this configuration is reported in the present 
note. We also discuss the effects to be expected from 
other possible configurations. 

Let an electron on a negative ion (called ion number 1) 
be transferred to a neighboring positive ion (called ion 
number 2). The energy of this transition is affected by 
the presence nearby (in a position called number 3) of 
a negative ion vacancy. Let hv(iree) be that energy 
when no such vacancy is present (fundamental ab­
sorption) and let hv(pert.) be the energy if such a 
vacancy is present at position number 3, and let 
AE=hv(free) — hv(pert). Then4 

AE 1| 

*>2 
-lc-R-[—M-+S+M+'+S-MJ 1} . (1) 

Here the first term, C, describes the Coulomb energy, 
the second the repulsive energy, viz., R=aMp/6a if 
sites 2 and 3 are nearest neighbors and 0 otherwise, and 
the bracket the energy of the induced dipoles. Two of 
the quantities involved in Eq. (1) are constants: the 
Madelung constant aM= 1.7455 and the square of the 
charge on the electron, e2= 14.39 eV cm. The other 
quantities that appear in that equation are one of two 

1 C. J. Delbecq, P. Pringsheim, and P. Yuster J. Chem. Phys. 
19, 574 (1951). 

2 C. C. Klick and D. A. Patterson, Phys. Rev. 130, 1269 (1963). 
3 F. Bassani and N. Inchauspe, Phys. Rev. 105, 819 (1957). 
4 A. A. Tsertsvadze, Fiz. Tverd. Tela 3, 336 (1961) [trans­

lation: Soviet Phys—Solid State 3, 241 (1961)]. 

kinds: some that depend only on the host lattice 
(a,p,M-,M+f,M') and some that depend on the relative 
position of ions 1,2,3(A,C,S+,SJ). Consider first the 
former, a is the distance between nearest neighbors, p 
is a quantity of dimensions length appearing in the ex­
pression for the repulsive energy, and M_, M+, and 
MJ are quantities related to the dielectric properties 
of the components of the lattice which are defined in 
Ref. 3 and can be quantitatively computed from data 
given in the book of Mott and Gurney.5 Turning now 
to the quantities which depend on the relative positions 
of ions 1, 2, 3, the definitions are 

C = f 2 8 - 1 - f i 8 - 1 , 

^ = r23~4+^i3~4-2r23-Vi3-2 cos(ri3,r23), 

+ions +ions 
(2) 

where /23*=^2*~V3r
2 cos(r2i,r3;) and rzi is the distance 

FIG. 1. The charge-
transfer model for 
the exciton involves 
transfer of an elec­
tron from a negative 
ion (labeled by num­
ber 1 in the figure) 
to a positive ion 
labeled number 2. 
In this paper the 
effect on the energy 
of this transition of 
a negative-ion va­
cancy (number 3) 
in various nearby 
positions is calcu­
lated. The figure 
shows the various 
configurations that 
are discussed in the 
text. 
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5 N. F. Mott and R. W. Gurney, Electronic Processes in Ionic 
Crystals (Oxford University Press, New York, 1938), Chap. 1. 
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TABLE I. The first seven columns give AE as calculated for the 
seven configurations defined by Fig. 1. The last two columns give 
AE as observed experimentally (Ref. 2). 

NaCl 
KC1 
KBr 
KI 

a 

0.49 
0.51 
0.47 
0.42 

b 

0.81 
0.83 
0.78 
0.69 

AE (in eV) 

Calculated-case 
c d e 

-0 .28 0.17 0.15 
-0 .26 0.18 0.15 
-0 .25 0.17 0.14 
-0 .23 0.15 0.13 

/ 
0.21 
0.19 
0.19 
0.18 

g 

0.09 
0.08 
0.07 
0.07 

Observed 
band 

a y 

0.80 • • • 
0.81 0.20 
0.67 0.23 
0.60 • • • 

between ion i and ion 3, etc., and the summations are 
over all positive- or negative-ion sites (as indicated) 
except that the sites 1, 2, and 3 are omitted (as sug­
gested by the triple prime). 

We have done quantitative calculations for seven 
cases which we have called cases a, b, c, d, e, / , and g. 
These seven cases are distinguished by different relative 
positions of ions 1, 2, 3, and are defined by Fig. 1. The 
results are shown in Table I, together with the experi­
mental observations2 that they are supposed to be 
related to. The calculated values reported in the first 
two columns disagree with previously published values3,4 

—slightly in case a and rather sharply in case b. We 
have traced this discrepancy to the use of different 
numbers for the lattice sums involved in the quantities 
S+ and 5_ and discuss it in Appendix I. I t is worth 
mentioning that the lattice sums whose values are re­
ported there are of interest in other physical problems 
as well. The observed values for the a band, which are 
taken directly from Klick and Patterson,2 also differ 
from earlier published values, but only because dif­
ferent positions for the first absorption peaks were used 
before. 

