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stant, and that use of a Mott screening constant seems 
appropriate. 

There is little indication that the octahedral sites 
remain occupied for any appreciable length of time in 
the deficient (#<1.94) concentrations. The hydride 
lanthanum resonance shows no quadrupolar effects, 
even as the protons start to diffuse. One can conclude, 
using a typical quadrupolar interaction as a>Qo~3X106 

sec-1, that the lifetime of a diffusing proton in an 
octahedral site in x < 1.94 concentrations must be con­
siderably less than 10~7 sec at temperatures greater than 
300°C where diffusion is evident. Diffusion-dependent 
quadrupolar effects exist only in concentrations with 
x>2 and are consistent with a treatment of the occu­
pied octahedral site as a point defect. 

The vanishing Knight shift of the proton resonance 
and the ease of diffusion of protons are not incompatible 
with the model of a positive hydrogen ion or proton.36 

We assume that the electron from the hydrogen is 
ionized to the conduction band localized on the La 

36 J. Friedel, Phil. Mag. 43, 153 (1952); I. Isenberg, Phys. Rev. 
79, 736 (1950). 

I. INTRODUCTION 

SINCE the original suggestions of Wildt1 concerning 
the importance of H~~ photoabsorption in stellar 

atmospheres, much effort has gone into the calculation 
of H~ wave functions and the H~~ photodetachment cross 
section. Since the early estimates2 of the photodetach­
ment cross sections were not very satisfactory, Chandra-
sekhar undertook a series of increasingly more elaborate 

* Supported by the Lockheed Missiles and Space Company 
Independent Research Program. 

1 R. Wildt, Astrophys. J. 89, 295 (1959); 90, 611 (1939). 
2 H. S. W. Massey and R. A. Smith, Proc. Roy. Soc. London 

A155, 472 (1936); D. R. Bates and H. S. W. Massey, Astrophys. 
J. 91, 202 (1940). 

ions. This picture is consistent with the susceptibility 
and conductivity data if the conduction band, part of 
the 6s—5d bands of La, becomes filled when 3H/La 
are added. Martin and Rees19 have suggested a similar 
band-structure for Zr-H. It is here suggested that in 
La-H the 5d band of La is split into two bands in which 
the lower energy band can accommodate four electrons. 
A maximum of about four electrons in the lower part of 
the d band is consistent with the maximum solubility 
of hydrogen in the other group IIIB to VB transition 
metals. 
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calculations.3 He used successively better variational 
bound-state functions, with a plane-wave continuum 
function and with more accurate versions that allowed 
for distortion. 

In 1956, Geltman4 obtained a usefully accurate repre­
sentation of the H~ photodetachment cross section by 
means of a very simple model. He obtained both bound-
and free-state wave functions for a cutoff Coulomb 
potential, and computed the cross section from these. 
Since then, renewed effort has been spent in obtaining 

3 S. Chandrasekhar, Astrophys. J. 102, 223 (1945); 102, 395 
(1945); 128, 114 (1958); S. Chandrasekhar and D. D. Elbert, 
ibid. 128, 633 (1958). 

4 S. Geltman, Phys. Rev. 104, 346 (1956). 
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The zero-range photoelectric cross section of Bethe and Peierls, corrected according to effective range 
theory, is fitted to the H"~ photodetachment cross section. The value of 2.64 #o obtained for the effective range 
agrees with values obtained from the wave-function calculations of Schwartz, Burke and Schey, and others. 
A more accurate formula for the detachment cross section is obtained by allowing for distortion in the final 
p state by means of an approximate formula for the phase shift. This formula agrees qualitatively with the 
close-coupling theory phase-shift results of Burke and Schey, and provides a photodetachment cross section 
that fits the experimental data slightly better than the results re cently obtained by Geltman with an elabo­
rate variational treatment. There are two adjustable parameters: the binding energy, and one parameter in 
the phase-shift formula. By a slightly different choice of the parameters than is required to fit the experi­
mental data, close agreement can also be obtained with the Geltman results. 
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more accurate wave functions and in obtaining dipole-
velocity and acceleration cross sections, in order to im­
prove the agreement between theory and experiment.5 

