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The general relationships between the energy moments of the inelastic cross section for slow-neutron 
scattering, and the so-called "Placzek moments," and the coefficients of the time expansion of the "pair-
correlation function" G(r,t) are derived. Also, a new method of determining G(r,t) from slow-neutron scat
tering experiments is suggested. 

I. INTRODUCTION 

TH E description of thermal neutron scattering is 
frequently given in terms of a function 5(K,CO) 

called the "scattering law."1,2 Here fiv. and tiai are, 
respectively, the neutron momentum and energy losses. 
The differential cross section is written in the form 

d2o 

dQde fiko 
a2—<S(K,CO) , (i) 

where k and k0 are, respectively, the outgoing and 
incoming wave vectors of the neutron; K=k0—k; 
£l=k/k', ^co=€=fi2(ko2—k2)/2m; and a is the bound-
atom scattering length. 

Van Hove1 introduced the function G(t,t), which is 
the Fourier transform of S(K,CO). 
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exp (iv. • x—iut)G{x,t)dzrdt. 

N is the number of nuclei in the scattering system. 
Van Hove was then able to show that 
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where 6 is the absolute temperature in units of energy 
and tj(t) is the usual Heisenberg operator. 

In a scattering event, K, CO and the scattering angle, 
ko*k/&o&, are related by energy and momentum 
conservation. This restricts the possible values of K 
and co in a scattering event to the following region. 
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*L. Van Hove, Phys. Rev. 95, 249 (1954). 
2 G. Placzek, Phys. Rev. 86, 377 (1952). 
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To write Eq. (2), we must define 5(K,W) for all values 
of K and co. We can do this, in principle, by allowing 
^0—> oo. However, in practice, experiments are per
formed at a single incident energy and K and co are 
restricted by Eq. (4). For this reason, the determination 
of G(r,t) from experiment is not particularly straight
forward. 

Note that the co integration in Eq. (2) is denned 
along a line of constant K. This point leads to some 
difficulty in the comparison of the energy moments of 
the cross section with the energy moments of 5(K,CO). 
We attempt to clarify the comparison of these quantities 
in the next section. 

The function G(t,t) is of considerable importance in 
understanding the structure of scattering systems, 
since it is related to the time dependent-pair correlation 
function.3 In fact, G(r,0) is the familiar radial-distri
bution function, 5 (r)+#(*)• Thus, one would like to 
obtain G(r,t) from neutron-scattering data. 

An attempt has been made to circumvent the diffi
culty encountered in determining G(r,/) from an 
experiment done at one incident neutron energy. 
Brockhouse4 has introduced the procedure of measuring 
5(K,CO) for constant values of K. By extending ,S(K,CO) 
beyond the limits of Eq. (4) by some guess, the trans
formation in Eq. (2) can be made. Of course, the 
accuracy of G{xit) depends on the accuracy of the guess. 

Pope5 has determined G(r,0) from measurements of 
da/dtt. His procedure can be understood by expanding 
G(x,t) in a power series in /. This expresses dV/d&de 
in a series of derivatives of delta functions of the energy 
transfer. By integrating this expression over e, a series 
expansion for da/dQ is obtained. The first term of this 
series is proportional to the three-dimensional Fourier 

3 R. Aamodt, K. M. Case, M. Rosenbaum, and P. F. Zweifel, 
Phys. Rev. 126, 1165 (1962). 

4 B. N. Brockhouse, in Proceedings of the International Atomic 
Energy Agency Symposium on Inelastic Scattering of Neutrons 
in Solids and Liquids, Vienna, 1961 [International Atomic Energy 
Agency (to be published)]. 

6 N. K. Pope, in Second Symposium on Melting, Diffusion, and 
Related Topics, Ottawa, 1957. 
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transform of G(tfi); and the second term is proportional 
to {jc2m/K^M~]. If the higher terms can be estimated, 
G(r,0) can be found. Pope assumes that all terms 
beyond the second vanish. 