In the calculations, cases a and b involve transitions 
of an electron to the nearest positive neighbor of the 
vacancy; case d involves a transition to the second-
nearest positive neighbor of the vacancy, and cases e, 
f, and g involve transitions to its third-nearest positive 
neighbor. These six cases exhaust all possible transitions 
to these three positive sites in which the electron moves 
toward the vacancy. (Case c, in which the electron moves 
away from the vacancy, is included largely in order to 
show explicitly that such transitions lead, as expected, 
to negative AE's which would put the absorption on 
the other side of the edge and, therefore, make it un-
observable.) The fourth positive neighbor of the va­
cancy, the nearest one that is left out, is located at sites 
(300), etc., and the AE's arising from transition to these 
may be expected to be small (and experimentally un-
observable on account of their closeness to the absorp­
tion edge). 

Agreement between theory and experiment may be 
described as incomplete. Case b agrees satisfactorily with 
the alpha-band data, and cases d, e, and / with the 
gamma-band data; but the effects from case a have not 

been observed. To be sure, we have not actually calcu­
lated the transition probabilities for any of the tran­
sitions, and it is possible that such a calculation might 
show the probability for case a to be very small; but 
the most naive, purely statistical, estimate points in 
the other direction. For case a, there are twelve negative 
" 1 " atoms about each vacancy, and the electron on each 
has two positive " 2 " atoms adjacent to it, so that 
12X2 = 24 separate "case a" transitions are possible for 
each vacancy; by contrast in case b there are only 6 
negative " 1 " atoms about each vacancy, and the elec­
tron on each of them has only one positive " 2 " atom 
adjacent to it, so that only 6X1 = 6 separate "case b" 
transitions are possible. Statistically, therefore, the 
probability of the unobserved "case a" transition is four 
times as large as that of the observed "case b" tran­
sition. This ratio remains unchanged if we slightly refine 
this argument by taking account of the fact that tran­
sitions will be induced only by light with a component 
polarized in the direction in which the electron is to 
move (for unpolarized light, for example, this merely 
reduces the number of possible transitions by §—in 
both cases). 

I t may be possible to improve agreement further by 
refining the details of the calculations, at the cost of 
greater complexity, without abandoning the somewhat 
specialized "charge transfer" model for the exciton. 
For details of the assumptions involved and refinements 
possible, the reader should consult the paper by 
Bassani and Inchauspe.3 Although the present calcula­
tion has, generally speaking, improved agreement 
between theory and experiment, it cannot claim to 
provide completely convincing evidence for the correct­
ness of either the overall theory of the method of 
computation. 

The numerical work reported in the Appendix was 
programmed by Mrs. Janet P. Mason. I am indebted 
to Dr. E. S. Rittner, Dr. J. R. Reitz, and Dr. A. A. 
Tsertsvadze, for correspondence concerning it. The 
physical problem was suggested by Dr. Clifford C. 
Klick, with whom I have had many discussions. 

APPENDIX I 

The numerical work involved in computing the 
quantities S± in (1) can be reduced to evaluation, for 
various values of i, j , k, of lattice sums 

reveny*= Z E E " /*>*(*,»,»), (3) 
|H-m+n|=even 

with fijk (l,myn) = r~2rJ72 cos (r,rJ) = 2~V~V_~3[Y2+rJ 
-(P+f+&)l, r2=l2+m2+n2

7 rJ= (l-i)2+(m-j)2 

+ (n—k)2, the double prime indicating omission of 
po in t s r=0andf -= 0; and of TQddijk defined analogously. 
To speed convergence, the quantities T were not sum­
med directly, but evaluated as follows. Omitting indices 
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and subscripts irrelevant for present purposes, we write TABLE II. The lattice sums 
2 2 2" 

all space 

= E " + 12 ~\f [provided R is chosen greater 
r<R r>R t h a n (;2+J'2+£2)1/2] 

=E"/+£ (/-r4)+Z-^ 
r<R r>R r>R 

r=Z"/+Z (f-r-^+L E' -E'>"4-
r<.R r>R all space r < # 

We now choose R= 10 and define 

r<10 

E' r - w , 
all space 

E r-«=S; 
r<10 

(4) 