Until recently, this effort had not yielded a completely 
satisfactory cross section: in fact, the results as reviewed 
by Branscomb5 were very little better than Geltman's 
1956 results.4 

Geltman6 has now carried the elaborate calculations 
still further; by use of a 70-parameter bound-state 
function and a many-term correlated free-state function, 
he has obtained essential agreement between theory and 
experiment within the errors of each. In obtaining 
agreement in this fashion, he concluded that one cannot 
expect high accuracy from a simple model such as he had 
used in 1956, or as Tietz proposed in 1961.7 Although 
one might expect this a priori, at the expense of being 
somewhat empirical a simple model can be constructed 
that fits the data as well as Geltman's recent results. 
The wave functions are analytic, and the integrals 
leading to the photodetachment cross section are ele­
mentary. Because of its analytical simplicity, this model 
should be very useful in radiation transport calculations 
and in investigating other closely related photodetach­
ment processes. The complicated polarization and corre­
lation effects that require the many-parameter wave 
functions used by Geltman for explicit representation 
can be implicitly represented by use of the ^-state phase 
shift and the binding energy as adjustable parameters. 

The basis of this model was first used extensively for 
the deuteron.8 Apparently, the emphasis on many-
parameter variational wave functions has led to the 
neglect of this simple model in the H~ problem.83. Its use 
can provide a coherent framework for the wide variety 
of elaborate calculations and perhaps yield more 
physical insight into the structure of H~\ 

Since it has been suggested9 that an excited state 
affects the detachment process, our method can be used 
to ascertain if an empirical selection of the p-w&ve 
phase shift will yield a fit to the photodetachment cross 
section, with perhaps a different type of phase shift than 
a ground-state calculation would imply. In addition, the 
analytical simplicity of our approach yields another 
result that is obscured in the more detailed approaches: 
namely, a simple approximate relationship between the 
binding energy and the position of the maximum in the 

6 This work is reviewed and extensive references cited by L. M. 
Branscomb, in Atomic and Molecular Processes, edited by D. R. 
Bates (Academic Press Inc., New York, 1962). 

6 S. Geltman, Astrophys. J. 136, 935 (1962). 
7 T. Tietz, Phys. Rev. 124, 493 (1961). 
8 H. A. Bethe and R. Peierls, Proc. Roy. Soc. London A148, 146 

(1935); H. A. Bethe and C. Longmire, Phys. Rev. 77, 647 (1950). 
8a Note added in proof. After this paper was submitted, the paper 

of Ohmura and Ohmura [Phys. Rev. 118, 154 (I960)], of which I 
was unaware, was brought to my attention. In this paper, the 
authors have already pointed out the relatively good agreement 
with the Smith and Burch data of the zero-range approximation 
with r0=2.64. Our Eq. (5) is thus identical with their Eq. (8). 
The ^-state phase shift correction is the essentially new contribu­
tion of the present article. 

9 A. Dalgarno and R. W. Ewart, Proc. Phys. Soc. (London) 80, 
616 (1962). 

photodetachment cross section. This result is useful 
from the experimental standpoint, since the threshold 
is difficult to observe. The position of the maximum is 
a much more accessible measure of the binding energy. 

II. ANALYSIS 

A. The Bound-State Wave Function 

For a short-range potential V, such as exists in a 
negative ion, the solution to the Schrodinger equation 
with V=0 should yield a fairly accurate representation 
(except for normalization) of the wave function of one 
of the two electrons10 outside the range of this potential. 
Furthermore, for the photodetachment process, the 
region close to the origin, where this wave function 
becomes inaccurate, should not contribute appreciably 
to the matrix element. I t is essentially weighted by a 
factor of r in addition to the volume element, and also 
the final continuum state has a long "range." Hence, 
we will use the11 7 = 0 solution for all r, rather than 
just for r > r 0 (where r0 is some small matching radius) 
as did Geltman.1 

This situation is well known in nuclear physics where 
it has been exploited particularly in application to the 
deuteron.8 In the atomic case, ample evidence that the 
region near the coordinate origin may not contribute 
to radiative cross sections is provided by the success 
of the Coulomb approximation of Bates and Damgaard12 

(and its extension to the photoelectric case by Burgess 
and Seaton13). 