We suggest a method for obtaining G(r,/) which is 
an extension of this procedure. The series expansion 
for d2a/dttde is obtained. 

dV 

dttde 
'-a2— E (- l ) n oJ n (ko-k)5»(«) . (5) 

flkQ n=Q 

The cbn are the moments of S(KCO), "Placzek moments.''2 

Using Eq. (5), the energy moments of the cross section, 
en, can be expressed in an infinite series in the con. The 
en can be determined from the scattering data, if the 
data are sufficiently accurate. By terminating the series 
expansion for the en, it is possible to solve for the con in 
terms of the ln. Then the coefficients in the series ex
pansion of G(t,t), 

d"G{x,t) 

dtn 

are proportional to the three-dimensional Fourier 
transforms of the W"(K). 

Since the <£"(*) can be obtained from experiment 
only for K in the range 0<K<2ko, we must extend 
WW(K) to K>2ko. The effects of different extensions of 
03n(v.) can be more readily determined, than can the 
effects of different extensions of 5(K,W). Pope's results 
indicate that the Fourier transforms of con are not too 
sensitive to the extension used, at least for w°. 

Our method clearly will have greatest practical 
application for small t. However, for liquids, this is the 
most interesting time range. I t is reasonably well 
established that the motions of liquids over long time 
intervals is diffusive, and the structure should be largely 
determined by the short and intermediate time 
behavior. 

In Sec. II , we discuss the moments, of1 and €n, in 
some detail. In Sec. I l l , we discuss the analysis of 
experimental data. 

II. THE CROSS SECTION AND THE 
"SCATTERING LAW" 

In the Fermi approximation,6 the cross section is 
given by Eqs. (1), (2), and (3). Following Wick,7 we 
expand G(r,f) in a Maclaurin's series in t. 

tn r dn 

G(r,0 = E - — « ( r , 0 | 
n n\\dtn J^o 

(6) 

For a scattering system with spherical symmetry the 

e E. Fermi, Ric. Sci. 7, 13 (1936). 
< G. C. Wick, Phys. Rev. 94, 1228 (1954). Wick does not expand 

G(r,Q, but rather x(*,0 = / exp(iK-t)G(ttt)d?r. 

first three terms in this series are 

G(r,0) = 5(r)+g(r) 
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g(r) is the usual time-independent pair correlation 
function. Applying this expansion in Eq. (2), we obtain 

oo (—i)n8n(a>) 

«=o til 
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Using Eq. (10), we can show that the "Placzek 
moments," 

K ) = / &>»S(IC,G 

J —oo 
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are proportional to the Fourier transforms of the 
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Notice that the integration in Eq. (11) is carried out 
for constant K. 

6>n(K) = N(—i)n / exp(^K-r) 

Qn 

Kr,t) 
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X\—G(t,t)\ dh (12a) 

dt" J ,=0 

exp(—iK'r)oon(K)d3K. (12b) 

Using Eqs. (10) and (12) in Eq. (1), we obtain a series 
expansion for the cross section, 

d V k oo 

=a2—£ ( - l ) w « n (k 0 -k ) f i» (« ) . (13) 
d&de fiko w=o 
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We can now compare the "Placzek moments" and 
the energy moments of the cross section, ln. 

en=— en de (14a) 
a2 J-oo dttde 

-en= £ - ^ ( k o - k ) . (14b) 

Notice that the integration in Eq. (14a) is carried out 
for constant scattering angle. This is a different path 
of integration from that in Eq. (11). If the cross section 
is strongly peaked about zero energy transfer, this time 
expansion procedure should be applicable. 

The first "Placzek moment' ' is particularly simple, 

tiul(K) = WNK2/2M. (15) 

This result has been interpreted as the average neutron 
energy loss in the approximation that8 k~ko and for 
scatterers with a mass number much greater than 
unity.9 Actually Eq. (15) represents the average energy 
loss only when wn and en vanish for ri> 1. I t is difficult 
to interpret this condition in terms of the physical 
details of the scattering system. Simple conditions such 
as those mentioned above do not appear to be precisely 
correct. We can understand this point more fully by 
examining the average energy loss for a heavy gas.10 

(ft2(ko-k)2
 w ( k 0 - k ) 2 l 

ehs=N\- 6 . (16) 

The second term in Eq. (16) may give the dominant 
contribution to €hg although a heavy gas seems to fit 
both of the conditions given for the interpretation of 
the first term of Eq. (16) above as the average energy 
loss. 