(5) 

then, with neglect of Er>io (/—f-4), we can write (4) as 

-T=W+(A-B) 

or, restituting the subscripts and indices, 

T vk=W likA-(A —B ) 
•*• even " even I V/*even •*-> even) > 

' Z W * - W W * + Uodd--Bodd) • 
(6) 

Of these quantities, the ^4's are known from the work 
of Jones and Ingham6 (done analytically by what is 
usually called Ewald's method); they are Aeven 
= 6.334 58 and ^0dd= 10.197 74. The B's were evaluated 
numerically on the NAREC computer and found to be 
£even = 5.709 218 766 6 and ^ o d d= 9.564 363 607 4. The 
W's were also evaluated numerically for thirteen sets 
of (i,j,k) and are listed in Table II. The T's were then 
computed from (6) and also put in Table II. The reader 
will observe that omitting the second term in (4) was 
equivalent to replacing / i n (3) by r~4 outside the 
sphere of radius R= 10; the error induced by this can 
be shown to be at most of order R~*. [Had (3) been 
evaluated directly inside a sphere of radius R, and the 
points outside omitted, the error would have been of 

and 
Weven(odd)ijk = 

all space 
\l+m+n\ =even(odd) 

2 2 2" 
/2+W2-j-W2<10, 

l+m-{-n\ =even(odd) 

f^'k(l,m,n), 

with / denned by Eq. (3), and points (l,m,n,) = (0,0,0) and 
(ljtn,n) — (i,j,k) omitted. 

ijk 

100 
110 
111 
200 
210 
211 
220 
221 
300 
310 
222 
321 
400 

W W * 
5.116108 2512 
3.649 258 238 8 
3.133 469 930 4 
2.598 588 965 8 
2.168 934 682 3 
1.947 518 730 3 
1.566 829 053 5 
1.478 109 887 5 
1.447 991434 3 
1.369 263 033 5 
1.190 244 0712 
1.052 413 788 0 
0.949 221 791 8 

Woddiik 

5.108 089 417 7 
4.095 104 007 1 
3.125 450 183 0 
2.135 646 475 0 
2.160 916 353 0 
1.961 774 141 3 
1.619 507 228 3 
1.470 085 862 2 
1.439 983 496 3 
1.330 108 493 7 
1.191 114 948 5 
1.050 690 5313 
0.924 124 131 1 

71 ijk 
•L even 

5.7415 
4.2746 
3.7588 
3.2240 
2.7943 
2.5729 
2.1922 
2.1035 
2.0734 
1.9946 
1.8156 
1.6778 
1.5746 

7W 7 f c 

5.7415 
4.7285 
3.7588 
2.7690 
2.7943 
2.5952 
2.2529 
2.1035 
2.0734 
1.9635 
1.8245 
1.6841 
1.5575 

6 J. E. Jones and A. E. Ingham, Proc. Roy. Soc. (London) 
A107, 636 (1925). 

order -R-1.] As a check, we, also ran two of the T-sums 
in a larger sphere, of radius R= 15, and found agreement 
to six decimal places; we, therefore, feel safe quoting four 
decimals for the 7"s. The fact, apparent from Table II, 
that Teveni3'k=Todd

i3'k when i+j+k=odd also follows 
directly from the symmetry of the sums. 

The r s shown in Table II for (*;'*)= (100), (110), 
and (200) differ from numbers given for the same quan­
tities in some earlier papers.7,M I am grateful to Dr. 
J. R. Reitz and Dr. E. S. Rittner for attempting, though 
unsuccessfully, to help me trace the source of the dis­
crepancies. Case (a) of Table I involves the JT100 and 
Tm sums, and on account of these discrepancies, our 
results for case a are about 4% lower than those of 
Bassani and Inchauspe.3 Case b involves the T100 and 
T200 and for the same reason our results for case b are 
about 2 or 3 times as high as those of Tsertsvadze.4 

The quantities S± of (2) were computed from 
Table II. Each of them contains the difference between 
two T's, and since in subtracting two even T's, or two 
odd T's the terms A-B in (6) cancel out, the W's alone 
were sufficient for the calculations and the T's did not 
have to be used explicitly. 

7 R. A. Hutner, E. S. Rittner, and F. K. duPre, J. Chem. Phys. 
17, 204 (1949). 

8 J. R. Reitz and J. L. Gammel, J. Chem. Phys. 19, 894 (1951). 