The solution that we propose to use for H~ is well 
known to be, for a bound s state, 

Mr) = Ne-*1,2r/r= e 1 / 2 W 1 } (je1/2r), 

where N is a normalization constant, e= 2niEb/fi?, where 
Eb is the binding energy, and h^l) is a spherical Hankel 
function. If we normalize ^ ( f ) to unity over all r, we 
obtain for the normalization constant N the value 
€1/4/(27r)1/2. Because of the singular behavior of Ao(1) at 
the origin, this normalization will be incorrect. There­
fore, we take for N the value e1/4//(27r)1/2, where the 
error factor / can be evaluated by comparison with a 
wave function accurate for small r, or by empirical ad­
justment of the photodetachment cross section. This 
normalization is discussed in detail by Bethe and 

10 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Academic Press Inc., New York, 1957). 
The discussion of Sec. 34 enables one to draw this conclusion. See 
especially Eqs. (34.3), (34.6), and (34.7). 

11 We will presently show, in Tables II and III , that the extra 
effort of including potential structure near the origin does not 
necessarily improve the fit to the experimental data. This, how­
ever, is an a posteriori conclusion and could not have been verified 
prior to the experimental work of Burch and Smith in 1959 (Ref. 
15). Also, of course, a more accurate treatment near the origin is 
required in order to obtain theoretically the proper normalization 
of the wave function. 

12 D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London 
A242, 101 (1949). 

13 A. Burgess and M. J. Seaton, Mon. Not. Roy. Astron. Soc. 
120, 121 (1960). 
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Longmire,8 who also show explicitly that our f2 is 
given by 

/ 2 = ( l _ e l / V „ ) - l , (1) 

where ro is the well-known ''effective range." 
The complete bound-state wave function that we 

will use is therefore given by 

B. Plane-Wave Final-State Cross Section 

If we compute the cross section using Eq. (2) for the 
bound-state wave function and a plane wave eiKe'T for 
the final continuum state of an electron with momen­
tum pe=hKe according to the well-known rules,14 the 
differential cross section per electron turns out to be 

dapw 16e2f2 Eh
1/2(tia>-Eby

/2 sin20 cos2? 
= . (3) 

dQ mcoi [2fi(jojr(fio))2/mc2—2fio3peccos6/mc2'j 

We have used the conservation relation 

fia>=Eb+p2/2tn (4) 

between the photon energy fico and the sum of the elec­
tron binding and kinetic energies. If K7 is the photon 
propagation vector (| K7 | = o)/c) and e is a unit photon 
polarization vector, then 6 is the angle between K7 and 
pe, and cp lies between the p6, K7 plane and the e, K7 

plane. 
At present, we are interested in photon and electron 

energies for which hco/mc2 and pec/mc2 are both small. 
With this restriction, Eq. (3) can be integrated easily 
to yield the following approximate expression for the 
total photodetachment cross section per electron: 

16Tf2/e%\Eb
1/2(fia>-Eby'2 

Eb
1/2(fiu-Eby

/2 

= 0.93163/2X10-I6(e-V cm2) . (5) 

This result is the zero-range photoelectric cross section 
of Bethe and Peierls. A factor of two difference appears 
in H~ relative to the deuteron for which their calcula­
tions were made. In the H~ case, the coordinate system 
for the two electrons is fixed on the proton which is 
very heavy in comparison so that the reduced mass of 
each electron is effectively its laboratory mass. In the 
case of the deuteron, the two constituents are almost 
equally massive so that the reduced mass that enters the 
formula is Mp/2, where Mp is the mass of the proton. 
The dipole moment for the proton in the deuteron is 
r/2 rather than r as in H~ and the parameter e in the 
wave function depends on the reduced mass. Some of 

TABLE I. Comparison of the asymptotic bound-state wave 
function ^&(r) (with binding energy Eb = 0.747 eV) for H~ with 
Geltman's 1956 wave function <pa(r). / i s the normalization correc­
tion factor that is shown by this comparison to be 1.14. 