III. INTERPRETATION OF EXPERIMENTS 

As was discussed in the Introduction, one subject of 
the analysis of neutron scattering data is the deter
mination of G(r,t). I t would seem that the easiest way 
to do this would be to Fourier transform S(K,CO). This 
certainly would be the case if 5(K,CO) would be deter
mined for all values of K and o>. 

To determine G(r,t) in this way, one must assume 
some behavior for 5(K,CO) outside the region defined by 
Eq. (4), since it cannot be measured outside of this 
region. The assumption must be made such that 5(K,CO) 
satisfies Eq. (15), but this still does not determine 
S(K,OO) uniquely. Using the data and satisfying Eq. 
(15), it may be possible to construct two functions, 

8 M. Nelkin, in Proceedings of the International Atomic Energy 
Agency Symposium on Inelastic Scattering of Neutrons in Solids 
and Liquids, Vienna, 1961 [International Atomic Energy Agency 
(to be published) ] . 

9 P. De Gennes, Physica 25, 825 (1959). 
10 H. Hurwitz, Jr., M. S. Nelkin, and G. J. Habetler, Nucl. Sci. 

Eng. 1, 280 (1956). 

Gi(r,/) and G2(t,t), that are quite different. Certainly 
this possibility should be considered. Even when VS(K,CO) 
is spherically symmetric, checking the uniqueness of 
G(r,t) entails considering the possible extensions of 
5(K,CO) into an infinite region of the (/c,co) -plane. 

Brockhouse4 describes a method for extending the 
data, in which 5(K,CO) is chosen to be the ideal gas 
result or the result obtained by inserting the G(r,t) for 
a classical liquid into Eq. (2). As shown by Schofield,11 

the cross section obtained by using a classical G(r,t) in 
Eq. (2) does not satisfy detailed balance. An S(K,O>) 
that is more realistic than the classical liquid result 
used by Brockhouse is the quasiclassical result of 
Aamodt et al? 

We now present an alternative method of determining 
G(t,t). From the measured values of the cross section, 
we can determine, in principle, the first R+l energy 
moments, en, at particular values of the scattering 
angle. Truncating Eq. (14b) at l=R, we have a set of 
R+l equations.12 

eR = hRuR(kQ(2-2»y<2), 

R fil ( a*-1 ] 
e i = £ - ft«'(|ko-k|) 

i - iJMde1-1 J«-o 
: (17) 

R ¥ \ dl ) 

6 ° = E r — *« ' ( |ko-k | ) , 
i^ok0[de Jc=0 

where /x=ko-k/&0&. The following equation is an 
identity, which can be used to relate the derivatives 
with respect to e of the W*(K) to the derivatives with 
respect to K. 

d kofx—k m 
- c o ( | k 0 - k | ) = « ' ( | k o - k | ) . (18) 
de & | k 0 - k | fi2 

The first of Eqs. (17) determines wB(K) for 0<K<2k0. 
Using Eq. (18) and O)R(K), we can determine co^-1^) 
for 0<K<2ko from the second of Eqs. (17). We can 
proceed in the same way to determine all R-\-1 of the 
"Placzek moments."13 The first "Placzek moment" is 
%K2/2M. We can use this fact to check the accuracy of 
our results and to insure that R is sufficiently large. 

The coefficients of the time expansion in Eq. (6) are 
proportional to the Fourier transforms of the "Placzek 
moments." 

