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Self-consistent field functions have been determined in analytical form for all the neutral and positively
ionized states and for some negatively ionized states of nitrogen and oxygen associated with the configura-
tions 1s22sm2p", where m, n>0. The functions determined differ from numerical Hartree-Fock functions
by no more than a few units in the third decimal place, and usually by much less.

I. INTRODUCTION

N the first paper! in this series, self-consistent field
(SCF) functions were presented in analytical form
for the 15?25 and 1s22s? states of the atoms and ions of
the first row of the periodic table. In the second paper,?
such functions were given for all the neutral species of
the first row, for the ground state, and for those excited
states which have the same configuration as the ground
state. The present paper gives such functions for a
large number of states of nitrogen and oxygen and their
negative and positive ions, namely, all the states arising
from the configurations 1522sm2p» where m and # may
be any integers provided we have at most 8 electrons
in N or 9 in O.

These calculations arose from a need for theoretical
evaluation of the opacity of air at high temperatures.?
Such an evaluation must employ wave functions for a
very large number of discrete and continuous states of
N and O and their positive ions, and the transition
probabilities between such states. Clearly, the present
results constitute only a modest beginning in this large
undertaking. However, the speed and capacity of cur-
rent and future digital computers should make the
task feasible.

II. CHOICE OF BASIS SETS

We explored the possibility of selecting basis sets
which identically satisfy the cusp conditions. If an
occupied orbital of angular momentum \is represented

by
¢=7)‘f)\(r>y)\a(0;‘P), (1)
the cusp condition is
W/ f)rmo= =2/ (A1), 2)

where f)’ means dfy/dr.
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2).
3 B. H. Armstrong, J. Sokoloff, R. W. Nicholls, D. H. Holland,
1211361{). E. Meyerott, J. Quant. Spectr. Radiative Transfer 1, 143
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If we let f) be expanded according to
Fr=ceZrI O g2 3 cypigEin 3)

where the p; are non-negative integers, and the {; are
completely arbitrary, then the condition (2) is satisfied
provided ¢70. This can also be stated as follows: To
satisfy condition (2) the basis set for angular momen-
tum A must have one member with principal quantum
number #=A+1 and orbital exponent {=Z/(\+1),
while all the other principal quantum numbers are at
least A4-3, and the exponents are arbitrary.

Identical satisfaction of the cusp condition is obvi-
ously an attractive criterion for the selection of basis
sets. However, it is also important to minimize the
number of basis functions needed to represent the
Hartree-Fock functions with a particular degree of
accuracy. Possible basis set choices were examined for
the ground states of neutral N and O. A fixed cusp
representation was found for the s orbitals which was
as efficient as any known to us. However, the 2p orbital
could be represented with fewer functions if we did not
impose the cusp condition. Since a very large number of
calculations were involved, we let efficiency be the over-
riding factor, and therefore obtained correct cusps for
the s orbitals but not for the 2p orbitals.

A more detailed discussion of the fixed cusp basis
sets, together with results obtained for a number of
representative atoms, will be presented in a future
publication.

III. VALIDITY OF THE SCF PROCEDURE FOR
EXCITED STATES

One may raise the question whether the application
of the variational principle is valid to obtain wave
functions for excited states. In answer, first, the varia-
tional principle is unconditionally valid for an excited
state that is the lowest state of a symmetry species.
More precisely, the calculated energy for any wave
function of that symmetry will be higher than or equal
to the true energy of the lowest state of the symmetry
species. We note that the symmetry includes parity and

1177



1178 C. C. J. ROOTHAAN AND P. S. KELLY

TaBiE I. Optimized exponents of the basis functions. {1, {2, and ¢3 have fixed values as discussed in the text.