<PG(R) 

r $b(r)/f <po(r) fo(r)/f 

0J5 0.3435 0.266 0.775 
1.0 0.1528 0.171 1.12 
2.0 0.06043 0.0689 1.14 
3.0 0.03187 0.0364 1.14 

these effects cancel so that only a net factor of two 
difference appears. 

Differentiation of Eq. (5) yields the relation (inde­
pendent of the normalization error factor / ) 

\m=hc/2Eb, or ha)m=2Eby (6) 

between the binding energy Eb and the wavelength or 
photon energy at the maximum of the cross section. 

The experimental data15 have a maximum that 
appears to lie between 

1.4<A«w<1.6eV. 

Taking the mean of these values yields Z£&=0.75±0.5 
eV; however, a least-squares analysis, for example, 
could be performed on the data to reduce the error 
considerably below that of this visual estimate. 

C. The Normalization Factor / 

We now come to a discussion of the normalization 
problem. In Table I we present a comparison of \pb(r)/f 
and Geltman's 1956 wave function. His binding energy 
value of 0.747 eV was used in making this comparison. 
The value of / obtained thereby is / = 1.14. Using the 
slightly larger value 1.15 in the cross-section formula 
Eq. (5) multiplied by two to account for the two elec­
trons (presumed equivalent in Geltman's formulation), 
and the binding energy value £&=0.75 eV, we obtain 
the results shown in Table I I . Our formula, Eq. (5), 
for apw is compared to Geltman's 1956 cross section, 
labeled <TG in this table. The two are seen to agree 
quite closely. Furthermore, this curve is in approximate 
agreement (10% or better) with the normalized experi­
mental data on the basis of any reasonable normaliza­
tion of the latter (on this point, cf., Ref. 5). A plot of 
formula (5) for the cross section versus photon energy 
in eV is shown in Fig. 1 along with the experimental 
data (open circles) normalized according to the theo­
retical results listed by Branscomb.5 Now the effective-
range formula, Eq. (1), is valid for the one-body 
problem, rather than the two-body formulation em­
ployed by Geltman4 in obtaining the wave function we 
have listed in column 3 in Table I. Also, as stated in 
Sec. I I A (cf. footnote 10) it is the one-body model 

14 W. Heitler, The Quantum Theory of Radiation (Oxford Uni- 16 Stephen J. Smith and David S. Burch, Phys. Rev. 116, 1125 
versity Press, New York, 1954), 3rd ed. (1959). 
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that we propose to use here. That is to say, for purposes 
of the present analysis one electron can be considered 
to be represented by a delta function at the origin, and 
the other to be represented by Eq. (2). With this in 
mind, we must multiply the value of p obtained from 
the above comparison by two to account for the fact 
that in our formulation only one electron participates 
in the detachment process (at the energies we consider). 
Therefore, the value of f2 to be inserted into Eq. (1) is 
given by / 2 ^ 2 X ( U 5 ) 2 = 2 . 6 5 . This value of f yields 
f o = ( l - l / / 2 ) / e i / 2 = 2 . 6 4 a o . 

Burke and Smith16 give a plot of K cot§ for the singlet 
electron-hydrogen atom state according to four different 
methods of calculation. The slopes of all four results are 
in reasonable agreement yielding r0=2.6ao to 3.0ao 
(calculated directly from the plots give by Burke and 
Smith). Therefore, our empirical value is in agreement 
with the theoretical effective-range values. 
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FIG. 1. H" plane-wave photodetachment cross section apw in 
arbitrary units versus photon energy E in eV. The theoretical 
curve (solid line) is normalized to the experimental data in the 
vicinity of the maximum. A plane-wave final state and a binding 
energy Eb = 0.745 eV have been assumed. 

D. Distorted Final-State Cross Section 

As can be seen from Fig. 1, Eq. (5) for the photo-
detachment cross section is too small on the low-
frequency side of the maximum and too large on the 
high-frequency side. An attempt to improve this result 
is made by using the final-state (1=1) wave function17 

its (r) = cosSiji (K€T) — sinSi^i (icer), (7) 

TABLE II. Comparison of our plane-wave result <rpw from Eq. (5) 
with Geltman's 1956 result, labeled oV, for the photodetachment 
cross section as a function of the wavelength X in microns. 