—G(r, t) \ == / KsinKra>n(K)dK. (19) 
dtn J f.o 2TT2NrJ0 

11 P. Schofield, Phys. Rev. Letters 4, 239 (1960). 
12 We assume spherical symmetry. 
13 It appears that to solve Eqs. (17) we must solve a set of 

differential equations. However, the equation for ~eR involves no 
derivatives, and in succeeding equations the only derivatives are 
of moments that have been previously determined. 
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The general form of con(K) will be quantities. Knowing the first moment, I1, we can write 

where the Fourier transform of / ( K ) is well defined. 
The terms in con(W) that are proportional to (K2)Z will 
produce terms in the expression for {(dn/dtn)G(t,i)}t=o 
that are proportional to (V2)zS(r), cf. Eqs. (7)-(9). 
Since this analysis requires numerical integration, one 
should subtract that part of 6on(Y.) that goes as (K2)Z 

before applying Eq. (19). 
Since con(/c) can only be determined for 0 < K < 2 £ O , 

we must still extend the 6on(fc) to values of K greater 
than 2&o. However, it is easier to determine the unique
ness of 

dn 

—G(r,/) ] 

considering different extensions of ajn(Y) than it is to 
examine the possible extensions of £(K,W).. 

The validity of Eq. (17) is based on the assumption 
that the higher moments, en, do not contribute sig
nificantly to G(r,2). This assumption can be tested 
directly by an analysis of the data. Pope5 has analyzed 
neutron diffraction data from liquid argon using this 
method for R= 1. Pope used a measurement of i°, and 

u1(K) = tiv?/2M 

and Eqs. (17) for R= 1 to write 

fi2id | k o - k | 
€ ° = { « 0 ( | k 0 - k | ) } € _ o + - \—k 

kQ [de 2 1 I 6==0 

Using Eq. (7) and performing the subtraction of the 
constant term as discussed above, we have 

« « = -
2xWf Jo 

dKK smKr 

X 

K= 

r &2( d |ko-k | 2 l 
e°-N —ft 

L hide 2M Je=o 

[ |k 0 -k |}_o . 
where 

The results of this calculation showed that the main 
features of g(r) were not very sensitive to the way in 
which co° (K) was extended. 

The method outlined above is not applicable for 
large R since the higher energy moments cannot be 
measured accurately. However, it has been very suc
cessful in Pope's analysis of the measured values of €°, 
and we can extend it somewhat using currently available 
data. The first moment can be measured with some 
accuracy. In fact, Randolph14 has determined such 

| k 0 - k | 

2M 

w< d 
. > 2 ( | ko -k | ) | 

e==o ko i d e \ 6=o 
(20a) 

fi2(d | k o - k 
€ ° = { « 0 ( | k 0 - k | ) } e _ o + - - * 

M d e 2M 

¥ [ d2 } 
+ - — ̂ 2 ( | k 0 -k | ) . (20b) 

hide2 J e«o 

Using Eqs. (20a) and (18), we can determine the 
numerical values of (d/dK)6o2(K). Using these values 
of (d/dK)cc2(K) and Eq. (18), we can determine the 
numerical values of {(d2/de2)koo2(\ko— k|)}6 = = 0 and 
thus solve Eq. (20b) for u°(K),0<K<2kQ. 

{u° ( |ko-k | )} e = o=e° \-k 
& o t d e 2 M J e=o 

¥ [ d2 } 
_ ^ ( | k 0 - k | ) 

hide2 J 

Then g(t) is given by 

1 r« 
(r) = — — / dKK sinKr{ u° (K) - N} , 

1 r00 

) = / 

(21) 

(22) 

14 P. D. Randolph, Bull. Am. Phys. Soc. 8, 42 (1963). 

where co°(iT) is given by Eq. (21). Equation (21) should 
yield a more accurate g(r) than Pope's calculation. The 
results of this calculation will be reported in a future 
work. Notice that this calculation of g(r) involves a 
slight change in the general method we have previously 
described. The difference between the two methods is 
that, in the latter, we have explicitly used the known 
value of «1(K) = *K2/2Af. 

IV. DISCUSSION 

We have shown the relationship between time 
expansion of G(r,t), and the moment expansion of the 
cross section, and the moment expansion of 5(K,CO). 
Our discussion should prove useful in clarifying the 
relationships between these quantities. 

Also, we have described a method for determining 
G(t,t) from slow neutron scattering data. This method 
should yield better results for small / than directly 
Fourier-transforming 5(K,W) since 6,(K,OJ) is not com
pletely determined in a scattering experiment. However, 
the method neglects the higher energy moments, and 
thus eliminates the possibility of determining the long
time behavior of G(r,t). 