s orbitals p orbitals s orbitals p orbitals
$a {5 $e $7 s $a $s $e g s

stpt *p (O 3.689 1.986 1.066 2.448 4.99
spb N 3.714 2.039 1.060 2.447 4.99
sipt 3p N- 3.184 1.700 0.913 2.107 4.44 Oy 3.873 2.214 1.468 2.866 5.79
D 3.185 1.706 0.880 2.078 4.36 3.876 2.217 1.436 2.841 5.70
) 3.187 1.714 0.830 2.031 4.25 3.876 2.221 1.385 2.782 5.50
spb . 3P 3.212 1.767 0.906 2.105 4.44 3.895 2.279 1.432 2.818 5.67
1p 3.220 1.745 0.844 2.069 447 3.858 2.187 1.387 2.779 5.45
P8 LS e e 0.904 2.114 4.43 cen e 1.390 2.741 5.40
s2p3 s Ni 3.366 1.923 1.353 2.561 5.60 Onx 4.062 2.458 1.893 3.347 7.26
2D 3.370 1.929 1.288 2.512 5.34 4.068 2.464 1.835 3.329 7.07
2p 3.372 1.933 1.245 2.480 5.20 4.075 2.468 1.796 3.314 6.93
spt 4P 3.413 2.021 1.321 2.590 5.91 4.082 2.547 1.833 3.281 6.96
2D 3.387 1.975 1.264 2.557 5.63 4.070 2.497 1.782 3.279 6.79
25 3.392 1.981 1.217 2.516 543 4.086 2.506 1.740 3.260 6.65
2p 3.328 1.867 1.240 2.555 5.46 3.982 2.356 1.762 3.278 6.60
8 2p e cee 1.256 2.528 5.46 e o 1.763 3.248 6.64
s2p? P N 3.565 2.176 1.692 2.977 6.96 O 4.260 2.716 2.209 3.701 8.35
D 3.568 2.180 1.630 2.942 6.66 4.275 2.723 2.163 3.784 8.84
1S 3.571 2.184 1.542 2.909 6.39 4.271 2.724 2.073 3.732 8.30
spP 55 3.623 2.307 1.726 2.913 6.92 4.372 2.863 2.230 3.580 7.97
3D 3.587 2.243 1.646 2.964 6.93 4.300 2.785 2.152 3.662 7.98
p 3.604 2.249 1.610 2.961 6.88 . 4.268 2.776 2117 3.670 7.94
D 3.519 2.115 1.592 3.036 7.28 4.235 2.649 2.104 3.767 8.50
i) 3.450 2.014 1.616 3.008 6.95 4.121 2.537 2127 3.717 8.20
p 3.529 2.126 1.549 2.993 6.87 4.213 2.648 2.059 3.705 7.88
p 3p cee e 1.616 2.972 6.88 v e 2.114 3.665 7.85
D cee oo 1.591 2.972 6.87 cee o 2.090 3.680 7.89
1S e s 1.553 2.966 6.85 e “ee 2.052 3.685 7.86
s*p 2p N 3.765 2.434 2.000 3.300 7.87 Orv 4.513 2.990 2.503 3.938 8.83
Csp? P 3.850 2.546 2.026 3.196 7.44 4.651 3.108 2.526 3.848 8.56
2D 3.759 2.461 1.935 3.343 7.92 4.481 3.006 2.448 4,142 9.59
25 3.804 2475 1.848 3.300 7.52 4.420 2.991 2.352 4.019 8.50
p 3.665 2.305 1.906 3.371 8.32 4.380 2.849 2.417 4.096 9.75
P N e e 1.980 3.345 7.87 e oo 2.479 4.040 8.88
2D e o 1.926 3.351 7.86 e cee 2.427 4.071 8.88
2p cee v 1.891 3.351 7.89 cee e 2.394 4.098 9.00

s? LS Niv 4.034 2.709 cee cee e Oy 4.800 3.265
sp 3p 3.938 2.740 2.325 3.549 7.84 4.784 3.314 2.842 4.579 9.50
p 3.850 2.595 2.153 3.676 9.92 4.600 3.148 2.666 4.408 12.00
P2 p e oo 2.268 3.718 8.31 cee e 2.767 4.387 9.36
D s e 2.211 3.727 8.48 cee e 2.713 4.445 9.48
1S s e 2.131 3.729 8.55 cee cen 2.634 4.502 9.66

s N Nv 4.137 2.964 Ovr 5.114 3.554
e e 2.557 4.812 9.00 e e 3.057 5.275 10.00

multiplicity as well as angular momentum. However, distinguish symmetry species. Most of the states calcu-
the individual orbital momenta are not good quantum lated by us are the lowest of a symmetry species; those
numbers for the true solutions of the Schrodinger which are not are marked with an asterisk in Table III.
equation, and orbital structure should not be used to For this second category of excited states the varia-
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TasLe III. Calculated energies and comparison to experiment. Energies are in atomic units.
Blanks indicate an absence of experimental data.