X 
» 

1.6533 
1.5158 
1.3994 
1.2996 
1.2131 
1.0706 
0.9581 
0.8669 
0.7916 
0.6744 
0.5874 
0.5204 
0.4236 
0.3572 
0.2566 
0.2002 
0.1391 
0.0864 

(TO* 
(10~17 cm2) 

0.69 
1.54 
2.26 
2.83 
3.57 
3.95 
4.09 
4.10 
3.91 
3.62 
3.31 
2.76 
2.31 
1.58 
1.15 
0.69 
0.33 

O"P«I 

(10~17 cm2) 

0.686 
1.53 
2.25 
2.82 
3.56 
3.93 
4.05 
4.07 
3.87 
3.58 
3.27 
2.72 
2.28 
1.55 
1.13 
0.698 
0.360 

16 P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962). 
17 The present analysis has been based on a pure short-range 

formalism for simplicity, and because the results suggest that 
short-range effects dominate the over-all corrections to the zero-
range photodetachment cross section. Very near the threshold, 
long-range polarization forces may be expected to become im­
portant. For high accuracy in the threshold region our analysis 
will probably require modifications along the lines suggested by 
T. F. O'Malley, L. Spruch, and C. Rosenberg, J. Math. Phys. 2, 
491 (1961). 

instead of a plane wave (ji and n± are spherical 
Bessel and Neumann functions, respectively, and 8i 
is the ^-state phase shift). We note, for purposes of 
normalization, that Eq. (7) has the asymptotic form 
[sin(/cer—7r/2-f-Si)]/Ker. The appropriate formula for 
the total dipole-length cross section has been given by 
Geltman. In our notation, it becomes, per electron, 

32TT2 

&di — -

doC/ 

\//o(r)uf(r)rzdr (8) 

where ypb(r) is given by Eq. (2) and u/(r) is given by 
Eq. (7). The integration is elementary and leads to the 
Bethe-Longmire8 result (except that we have not made 
the small-angle approximation as did those authors): 

(Tdl(oj)--
16TT/-2 Eb

1/2(fiu-Eby
/2/e2h \ 

(ftco)3 <mc/ 

r (e+3/Ce2)e1/2 -|2 
X cosSiH sinSi 

L 2K} 
sm5i . (9) 

We note that the same result is obtained whether one 
uses Eq. (7) for the free wave function or its asymptotic 
form, as did Bethe and Longmire. This lends further 
verification to the relative independence of the matrix 
element in Eq. (8) on the value of its integrand near 
the origin. 

The factor in brackets represents the correction to 
the Bethe-Peierls result, Eq. (5). If we set 

X 0 ^ E 6 / R y , 

a^=e2/fic, 

a0^fi2/me2
y 

g(x) = tan5iAeW, 
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FIG. 2. H~ dipole-length photodetachment cross section aai in 
arbitrary units versus photon energy E in eV. The theoretical 
curve (solid line) is normalized to the experimental curve in the 
vicinity of the maximum. A one-parameter (g0) empirical formula 
for the phase shift is assumed. The values go = 4.7 a.u. and binding 
energy Eb = 0.745 eV have been selected for a best fit to the data. 

in Eq. (9), the result is 

32TT X 0
1 / 2 ( X - X O ) 3 / 2 

vdi (X) = /W 
3 x3 

Xcos261[l+(3X-2X0)Xo1^(X)/2]2 . (10) 

Now in the small-angle, low-energy approximation18 

sin5i^tan5i=^0«:e
3a3o, 

where go is a constant, g(x) is just the constant go. The 
correction to the plane-wave result is then 

[ l + ( 3 X - 2 X 0 ) X o 1 / V 2 ] 2 . 

This correction will not materially improve the over-all 
fit to the cross section. Figure 1 shows that what is 
needed is a correction that increases the plane-wave 
result on the low-frequency side of its maximum (at 
X— 2X0) and decreases it on the high-frequency side. For 
example, a correction factor [1+/3(2X0—X)]2, with /3 a 
constant, will perform this service. We, therefore, set 

g ( x ) ^ t a n 5 1 A e W ^ ( 2 x o - x ) g o / ( 3 x - 2 x o ) , (11) 

where go is a constant, in order to obtain an empirical 
fit to the data valid at energies somewhat higher than 
the threshold approximation g(x)~ const. With this re­
lationship, Eq. (10) now becomes, for small 8h 

32irf2 X0
1/2(X-X0)3/2 

cfdi (X) — a#o 2 

3 X3 

X[l+goXo1 / 2(2X0-X)/2]2 . (12) 

The solid line in Fig. 2 is a plot of Eq. (12) versus photon 
energy in eV for g0=4.7, and Eb=0.745 eV. I t has been 
normalized to fit the experimental data (open circle) 

18 This is the pure short-range form consistent with Eq. (7). 
We have neglected polarization effects as stated in the preceding 
footnote. 

as given by Smith and Burch15 and appears to give a 
slightly better fit than Geltman's6 recent elaborate 
treatment. The discrepancy of the two experimental 
points at 1.8 and 2.0 eV (6900 and 6200 A) with the 
theoretical curve also appears in Geltman's results 
(Figs. 5 and 6 of Ref. 6). Table I I I presents a com­
parison of our Gdi as given in Eq. (12) with the recent 
"best" theoretical results (dipole velocity) labeled 
(TG as quoted by Geltman.6 Column (a) of Table I I I 
lists the ratio <Jdi/<?G for our "best" choice of parameters 
Eb— 0.745 eV and g0=4.7, and column (b) lists this ratio 
for go=3.6 and the variational value of .£&=0.75416 eV. 
This value of Eb and the smaller value of go appear to 
give the best fit to Geltman's results. Our <rdi has been 
normalized to agree with ao in the region around the 
peak of the curve. Over the frequency region where 
experimental data exist (set off by asterisks in Table 
I I I ) , the relative agreement of the two calculations is 
within 6% for our choice of parameters in column (a), 
and within 1% for the choice of variational energy and 
smaller phase shift of column (b). From the form of our 
result, Eq. (12), it can be readily determined that ma­
nipulation of the phase-shift parameter go results in 
increasing a on one side of the peak and decreasing it 
on the other. Thus, the arbitrariness of the fit is limited. 
The two calculations differ significantly outside the 
region for which experimental data exist. On the high-
frequency side (beyond ho)=2.9 eV) our result un­
doubtedly becomes poor, as we cannot expect the simple 
expression, Eq. (11), for the phase shift to remain valid 
over an extensive energy range. Indeed, this expectation 
is borne out by a comparison, presented in the next 
section, of Eq. (11) with the phase shift as determined 
theoretically. 

Consequently, one cannot expect our analysis to be 
carried on to higher energy without some modification 
or improvement in the representation of the phase shift. 

On the low-frequency side, the last entry in column 
(b) of Table I I I at A= 1.6 /z does not fit smoothly onto 
the others. (Although it is sensitive to the exact value 

TABLE III. A comparison of the distorted dipole-length H~ 
photodetachment cross section <rdi [Eq. (12)] with the "best" 
dipole-velocity values <7<j as given by Geltman.a uai has# been 
normalized to CTQ at the peak. The experimental datab lie in the 
wavelength range between the asterisks (*). For column (a), the 
parameters are £& = 0.745 eV, go = 4.7; for column (b), £& = 0.75416 
eV and go = 3.60. 

x&0 

0.1 
0.2 
0.3 
0.4* 
0.5 
0.6 
0.7 
0.8 

« Ref. 6. 
t Ref. 15. 

crdl/o-G 
(a) 

0.40 
0.84 
0.94 
0.96 
0.99 
0.99 
1.00 
1.00 

(Tdl/o-G 

(b) 

0.57 
0.94 
0.997 
1.00 
1.01 
1.01 
1.00 
0.994 

X(M) 

0.9 
1.0 
1.1 
1.2 
1.3* 
1.4 
1.5 
1.6 

(Tdl/o-G 

(a) 

1.00 
1.01 
1.02 
1.04 
1.06 
1.11 
1.24 
1.40 

Vdl/VG 
(b) 

0.989 
0.991 
0.987 
0.989 
0.990 
1.00 
1.04 
0.81 
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of £&, since it is so near threshold, the small difference 
between the more appropriate Schwartz value6 of E& 
and the Pekeris value that we have used is not signifi­
cant.) This discrepancy may arise from our neglect of 
polarization effects. 