Calculated energies

Relative to

Calculated energies
minus experimental
energies

Relative to

Calculated energies

Relative to

Calculated energies
minus experimental
energies
Relative to

Total ground state Total ground state Total ground state Total ground state

s¥ps 2P —74.788567 0 0.360977 0

sps =S —74.112572  0.675995

sipt 8P N- —54.321106 0 —74.809149 0 '0.286200 0
D —54.265951 0.055155 —74.729000 0.080149 0.294419 0.008219
15 —54.185656 0.135450 ~74.610734 0.198415 0.331029 0.044829

spd SP —53.864775 0.456331 —74.183667 0.625482
p —53.628647 0.692459 ~73.871757 0.937392

P8 15% —53.204446 1.116660 —73.305804 1.503345

s2ps A4S —54.400789 0 0.200986 0 —74.372527 0 0.222818 0
2D —54.296006 0.104783 0.218182 0.017196 —74.233258 0.139269 0.239923 0.017105
2P —54.227925 0.172864 0.242468 0.041482 —74.142007 0.230520 0.268988 0.046170

spt 4P —53.988133 0.412656 0.212142 0.011156 —73.819524 0.553003 0.229466 0.006648
2D —53.783457 0.617332 —73.557421 0.815106 0.281752 0.058934
25 —53.683204 0.717585 —73.423186 0.949341 0.280602 0.057784
2p —53.583728 0.817061 —73.311229 1.061298 0.315392 0.092574

o 2p* —53.221754 1.179035 —72.828058 1.544469

s?pr 3P N —53.887956 0 0.178845 0 —73.100158 0 0.202523 0
D —53.807355 0.080601 0.190082 0.011237 —72.997241 0.102917 0.214044 0.011521
1S —53.690103 0.197853 0.228199 0.049354 —72.846294 0.253864 0.260614 0.580910

sp* 8§ —53.747299 0.140657 0.105036 —0.073809 —72.905175 0.194983 0.123703 —0.078820
3D —53.473978 0.413978 0.173005 —0.005840 —72.566142 0.534016 0.190641 —0.011882
p —53.394804 0.493152 0.174856 —0.003989 —72.465021 0.635137 0.189980 —0.012543
D —53.178486 0.709470 0.231867 0.053022 —72.204839 0.895319 0.246689 0.044166
3S —53.151774 0.736182 0.208738 0.029893 —72.179442 0.920716 0.226361 0.023838
p —53.101140 0.786816 0.206365 0.027520 —72.105046 0.995112 0.239842 0.037319

A 3p* —52.864760 1.023196 —71.796825 1.303333 0.213653 0.011130
1D* —52.786453 1.101503 —71.696837 1.403321 0.247938 0.045415
15* —52.670534 1.217422 —71.548372 1.551786 0.191345 —0.011178}

stp 2P N —52.815767 0 0.114388 0 —71.094684 0 0.188808 0

spr 4P —52.629796 0.185971 0.083390 —0.025998 —70.853443 0.241241 0.106058 —0.082750
D —52.377489 0.438278 0.141420 0.027032 —70.547715 0.546969 0.158667 —0.030141
25 —52.245740 0.570027 0.136609 0.022221 —70.383256 0.711428 0.152637 —0.036171
P —52.151122 0.664645 0.163140 0.048752 —70.280234 0.814450 0.181511 —0.007297

° ) —52.026184 0.789583 0.101974 —0.012414 —70.111809 0.982875 0.119284 —0.069524
2D —51.892058 0.923709 0.161951 0.047563 —69.945380 1.149295 0.176859 —0.011949
2p* —51.803982 1.011785 0.125532 0.011143 —09.835773 1.258911 0.132258 —0.056550

s s Niv  —51.082298 0 0.153784 0 —68.257692 0 0.182537 0

sp P —50.854765 0.227533 0.074854 —0.078930 —67.975765 0.281927 0.080033 —0.093504
p —50.517055 0.565243 0.123643 —0.030141 —67.576576 0.681116 0.140250 —0.042287

? p —50.356131 0.726167 0.080011 —0.073773 —67.372244 0.885448 0.093431 —0.089106
D —50.257409 0.824889 0.118204 —0.035580 —67.252081 1.005611 0.132541 —0.049996
15* —50.112301  0.969997 0.051548 —0.102236 —67.074798 1.182894 0.053864 —0.128673

s 25 —48.326838 0 0.062726 0 —64.178032 0 0.077059 0

P 2P —47.957768 0.369070 0.064451 0.001725 —63.736678 0.441354 0.077760 0.000701
1S Nvi —44.736154 0 0.056680 0 —59.111133 0 0.069141 0

* States which are not the lowest of a symmetry species.
1 Experimental value in doubt.
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tional principle still holds if the trial functions are con-
strained by orthogonality with respect to the exact
wave function(s) of the lower state(s). Since such exact
wave functions are not known, one is usually satisfied if
approximate orthogonality with respect to the approxi-
mate lower state wave function(s) is assured. In practice
this is achieved by solving the Hartree-Fock problem
for the different states without any explicit constraints
at all.