The normalization situation for Eq. (12) is essentially 
the same as in the plane-wave case. The phase-shift 
correction does not alter the value of p appreciably 
relative to the plane-wave case. This is particularly true 
in view of the uncertainty in the absolute normalization 
of the experimental data. 

CL02, 

QOI 
—^J*" - / BURKE AND SCHEY 

s. y EMPIRICAL FORMULA 

FIG. 3. A comparison of the empirical phase-shift formula 
(in a.u.) 5i+ = go(e—Ke

2)Ke
3/(e-{-3Ke

2) for the singlet p state with 
the close-coupling results of Burke and Schey (Ref. 19). 

E. Independent Tests and Comparisons 

Our approximate plane-wave cross section, Eq. (5), 
can be tested in the sum rules5 

)dv<2, 

(mc/wka0) j \jT{y)/v]dv<\A.2, 

(13) 

(14) 

quite easily, since the integrations can be performed 
analytically. The result for the integral in Eq. (13) is 
1.99 /2, or 2.63, and for the integral in Eq. (14) is 
12.1 f2, or ^16 . As might be expected, the uncorrected 
cross section overestimates these sums. Our corrected 
cross section, Eq. (12), cannot be tested with our ap­
proximation, Eq. (11), for sin 5i (unless a cutoff is 
employed), as the integral diverges. In order to make 
this test, the correct high-energy behavior of 8i would 
be required. 

The phase-shift result we have obtained does turn 
out to be quite different from the results obtained if 
the hydrogen atom is assumed to be in its ground state. 
The solid line in Fig. 3 shows a plot of 5i as given by 
Eq. (11) versus tce

2, the energy of the ejected electron 
(in a.u.). The dashed line is the close-coupling result of 
Burke and Schey19 with which it is in qualitative agree­
ment, and this close-coupling model includes virtual 
excitation to the 2s and 2p states. Qualitative agreement 
is all that can be expected, as the close-coupling results, 
while probably the best available, are still very ap­
proximate. The phase shifts obtained in the static 
(ground-state) approximation are shown in Fig. 14 of 
Ref. 16 and they are quite different from the curves 
presented here in Fig. 3. 

As we have noted in Sec. II C, our result for the 

19 P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962). 

effective range r0 is in agreement with the scattering-
theory predictions if we assume that just one of the 
two H~ electrons participate in the detachment process 
(up to ftoo—2.9 eV, the upper limit of our analysis). Pre­
sumably the other electron is nearly hydrogenic, with 
a much more rapid asymptotic decline of its wave 
function than the one we consider. Its contribution to 
the total cross section then would not become significant 
until the photon energy approaches the magnitude of 
the hydrogen binding energy. 

III. CONCLUSION 

Although it appears possible to fit the experimental 
data somewhat more closely by our method than by the 
first-principles method of Geltman, it is doubtful that 
the slight difference in binding energy obtained thereby 
can as yet be considered significant. When more experi­
mental data are available, such a fit can become more 
conclusive. We note, however, that this difference is not 
merely a result of the approximate mathematics of the 
fit. The much closer agreement with Geltman's result, 
which is obtained when the binding energy is taken 
to be (very nearly) the value appropriate to this cal­
culation, bears out this conclusion. 

The comparisons and simple analytic formulas we 
have given should make the method presented a useful 
exploratory tool for stellar atmospheres and for other 
detachment processes of the 1=0 to /= 1 type. However, 
without a first-principles computation of 5i, this method 
remains empirical and is merely a useful adjunct of the 
more detailed methods. Its usefulness is augmented by 
its simplicity and intuitive clarity compared to the 
elaborate variational calculations. 
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