As an example, let us take the 1s5?2p and the 1523p
states of the Li atom, and let us assume that the self-
consistent field orbitals are determined for each state
as a separate problem. It is easily seen that the SCF
equations are slightly different for the two cases. This
leads to a small difference in the 1s orbitals, but, of
course, to a large difference between the 2p and 3p
orbitals, since for these we must take solutions without
and with one radial node, respectively. The 2p and 3p
orbitals, however, are eigenfunctions of nearly identical
effective Hamiltonians and are, therefore, nearly or-
thogonal. The near-identity of the 1s orbitals and the
near-orthogonality of the 2p and 3p orbitals assures the
near-orthogonality of the 3-electron state functions.

In the present application, exact orthogonality is
assured between our state functions representing the
higher and the lower states of the same symmetry,
since in all cases they involve a double 2s-2p promotion.
We, therefore, feel confident that our SCF solutions for
the excited states are reasonable approximations to the
exact wave function.

IV. RESULTS

The calculations were carried out on the IBM 7090
using a program, described elsewhere,* which permits
automatic exponent optimization.

The 1s orbital is represented rather well by three
basis functions, specifically, a 1s function with {=Z
(for the cusp) and two 3s functions [p;=0 in
Eq. (3)] with {=Z=4A, where A=0.96 for N and
A=1.12 for O. Furthermore, it was found that this
representation is quite insensitive to the presence or
absence of outer electrons, as long as the 1s orbital is
doubly occupied. Such a result was, of course, to be
expected ; nevertheless, we verified it in a number of
cases. These three basis functions also span the inner
loop of the 2s orbital.

The outer loop of the 2s orbital is represented by two
additional 3s functions; the optimum exponents for
these two functions depend strongly on the occupation
of the 25 and 2p shells, and to a lesser extent on the
different states within the same configuration. These
exponents were carefully optimized for each state.

The 2p orbital is represented by three 2p functions;
the optimum exponents strongly depend on occupa-
tion and state, and were also carefully optimized for
each state.

4 C. C.J. Roothaan and P. S. Bagus, Methods in Com putational
Physics (Pergamon Press, Inc., New York, 1962), Vol. II.
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The best exponents are summarized in Table I and
the expansion coefficients in Table II. Table III shows
a comparison of computed and experimental energy
levels. Very good agreement for this comparison cannot
be expected, since the Hartree-Fock energy is in error
by the so-called correlation energy,® which is strongly
dependent on shell structure.

The experimental energies have been obtained from
Moore’s Tables,® with the exception of O~, for which the
electron affinity was obtained from the work of Brans-
comb et al.” The experimental multiplets are averaged
and the correction for infinite nuclear mass included.
The total experimental energies are subject to a sys-
tematic uncertainty of about 0.003 a.u. which is not
present in the relative energies.

For each configuration, it can be seen that the state
of highest spin has the smallest energy difference from
experiment. This result reflects the “precorrelation” in-
troduced by the Hartree-Fock exchange potential for
electrons having parallel spins. Negative numbers in
the final column of Table III indicate smaller correla-
tion energy for the excited state than for the ground
state. These negative numbers occur in excited con-
figurations where the ground state spin of the species
is smaller than that of some state of the excited
configuration.

In several cases we compared the present orbitals
with more accurate calculations, carried out with larger
basis sets. These comparisons convinced us that the
present orbitals never differ from the actual Hartree-
Fock function by more than 1073, and usually by much
less.

Because of the loose binding of the 2p orbitals, the
negative ions may constitute an exception to the fore-
going statement. A more detailed study of negative
ion states, with the use of larger basis sets, might
prove rewarding.

The calculated energies for N~ and O~ are higher than
for the corresponding neutral atoms. However, both
ions are expected to have more correlation energy than
their parent atoms, since they have additional electron
interactions. Reasonable estimates of this correlation
energy predict that O~ is stable while N~ is only barely
stable, if at all.

A considerable effort failed to reveal energy minima
in O~ or N—. Instead, a smooth reduction of energy
occurred as the 2p orbital moved outward.

Further details concerning these results, such as
numerical tabulations, are available upon request.
Program decks are also available. The exponents of
Table I may be used with our program to reproduce our
results quickly, or as a starting point to determine
more accurate orbitals by enlarging the basis sets.

& See, for instance, E. Clementi, J. Chem. Phys. 38, 2248 (1963).

6 Charlotte E. Moore, NBS Circular 467 (U. S. Government
Printing Office, Washington, D. C., 1949), Vol. 1.

7L. M. Branscomb, D. S. Burch, S. J. Smith, and S. Geltman,
Phys. Rev. 111, 504 (1958).



